arun-nalco presentation

Upload: sahil-arora

Post on 09-Apr-2018

281 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/8/2019 Arun-NALCO Presentation

    1/88

    Chalcogeno (S, Se or Te)-Substituted Compounds:Designing and Applications in Organic Synthesis

    and Material Science

    Department of ChemistryIndian Institute of Technology

    Delhi

    DR. ARUN KUMAR

    11

  • 8/8/2019 Arun-NALCO Presentation

    2/88

    Post Doctoral ResearchPost Doctoral Research

    PalladiumPalladium ChalcogenideChalcogenide NanoparticlesNanoparticles: Generation , Isolation and Applications: Generation , Isolation and Applications

    ChalcogenoChalcogeno Substituted Liquid Crystalline Materials: Syntheses and ApplicationsSubstituted Liquid Crystalline Materials: Syntheses and Applications

    Se and Te Substituted Schiff Bases As Sensors: Syntheses and ApplicationSe and Te Substituted Schiff Bases As Sensors: Syntheses and Application

    Ph.D. ResearchPh.D. Research IntroductionIntroduction

    ChalcogenatedChalcogenated Schiff Bases:Schiff Bases: Designing and CharacterizationDesigning and Characterization Palladium Complexes:Palladium Complexes: Designing, Characterization and ApplicationsDesigning, Characterization and Applications Platinum Complexes: Designing and CharacterizationPlatinum Complexes: Designing and Characterization

    Ruthenium Complexes: Designing and CharacterizationRuthenium Complexes: Designing and Characterization

    MercurryMercurry Complexes: Designing and CharacterizationComplexes: Designing and Characterization

    TelluridesTellurides andand DitelluridesDitellurides containing Schiff Base Functionalitycontaining Schiff Base Functionality

    OUTLAY OF THE PRESENTATION

    22

  • 8/8/2019 Arun-NALCO Presentation

    3/88

    Post Doctoral Research Work

    PalladiumPalladium ChalcogenideChalcogenide NanoparticlesNanoparticles::

    Generation , Isolation and ApplicationsGeneration , Isolation and Applications

    ChalcogenoChalcogeno Substituted Liquid Crystalline Materials:Substituted Liquid Crystalline Materials:Syntheses and ApplicationsSyntheses and Applications

    Se and Te Substituted Schiff Bases As Sensors:Se and Te Substituted Schiff Bases As Sensors:Designing and ApplicationsDesigning and Applications

    33

  • 8/8/2019 Arun-NALCO Presentation

    4/88

    Palladium ChalcogenideChalcogenide NanoparticlesNanoparticles::Generation , Isolation and ApplicationsGeneration , Isolation and Applications

    44

  • 8/8/2019 Arun-NALCO Presentation

    5/88

    Generally believed that reaction is catalyzed by palladium(0) species.

    Uncertainity related with catalytic nature of many Pd-complexes: whethertrue catalytic species or pre-catalysts only.

    Several reports regarding the potential of palladacycles for efficient

    catalysis of various organic reactions including CC coupling reaction.

    Few reports on use ofchalcogenated palladacycles as catalyst precursorsfor Heck coupling.

    IntroductionSuzuki-Miyaura cross-coupling reaction: one of the most importantmethods known forsp2sp2 CC coupling.

    (OH)2BAr X

    Aryl Halide Phenyl Boronic AcidK CO , DMF, H O

    ArPalladium Catalyst

    +

    55

  • 8/8/2019 Arun-NALCO Presentation

    6/88

    Use of homogeneous (metal complexes of huge number of ligands)and heterogeneous catalysts (metal oxides, supported catalysts on

    zeolites/silica /coal or polymer resins) for catalyzing various organicreactions.

    Certain drawbacks of both approaches: Difficulty related with the separation of homogeneous catalysts from

    reaction mixture so possibility of contamination of the product with

    catalyst. A limitation of lower activity and deactivation of the catalyst in caseof heterogeneous reactions.

