arup-ec7-180314v2

24
www.fugro.com Optimisation of Geotechnical Design by Eurocode 7 Adriaan van Seters Fugro GeoServices BV March 18 th 2014

Upload: lingamkumar

Post on 07-Dec-2015

2 views

Category:

Documents


0 download

DESCRIPTION

arup

TRANSCRIPT

www.fugro.com

Optimisation of

Geotechnical

Design by Eurocode 7

Adriaan van Seters

Fugro GeoServices BV

March 18th 2014

www.fugro.com Date

Contents Menu

Optimisation of design using Eurocodes

Evaluation of existing structures

Determination of characteristic values

Conclusions

www.fugro.com

Optimisation of design using EC7

Many options:

• Take into account the design life period adjust

• Extensive soils investigation

• Pile foundations – more CPT’s reduction of -values

• Pile/Anchor Load testing

• Observational method

• etc

Two (Dutch) possibilities are discussed:

• Evaluation of existing structures ( - value)

• Determination of characteristic values

www.fugro.com

Existing structures in the Netherlands

Existing structures reduced probability of failure because:

– Cost for increasing the safety level for existing structures much

higher than for new structures

– Remaining design life for existing structures often less than 50 –

100 years

– The behaviour of the structure is known (proven strength)

Codes NEN 8700 – equivalent EN 1990

NEN 8707 – equivalent EN 1997

www.fugro.com

Safety Levels

For CC2-structures 3 safety levels are distinguished

– New buildings = 3.8 (Probability of failure 0,7 * 10-4)

– Rejection level, building must be restored = 2.5 (Probability of failure 0,6 * 10-2)

– Safety level after restoration = 3.3 (Probability of failure 0,5 * 10-3)

– Reference period of 15 years iso 50 years for variable Q-loads

– Material and resistance factors unchanged to new buildings

In engineering terms – loadfactors

Loadfactors

CC2-building

Permanent loading

G

Variable loading

Q

Probability Index

New structures 1.35 1.5 3.8

Safety after

restoration

1.3 1.3 3.3

Minimum safety

level

1.2 1.15 2.5

www.fugro.com

Eurocode for existing structures - NEN 8700, 8707

Evaluation of existing buildings

Investigations

– Historical

– Inspection – outside

– Inspection – inside, piles etc

– Inspection – periodically

Evaluation

– Condition of foundation/piles

– Cracks

– Settlement velocity

– Tilting etc

Back-calculation

– Pile bearing capacity STR + GEO

– Settlements

Date

Building in Amsterdam – ca 1600

www.fugro.com

Evaluation of piled foundations

Checking piles

- Penetration in wood

(Woodpecker – 15 – 40 mm) -

- Back calculation bearing capacity

www.fugro.com

Back-calculation Geotechnical bearing capacity

Pile tip – 13 m

Pile head 236 mm

Pile tip 140 mm

Design bearing capacity 160 kN

Design load reduced loadfactors 89 kN

Calculation procedure conform new

buildings

Foundation is OK

www.fugro.com

Check of deformations - rotations

Rotation Damage Scale

< 1:300 None Nihil

1:300 to 1:200 Architectural Small

1:200 to 1:100 Architectural Medium

1:100 to 1:75 Structural Large

> 1:75 Structural Very Large

Measurement of measonry

- Horizontal alignment of bricks

Criteria are under review

Max tilt 1: 110

www.fugro.com

New method determining state of foundation

Excitator in the street

Accelerator measurements on the houses

Good/bad foundation difference in response

Calibration with excavated foundation

Courtesy City of Rotterdam

www.fugro.com

Existing buildings - summary

New Dutch codes for existing structures

– NEN 8700 – equivalent to EN 1990 – Basis of Design

Reduction of

Partial load factors for rejection limit state and restoration limit state

Material and resistance factors unchanged to new buildings

– NEN 8701 – equivalent to EN 1991 - Loads

Adjusted wind and other loads

– NEN 8707 – equivalent to EN 1997 – Geotechnics (in preparation)

Inspection

Observational method

Displacement criteria

Partial material factors for slopes and retaining structures

Proven strength

www.fugro.com

Determination of characteristic value in NL

Various methods:

Only: CPT or volume weight

Eurocode 7.1/Dutch N.A. - Table 2b

Results Field and laboratory testing

Regional Database combined with local data

www.fugro.com

1 TABLE 2b: Characteristic Value of a Soil Property

SOIL PROPERTY – CHARACTERISTIC VALUE

SOIL TYPE

VOLUME WEIGHT

CONE RESISTANCE

DEFORMATION PARAMETERS

STRENGTH PARAMETERS

GRAVEL

SAND

SILT

CLAY

PEAT

..