    A solution for lower activities of heterogeneous catalysts: catalysis bynanoparticles (Nano-Catalysis) due to their large surface area.

    Taking into account: The high catalytic activities and air/moisture insensitivity of palladium-complexes of chalcogeno substituted (S, Se or Te)compounds

    Large number of other applications of nanoparticles. It was thought worthwhile to synthesize the nanoparticles of

    PalladiumChalcogenides and to explore their application in catalysis.66

  • 8/8/2019 Arun-NALCO Presentation

    7/88

    NH

    Se

    OH

    N Se

    OHEtOH

    NaBH

    Na PdClCH -CO-CH /H O

    NH Se

    OH

    PdCl

    ImineSecondary Amine

    Se Ligated Palladacycle

    (OH) BAr X

    Aryl HalidePhenyl Boronic Acid

    K2CO3, DMF, H2O

    Pd17

    Se15

    Nanoparticles

    Suzuki-Miyaura C - CCoupling Reacion

    Ar +

    Palladium Selenide Nanoparticles:Generation and Isolation

    77

    Chem. Commun., 2010, 46, 5954

  • 8/8/2019 Arun-NALCO Presentation

    8/88

    Single Crystal Structure of Se Ligated Palladacycle

    Selected bond length ()

    Pd(1) (18) 1.973(5);Pd(1)N(1) 2.056(4);

    Pd(1) l(1) 2.325(16);Pd(1) (1) 2.528(11).

    Selectedbond ngles():(18)Pd(1)N(1) 82.00(19);(18)Pd(1) l(1) 94.93(16);

    N(1)Pd(1) (1) 97.62(12);

    l(1)Pd(1) (1) 85.61(6);

    Geomeryaround d:

    Square lanar

    88

    Chem. Commun., 2010, 46, 5954

  • 8/8/2019 Arun-NALCO Presentation

    9/88

    Energy (keV)

    Counts

    151050

    5000

    4000

    3000

    2000

    1000

    0

    C

    O

    Cu

    Cu

    Cu

    Cu

    Cu

    Pd

    Pd

    Pd

    Pd

    Pd

    PdPd

    Pd

    Si

    Si

    Se

    Se

    Se

    Se

    Se

    Se

    Acquire EDX

    HRTEM Image EDX

    of d17Se15 afterAnnealingat 450 C

    Charaterizaion

    Size: ~10nm

    99

    Chem. Commun., 2010, 46, 5954

  • 8/8/2019 Arun-NALCO Presentation

    10/88

    Powder XR Patter of Pd17 e15.

    T e patter as been indexed and peaks wit t e following observed d () val es( kl): 3.32 (310), 3.17 (311), 2.92 (320), 2.81 (321), 2.56 (410), 2.49 (411), 2.42(311), 2.36 (420), 2.30 (430), 2.11 (431), 2.06 (511), 2.03 (440), 1.86 (433), 1.76

    (600), 1.71 (532), 1.65 (540), 1.63 (541)1010

    Chem. Commun., 2010, 46, 5954

  • 8/8/2019 Arun-NALCO Presentation

    11/88

    NH S

    OH

    PdCl

    S Ligated Palladacycle

    (OH) BAr X

    Aryl HalidePhenyl Boronic Acid

    K2

    CO3, ,

    2O

    Palladiu Sulfide

    Nanoparticles

    Ar

    NH Te

    OH

    Pd

    Cl OMe

    Te Ligated Palladacycle

    Palladiu Telluride

    Nanoparticles

    K2

    CO3, ,

    2O

    Ar

    +

    Palladium SulfideandPalladium Telluride anoparticles: Generationand Isolation

    1111

  • 8/8/2019 Arun-NALCO Presentation

    12/88

    CharacterizationofPalladium Telluride anoparticles

    HRTEM imageandEDXofPdxTey

    1212

  • 8/8/2019 Arun-NALCO Presentation

    13/88

    CharacterizationofPalladium Sulfide anoparticles

    HRTEM ImageofPdxSy

    1313

  • 8/8/2019 Arun-NALCO Presentation

    14/88

    ApplicaionofPalladium Sulfide,Palladium SelenideandPalladium Telluride anoparticles