..

..

..

..

SAT

..

..

..

..

..

qc Cs CC C E

.. .. .. .. ..

.. .. .. .. ..

'

..

..

c '

..

..

cU

..

..

COEFFICIENT OF VARIATION

0,05 0,25 0,10 0,20

ENTRANCE

qC (’v = 100 kPa)

EC7 – Dutch N.A.

www.fugro.com

0 0

0,5 1,0 1,5 2,0 2,5

100

200

MPa 10,8 6 * 1,8 q

MPa 6 q

kPa 40 ̀

co

c

v

1 Cone resistance is stress dependent – convert to ’v = 100 kPa

1,8 V

ert

eff s

tress

’ v [kP

a]

Sand only

www.fugro.com

1 Characteristic Values – soil parameters

EC7 – Dutch NA – Table 2b

c sat qc

d

g C′p

C′s Cc/(1 + e0) Cα

f Csw /(1 + e0)

e E100

f ′ f c′ cu Hoofd-

naam

Bijmengsel Consis-

tentie b

kN/m3

kN/m3

MPa [-] [-] [-] MPa Graden kPa kPa

grind zwak siltig los

matig

vast

17

18

19

20

19

20

21

22

15

25

30

500

1000

1200

1400

0,0046

0,0023

0,0019

0,0016

0

0

0

0,0015

0,0008

0,0006

0,0005

45

75

90

105

32,5

35,0

37,5

40,0

0

0

0

n.v.t.

sterk siltig los

matig

vast

18

19

20

21

20

21

22

22,5

10

15

25

400

600

1000

1500

0,0058

0,0038

0,0023

0,0015

0

0

0

0,0019

0,0013

0,0008

0,0005

30

45

75

110

30,0

32,5

35,0

40,0

0

0

0

n.v.t.

zand schoon los

matig

vast

17

18

19

20

19

20

21

22

5

15

25

200

600

1000

1500

0,0115

0,0038

0,0023

0,0015

0

0

0

0,0038

0,0013

0,0008

0,0005

15

45

75

110

30,0

32,5

35,0

40,0

0

0

0

n.v.t.

zwak siltig, kleiig 18 19 20 21 12 450 650 0,0051 0,0035 0 0,0017 0,0012 35 50 27,0 32,5 0 n.v.t.

sterk siltig, kleiig 18 19 20 21 8 200 400 0,0115 0,0058 0 0,0038 0,0019 15 30 25,0 30,0 0 n.v.t.

leem e

zwak zandig slap

matig

vast

19

20

21

22

19

20

21

22

1

2

3

25

45

70

100

650

1300

1900

2500

0,0920

0,0511

0,0329

0,0230

0,0037

0,0020

0,0013

0,0009

0,0307

0,0170

0,0110

0,0077

2

3

5

7

27,5

27,5

27,5

30,0

32,5

35,0

0

1

2,5

3,8

50

100

200

300

sterk zandig 19 20 19 20 2 45 70 1300 2000 0.0511 0,0329 0,0020 0,0013 0,0170 0,0110 3 5 27,5 35,0 0 1 50 100

klei schoon slap

matig

vast

14

17

19

20

14

17

19

20

0,5

1,0

2,0

7

15

25

30

80

160

320

500

0,3286

0,1533

0,0920

0,0767

0,0131

0,0061

0,0037

0,0031

0,1095

0,0511

0,0307

0,0256

1

2

4

10

17,5

17,5

17,5

25,0

0

5

13

15

25

50

100

200

zwak zandig slap

matig

vast

15

18

20

21

15

18

20

21

0,7

1,5

2,5

10

20

30

50

110

240

400

600

0,2300

0,1150

0,0767

0,0460

0,0092

0,0046

0,0031

0,0018

0,0767

0,0383

0,0256

0,0153

1,5

3

5

10

22,5

22,5

22,5

27,5

0

5

13

15

40

80

120

170

sterk zandig - 18 20 18 20 1,0 25 140 320 1680 0,0920 0,0164 0,0037 0,0007 0,0307 0,0055 2 5 27,5 32,5 0 1 0 10

organisch slap

matig

13

15

16

13

15

16

0,2

0,5

7,5

10

15

30

40

60

0,3067

0,2300

0,1533

0,0153

0,0115

0,0077

0,1022

0,0767

0,0511

0,5

1,0

2,0

15,0

15,0

0

0

1

1

10

25

30

veen niet voorbelast slap 10 12 10 12 0,1 5 7,5 20 30 0,4600 0,3067 0,0230 0,0153 0,1533 0,1022 0,2 0,5 15,0 1 2,5 10 20

matig voorbelast matig 12 13 12 13 0,2 7,5 10 30 40 0,3067 0,2300 0,0153 0,0115 0,1022 0,0767 0,5 1,0 15,0 2,5 5 20 30

variatiecoëfficiënt 0,05 – 0,25 0,10 0,20

www.fugro.com

2 Dutch NA Characteristic value from tests

Characteristic value for the average

Xaverage;char = Zn;v * Xaverage, where Zn;v = (1 – t*v*(1/n))

Student t - distribution

n Zn;v

v = 0,05 v = 0,10 v = 0,15 v = 0,20 v = 0,25

1 0,84 0,72 0,64 0,50 0,42

2 0,88 0,77 0,67 0,58 0,50

3 0,92 0,83 0,75 0,66 0,58

4 0,94 0,88 0,82 0,76 0,71

6 0,96 0,92 0,88 0,84 0,79

10 0,97 0,94 0,91 0,88 0,86

cu, c’ E, Cc, C

www.fugro.com

2 Characteristic value from testdata

Xaverage;char = Zn;v * Xaverage

Number of

tests

Xaverage Variation coefficient

1 = X1 From table 2b

2 = (X1 + X2)/2 From testdata,

≥ value of Table 2b

≥ 3

=

From testdata,

If less than Table 2b,

Otherwise Table 2b n

X

n

i

i1

www.fugro.com

3 Data bases – CUR-report 2008-2

Use of databases:

Regional database is available

Useful in case of very limited local testdata and a

large variability

Be careful with spacial variation

Table 2b EC7 Dutch N.A.can be considered as

general and area independent database.

[Schneider, H. 1999]

www.fugro.com

3 Determination of soil parameters: Bayesian approach

a-priori

knowledge

Bayesian analysis

a-posteriori

knowledge

Local testdata

Combination of regional

database and local testdata Regional

Database, e.g.

Dutch NA

- Table 2b

www.fugro.com

3 Example - combining local testdat and Table 2b, Dutch N.A.

See: CUR 2008-2

Standard analysis of characteristic value according to EC7 Dutch NA

8 vane field tests with determination of undrained shearstrength

Average cu;ave;2 = 26 kPa

Variationcoëfficiënt V2 = 0,34 characteristic value cu;char;2 = 20 kPa

Table 2b variation coëfficiënt V2 = 0,2 characteristic value cu;char;2 = 22,5 kPa

Table 2b directly clay, clean, soft cu;char = 25 kPa

www.fugro.com

Characteristic Values – soil parameters

EC7 – Dutch NA – Table 2b

c sat qc

d

g C′p

C′s Cc/(1 + e0) Cα

f Csw /(1 + e0)

e E100

f ′ f c′ cu Hoofd-

naam

Bijmengsel Consis-

tentie b

kN/m3

kN/m3

MPa [-] [-] [-] MPa Graden kPa kPa

grind zwak siltig los

matig

vast

17

18

19

20

19

20

21

22

15

25

30

500

1000

1200

1400

0,0046

0,0023

0,0019

0,0016

0

0

0

0,0015

0,0008

0,0006

0,0005

45

75

90

105

32,5

35,0

37,5

40,0

0

0

0

n.v.t.

sterk siltig los

matig

vast

18

19

20

21

20

21

22

22,5

10

15

25

400

600

1000

1500

0,0058

0,0038

0,0023

0,0015

0

0

0

0,0019

0,0013

0,0008

0,0005

30

45

75

110

30,0

32,5

35,0

40,0

0

0

0

n.v.t.