    (1) Application in Nano Catalyis:Nano sized particles of palladium chalcogenides have been explored as highlyefficient catalysts in Suzuki Miyaura CC Coupling reactions. The thermalstability, aerobic and moisture insensitivity are additional advantages of thesenano-particles in the area of catalysis.

    (2) Magnetic Properies:These properties are currently under the process of investigation and will bereported soon.

    1414

  • 8/8/2019 Arun-NALCO Presentation

    15/88

    Chalcogeno Substituted

    Liquid Crystalline Materials:Syntheses and Applications

    1515

  • 8/8/2019 Arun-NALCO Presentation

    16/88

    Se Substituted iquid CrystallineMaterials:

    O

    O

    N

    Se

    O

    C10

    H21

    OH O

    O

    N

    Se

    O

    C18

    H37OH

    O

    O

    N

    Se

    O

    OC10

    H21

    OC10

    H21

    C10

    H21OH

    1 2

    3

    Seleno substituted Schiff bases showing Liquid Crystalline Properties

    Telluriun and Sulfur analogues of these compound have also beenexplored as liquid crystalline materials.

    1616

  • 8/8/2019 Arun-NALCO Presentation

    17/88

    CharacterizationbyPolarized Optical Microscopy(POM)

    Polarized Optical Micrographs

    A (43.9 C) (46.0 C)

    D(66.0 C)C(65.6C)

    Al yl Chain: C10H21

    1717

  • 8/8/2019 Arun-NALCO Presentation

    18/88

    Al yl Chain: C18H37

    Polarized Optical Micrographs

    A (68.6 C) B (72.7 C)

    B (97.5 C) C (98.5 C)1818

  • 8/8/2019 Arun-NALCO Presentation

    19/88

    Palladium ComplexesofLiquid Crystalline Compounds

    O

    O

    Se

    O

    C10H21

    OH

    Na2PdCl

    4

    O

    O

    N

    Se

    O

    C10H21

    O Pd

    Cl

    Telluriun and Sulfur analogues of these compound have also beensynthesized.

    Absence of liquid crystalline properties in all ofthem.1919

    O

    O

    N

    Se

    O

    C18H37

    O PdCl

    O

    O

    N

    Se

    O

    OC10H21

    OC10H21

    C10H21

    O Pd

    Cl

  • 8/8/2019 Arun-NALCO Presentation

    20/88

    Effect ofLiquid CrystallinePropertiesofCompoundsOnNanoparticlesoftheirPalladium Complexes

    O

    O

    N

    Se

    O

    O PdCl

    C18 37O

    O

    N

    Se

    O

    O PdCl

    C10 21

    AggregatedNanoparticlesComposition:

    Se: 45%

    Pd: 55%

    MonoDispersedComposition:

    Se: 60%Pd: 40%

    2020

  • 8/8/2019 Arun-NALCO Presentation

    21/88

    Scopeofthe Workand Conclusion

    Great interest in the synthesis of noble metal nanoparticles formany decades because of their use in applications such as catalysis,

    photonics, electronics, and biomedical sensing.

    Dependence of these intriguing properties strongly on the size andshape of the nano-particles.

    An important subject of chemical research: controlled synthesis ofnanoparticles with well-defined shape and size.

    Many Reports related with the development of synthetic methodsby varying the reaction conditions.

    First report: on the influence of lengths of alkyl chains (presenton precursors framework) on Size, Dispersion andComposition of nanoparticles.

    Possibility of using these results as a new basis for controlled

    synthesis of nanoparticles.2121

  • 8/8/2019 Arun-NALCO Presentation

    22/88

    Se and Te Substituted Schiff BasesSe and Te Substituted Schiff Bases

    as Sensors:as Sensors:Designing and ApplicationsDesigning and Applications

    2222

  • 8/8/2019 Arun-NALCO Presentation

    23/88

    2323

    OH

    NSe

    OH

    NSe

    OH

    NTe

    OH

    NTe

    OMe

    OMe

    Schiff Bases substituted with Se have beendesigned and explored as sensorfor Pd(0)

    The color transition is readily visible to thenaked eye as a yellow to red colorchange.

    Schiff base substituted with Te have beendesigned and explored as sensorfor Hg(II).

  • 8/8/2019 Arun-NALCO Presentation

    24/88

    Ph.D. Research Work

    IntroductionIntroduction ChalcogenatedChalcogenated Schiff Bases: Designing and CharacterizationSchiff Bases: Designing and Characterization

    Palladium Complexes: Designing, Characterization andPalladium Complexes: Designing, Characterization andApplicationsApplications

    Platinum Complexes: Designing and CharacterizationPlatinum Complexes: Designing and Characterization Ruthenium Complexes: Designing and CharacterizationRuthenium Complexes: Designing and Characterization

    MercurryMercurry Complexes: Designing and CharacterizationComplexes: Designing and Characterization

    TelluridesTellurides andand DitelluridesDitellurides containing Schiff Base Functionalitycontaining Schiff Base Functionality

    2424

  • 8/8/2019 Arun-NALCO Presentation

    25/88

    Compounds containing S, Se or Te are very much attracive for designingnew catalysts because of strong ligating properties of chalcogen atoms.

    Organoselenides, when used as ligands in catalytically active species, offergreat potential in transition metal-catalyzed CC bond forming reactions such

    as the palladium-mediated Heck reaction. These catalysts not only rival but, inmost cases, outperform each of their respective phosphorus and sulfuranalogues forsimilarHeck reactions ofaryl bromides

    2525Org. Lett., 2004, 6, 2997

  • 8/8/2019 Arun-NALCO Presentation

    26/88

    Interest in Te and Se ligands has grown in last decade due to availability ofstandardized synthetic routes and FTNMR forstudying solution behavior.

    Hybrid ligands containing S, Se and Te can be easily designed by

    chalcogenating Schiff base framework.

    Schiff bases are important ligands as their metal complexes can show avariety of catalytic organic reactions.

    No detailed comparative study on chalcogenated Schiff bases of mono ketones

    or aldehydes has been made

    Possibility of significant modification in the known catalytic roles of Schiffbases by the presence of S, Se or Te as a donor site in them . Therefore, suchsystems are worth exploring.

    Phosphine b

    ased c

    ataly

    stsar

    e often wa

    tera

    ndair

    sensitiv

    e.T

    her

    efor

    e,

    catalysis under phosphinefree conditions is a challenge of high importance, andPdcomplexes of phosphinefree ligands which have promising catalytic activityforCC coupling reactions are of current interest.

    The chalcogenated Schiff bases may deal with this challenge in a better waybecause the chalcogen based catalysts are air stable and also not moisturesensitive.

    2626

  • 8/8/2019 Arun-NALCO Presentation

    27/88

    Objectives

    Design chalcogenated Schiff base ligands containing S, Se or Te donor sites

    along with N and O.

    Explore the coordination chemistry of the newly designed ligands with Soft/

    Hard metallic and organometallic species.

    Study the use of Pd(II) complexes in organic synthesis (catalytic CC couplingreactions).