zand schoon los

matig

vast

17

18

19

20

19

20

21

22

5

15

25

200

600

1000

1500

0,0115

0,0038

0,0023

0,0015

0

0

0

0,0038

0,0013

0,0008

0,0005

15

45

75

110

30,0

32,5

35,0

40,0

0

0

0

n.v.t.

zwak siltig, kleiig 18 19 20 21 12 450 650 0,0051 0,0035 0 0,0017 0,0012 35 50 27,0 32,5 0 n.v.t.

sterk siltig, kleiig 18 19 20 21 8 200 400 0,0115 0,0058 0 0,0038 0,0019 15 30 25,0 30,0 0 n.v.t.

leem e

zwak zandig slap

matig

vast

19

20

21

22

19

20

21

22

1

2

3

25

45

70

100

650

1300

1900

2500

0,0920

0,0511

0,0329

0,0230

0,0037

0,0020

0,0013

0,0009

0,0307

0,0170

0,0110

0,0077

2

3

5

7

27,5

27,5

27,5

30,0

32,5

35,0

0

1

2,5

3,8

50

100

200

300

sterk zandig 19 20 19 20 2 45 70 1300 2000 0.0511 0,0329 0,0020 0,0013 0,0170 0,0110 3 5 27,5 35,0 0 1 50 100

klei schoon slap

matig

vast

14

17

19

20

14

17

19

20

0,5

1,0

2,0

7

15

25

30

80

160

320

500

0,3286

0,1533

0,0920

0,0767

0,0131

0,0061

0,0037

0,0031

0,1095

0,0511

0,0307

0,0256

1

2

4

10

17,5

17,5

17,5

25,0

0

5

13

15

25

50

100

200

zwak zandig slap

matig

vast

15

18

20

21

15

18

20

21

0,7

1,5

2,5

10

20

30

50

110

240

400

600

0,2300

0,1150

0,0767

0,0460

0,0092

0,0046

0,0031

0,0018

0,0767

0,0383

0,0256

0,0153

1,5

3

5

10

22,5

22,5

22,5

27,5

0

5

13

15

40

80

120

170

sterk zandig - 18 20 18 20 1,0 25 140 320 1680 0,0920 0,0164 0,0037 0,0007 0,0307 0,0055 2 5 27,5 32,5 0 1 0 10

organisch slap

matig

13

15

16

13

15

16

0,2

0,5

7,5

10

15

30

40

60

0,3067

0,2300

0,1533

0,0153

0,0115

0,0077

0,1022

0,0767

0,0511

0,5

1,0

2,0

15,0

15,0

0

0

1

1

10

25

30

veen niet voorbelast slap 10 12 10 12 0,1 5 7,5 20 30 0,4600 0,3067 0,0230 0,0153 0,1533 0,1022 0,2 0,5 15,0 1 2,5 10 20

matig voorbelast matig 12 13 12 13 0,2 7,5 10 30 40 0,3067 0,2300 0,0153 0,0115 0,1022 0,0767 0,5 1,0 15,0 2,5 5 20 30

variatiecoëfficiënt 0,05 – 0,25 0,10 0,20

www.fugro.com

Example - combining local S.I. with NL-database/ Table 2b

Alternative

Tabel 2b is a priori information:

cu;char;1 = 25 kPa, V1 = 0,2 cu;average;1 = 37,2 kPa, st deviation s1 = 7,4 kPa

From tests:

cu;average;2 = 26 kPa, V2 = 0,34, st deviation s2 = 8,8 kPa, n = 8

From this: cu;ave;1+2 = 28 kPa, sgem;1+2 = 3 kPa, cu;repr;1+2 = 23 kPa > 20 kPa!

n

ss

scn

sc

c averageu 2

22

1

2

12

2

21

21;;

n

ss

n

ss

saverage 2

22

1

2

22

12

21;

Conclusion of example:

Combination testdata and Table 2b gives here values (cu = 23 kPa)

higher than from tests only (20 kPa) , but lower than Table 2b (25 kPa)

www.fugro.com

Conclusions databases

• Soils investigation always gives a limited view of reality

• Therefore cautious estimate of characteristic value or 5 %

lower or upper limit

• In NL – table with conservative characteristic values

• Better option local soils investigation

• Combination with regional databases may reduce the

variation, but caution is required (spacial extend).

www.fugro.com

Thank You

[email protected]