    2727

  • 8/8/2019 Arun-NALCO Presentation

    28/88

  • 8/8/2019 Arun-NALCO Presentation

    29/88

    Chalcogenated Schiff Bases Explored

    N(CH2)2 E system N(CH2)3 E system

    R

    N

    OH

    Me

    E

    R

    N

    OH

    MeE

    N

    RE

    REN

    REN

    OH

    Me

    REN

    OH

    Me E:

    S

    or

    Se

    or

    Te

    2929

  • 8/8/2019 Arun-NALCO Presentation

    30/88

    Precursors Used in The Syntheses

    SNH

    SeNH

    TeNH OMe

    SNH

    SeNH

    TeNH OMe

    O

    OH

    Me

    O

    OH

    Me

    O

    OH

    Chalcogenated Amines Keones

    MethodologyofSyntheses: Amine + Keone SchiffBase+ Water

    3030

  • 8/8/2019 Arun-NALCO Presentation

    31/88

    Characteization Methods of Schiff Bases

    C, H, N Analyses IR Spectrocopy 1H NMR Spectrocopy 13C{1H} NMR Spectroscopy

    77Se{1H} NMR Spectroscopy 125Te{1H} NMR Spectroscopy Single Crystal X-Ray Diffraction

    3131

  • 8/8/2019 Arun-NALCO Presentation

    32/88

    OH

    N

    CH3

    Te

    OMe

    Te(1)C(16) 2.116(2) Te(1)C(15) 2.160(3) N(1)H(1) 1.770(2)

    C(15)Te(1)C(16) 95.15(9)

    C(11)

    N(1)

    C(13) 124.5(2)

    Crystal system TriclinicSpace group P1

    a 6.3152(5) b 8.7203(7) c 18.3132(14) 85.6160(10) 85.8362(11) 76.6560(10)

    Tellurated Schiff Base 125Te{1H) NMR

    460.3 ppm125Te{1H} NMR signal :

    Appears at a position similar to that ofcorresponding free amine

    3232

  • 8/8/2019 Arun-NALCO Presentation

    33/88

    Se(1)C(12) 1.914(3)

    Se(1)

    C(11) 1.956(3) N(1)H 1.53(6)

    C(11)Se(1)C(12) 99.5(1)C(7) )N(1) )C(9) 122.0(2)

    77Se{1H) NMR 286.6 ppm

    Selenated Schiff Base

    Crystal system Monoclinic

    Space groupP2

    (1)/ca 16.474(3) b 6.7098(11) c 14.689(2) 108.084(2)

    N

    OH

    CH3

    Se

    3333

  • 8/8/2019 Arun-NALCO Presentation

    34/88

    SC(16) 1.764(4) SC(15) 1.833(4) NH 1.793(3)

    C(16)SC(15) 105.39(18)C(1)NC(14) 121.4(3)

    Crystal System MonoclinicSpace group P2(1)/c

    a 6.7921(16)b 18.802(5) c 13.883(3)

    91.077(4)

    Sulphated Schiff Base

    SC(Aryl) is shorter than SC(Alkyl)

    NS

    OH

    3434

  • 8/8/2019 Arun-NALCO Presentation

    35/88

    N

    Me

    OH

    Te

    OMe

    L12

    N

    OH

    Te

    OMe

    L14

    1

    Special NMR Spectral Features of Tellurated Schiff Bases

    N

    Me

    OH

    Te

    OMe

    L11

    N

    OH

    Te

    OMe

    L13

    N(CH2)

    2 Te system N(CH

    2)

    3 Te system

    Deshielded by 52Deshielded by 527272 ppmppm(wth respect to that of ArTe(CH(wth respect to that of ArTe(CH

    22))22NHNH

    22))

    Shielded by 6Shielded by 688 ppmppm(with respect to that of Ar Te(CH(with respect to that of Ar Te(CH

    22))22NHNH

    22))

    Remains almost unchanged.Remains almost unchanged.

    Remains almost unchangedRemains almost unchanged

    125125Te{Te{11H}H}NMR signalNMR signal

    TeCHTeCH22

    carbon signalcarbon signal 3535

  • 8/8/2019 Arun-NALCO Presentation

    36/88

    Palladium Complexes:Designing, Characterization and Applications

    3636

  • 8/8/2019 Arun-NALCO Presentation

    37/88

    Molecular Structure ofPalladium Complexes

    RN

    O

    Me

    EPd

    Cl

    REN

    O

    Me

    Pd

    Cl

    N(CH2)

    3 E system N(CH

    2)

    2 E system

    E:

    S

    or

    Se

    or

    Te

    Both the rings areSix membered.

    One ring is 5 memberedOther ring is 6 membered

    3737

  • 8/8/2019 Arun-NALCO Presentation

    38/88

    General Methodology for the Syntheses

    REN

    O

    Me

    Pd

    Cl

    REN

    OH

    MeNa2PdCl

    Acetone/ ater, Roo Te p.

    Characteization Methods

    C, H, N Analyses IR Spectrocopy

    1H NMR Spectrocopy 13C{1H} NMR Spectroscopy 77Se{1H} NMR Spectroscopy 125Te{1H} NMR Spectroscopy Single Crystal X-Ray Diffraction 3838

  • 8/8/2019 Arun-NALCO Presentation

    39/88

    Crystal tr ct re of Palla i m Com le of

    e c iff ase

    P (1) e(1) 2.5025(7)

    P (1) C

    l(1)2

    .293

    (2

    ) P (1)N(1) 1.996(7) P (1)O(1) 2.061 (6)

    N(1)P (1) e(1) 89.2(2)Cl(1)P (1) e(1) 88.30(6)N(1)P (1)O(1) 90.0(2)

    Cl(1)P (1)O(1) 92.59(16)

    Crystal system Ort or ombic

    ace gro C2cba 9.7664(3) b 16.1747(6) c 27.8791(9)

    O

    NCH3

    Te OMePd

    Cl

    125Te{1H) NMR

    764.1 ppm

    125Te{1H} NMR signal :

    Deshielded by 298 ppm withrespect to that of

    Schiff base

    3939

    C t l St t f P ll di C l f

  • 8/8/2019 Arun-NALCO Presentation

    40/88

    77

    Se{1

    H) NMR 273.73 ppm(Shielded by 16.17 ppm incomparison to free ligand)

    N

    OPd

    Cl

    Se

    Square planar geometry at Pd (II)

    Pd(1)Se(1) 2.392(2) Pd(1)Cl(1) 2.268(3) Pd(1)N(1) 1.979(6)

    Pd(1)O(1) 1.987(6)

    N(1)Pd(1)Se(1) 94.30(19)Cl(1)Pd(1)Se(1) 86.57(7)N(1)Pd(1)O(1) 88.4(3)Cl(1)Pd(1)O(1) 90.83(18)

    Crystal system TriclinicSpace group P1

    a 11.917(9) b 12.161(8) c 15.542(11)

    89

    .004

    (13

    ) 84.589(14) 62.430(12)

    4040

    Crystal Structure ofPalladium Complex of

    Se Schiff Base

    C t l t t f P ll i C l f

  • 8/8/2019 Arun-NALCO Presentation

    41/88

    Square planar geometry at Pd (II)

    Pd(1)S(1) 2.266(4) Pd(1)Cl(1) 2.309(4) Pd(1)N(1) 2.015(10) Pd(1)O(1) 1.998(8)

    N(1)Pd(1)S(1) 97.5(3)Cl(1)Pd(1)S(1) 85.67(14)N(1)Pd(1)O(1) 87.5(4)Cl(1)Pd(1)O(1) 89.3(2)

    Crystal System MonoclinicSpace group P2 (1)/c

    a 16.038(9) b 10.536(6)

    c 12.351(7) 110.369(11)

    N

    O

    CH3

    Pd

    Cl

    S

    4141

    Crystal tr ct re of Palla i m Com le of

    c iff ase

  • 8/8/2019 Arun-NALCO Presentation

    42/88

    Special NMR Spectral Features ofPalladium(II) complexes:

    DisappearanceDisappearance ofof signalsignal ofof OHOH protonproton inin 11HH NMRNMR spectraspectra..

    Both the rings areSix membered.

    (N(CH2)3E)

    One ring is 5 memberedOther ring is 6 membered

    (N(CH2)2Esystem)

    N

    O

    E

    Pd

    Cl

    EN

    O

    Pd

    Cl

    4242

    DeshieldedDeshielded between 298between 298 andand308308 ppmppm

    Magnitude ofMagnitude of DeshieldingDeshielding isisbetween 11between 11 andand2424 ppmppm

    125125Te{Te{11H}H}NMRNMRsignalsignalE:

    eE:

    eE: e E: e

    DeshieldingDeshielding is of only 7is of only 71111 ppmppmDeshieldedDeshielded by ~150by ~150 pmpm7777Se{Se{11H}H}NMRNMRSignalSignal

  • 8/8/2019 Arun-NALCO Presentation

    43/88

    Change in signals of NCH2

    and CH2S protons on Complexation

    CH2S

    NCH2

    SPhN

    OPd

    Cl

    SPhN

    OH

    CH2SNCH2

    4343

  • 8/8/2019 Arun-NALCO Presentation

    44/88

    Application ofPalladium ComplxesCC Coupling Reaction:

    Reaction Conditions:

    ArBr =1.0 mmolPhB(OH)

    2=1.5 mmol

    K2CO

    3=2 mmol

    DMF =4 mLH

    2O = 0.5 mL

    Catalyst =0.001 mmolTime =24 h at 100C

    Suzuki Reaction

    Substituents onReactantants

    (R)

    Catalyst23 31

    Conversion (%)

    OMe 10 10

    H 40 35

    NO2

    75 80

    R r (OH)2

    B

    K2CO

    3, DMF / H

    2O, 24 h at 100C

    Palladium Complex

    +

    Conversion (%) is marginally lowerin comparision to the case ofPd(II)complexes of selenated Schiff bases

    at similar reaction conditions

    E: Te

    4444

  • 8/8/2019 Arun-NALCO Presentation

    45/88

    COOH

    COOH

    COOH

    Ph

    Ph

    Ph

    Ar- Y

    IO N

    ICl

    BrO N

    IO N

    ICl

    BrO N

    75

    5

    32

    75

    75

    32

    70

    0

    30

    72

    70

    35

    23 31

    Conversion (%)

    Heck Reaction

    Ar XY Y

    ArPalladium Complex

    Na2CO

    3, DMF, N

    2atm, 24 h at 100C

    +

    Reaction Conditions:

    ArI =1.0 mmolAlkene =1.5 mmolNa

    2CO

    3=2 mmol

    DMF =4 mLCatalyst =0.001 mmolTime =24 h at 100C, N

    2atm

    Conversion (%) is marginally lowerin comparision to the case ofPd(II)complexes of selenated Schiff basesat similar reaction conditions

    E: Te

    4545

  • 8/8/2019 Arun-NALCO Presentation

    46/88

    R Br (OH)2

    B R

    K2CO

    3, DMF / H

    2O, 24 h at 100C

    Palladium Complex+

    Suzuki Reaction

    E: Se

    Substituents onReactantants

    (R)

    Catalyst

    15 17 19 21

    Conversion (%)

    OMe 15 10 20 15

    H 40 25 45 30

    NO2

    85 82 87 84

    Reaction Conditions:

    ArBr =1.0 mmolPhB(OH)

    2=1.5 mmol

    K2CO

    3=2 mmol

    DMF =4 mL

    H2O = 0.5 mLCatalyst =0.001 mmolTime =24 h at 100C

    Conversion (%) is generally higherin comparision to the case ofPd(II)complexes of sulphated Schiff bases

    at similar reaction conditions

    4646

  • 8/8/2019 Arun-NALCO Presentation

    47/88

    Heck Reaction

    +

    Reaction Conditions:

    ArI =1.0 mmolAlkene =1.5 mmolNa

    2CO

    3=2 mmol

    DMF =4 mLCatalyst =0.001 mmolTime =24 h at 100C, N

    2atm

    OOH

    COOH

    COOH

    Ph

    Ph

    Ph

    Ar-X Y

    IO2N

    ICl

    rO2N

    IO2N

    ICl

    rO2N

    80

    74

    38

    78

    70

    35

    85

    80

    35

    83

    78

    33

    15 17

    Conversion(%)

    72

    68

    30

    70

    65

    30

    74

    65

    33

    78

    68

    30

    19 21

    Ar XArPalladium Complex

    Na2CO

    3, DMF, N

    2atm, 24 h at 100C

    +

    Conversion (%) is generally higherin comparision to the case ofPd(II)complexes of sulphated Schiff basesat similar reaction conditions

    E: Se

    4747

  • 8/8/2019 Arun-NALCO Presentation

    48/88

    Substituents onReactantant

    (R)

    Conversion (%)

    7 8 9

    OMe 25 10 30

    H 45 20 50

    NO2

    80 70 80

    Suzuki Reaction

    Reaction Conditions:

    ArBr =1.0 mmolPhB(OH)

    2=1.5 mmol

    K2CO

    3=2 mmol

    DMF =4 mLH

    2O = 0.5 mL

    Catalyst =0.001 mmolTime =24 h at 100C

    K2CO

    3, DMF / H

    2O, 24h at 100C

    Complex 7 / 8 / 9

    +R Br (OH)2B R

    E: S

    4848

  • 8/8/2019 Arun-NALCO Presentation

    49/88

    Application in Heck Reaction

    Reaction Conditions:

    ArI =1.0 mmolAlkene =1.5 mmol

    Na2CO3 =2 mmolDMF =4 mLCatalyst =0.001 mmolTime =24 h at 100C, N

    2atm

    Ar XY Y

    ArPalladium Complex

    Na2CO

    3, DMF, N

    2atm, 24 h at 100C

    +

    COOH

    COOH

    COOH

    Ph

    Ph

    Ph

    Ar- Y

    IO2N

    ICl

    BrO2N

    IO2N

    ICl

    BrO2N

    78

    70

    35

    75

    78

    30

    78

    70

    25

    74

    70

    28

    7 8

    Conversion (%)

    8

    5

    25

    8

    0

    32

    9

    Catalyst

    E: S

    4949

  • 8/8/2019 Arun-NALCO Presentation

    50/88

    Platinum Complexes:Designing and Characterization

    5050

  • 8/8/2019 Arun-NALCO Presentation

    51/88

    Molecular Structure ofPlatinum Complexes inN(CH

    2)

    2E System

    RN

    O

    Me

    E

    Pd

    Cl

    N(CH2)

    2 E system

    E:

    S

    or

    Se

    or

    Te

    General Methodology for the Syntheses

    REN

    O

    Me

    Pt

    Cl

    REN

    OH

    MeK2PtCl4

    Acetone/Water, Room Temp.

    One ring is 5 memberedOther ring is 6 membered

    5151

  • 8/8/2019 Arun-NALCO Presentation

    52/88

    Molecular Structure ofPlatinum Complexes inN(CH

    2)

    3E System

    E:

    Se

    or

    Te

    E

    OH

    N

    CH3

    Pt

    Cl

    Cl

    E

    OH

    NCH3

    Pt

    E

    Cl

    E

    OH

    N

    CH3

    OHN

    CH3

    Cl

    Trans Isomer

    Cis Isomer

    5252

  • 8/8/2019 Arun-NALCO Presentation

    53/88

    Ruthenium Complexes:Designing and Characterization

    5353

  • 8/8/2019 Arun-NALCO Presentation

    54/88

    Methodology of Syntheses of Ru(II) complexes:

    Cl

    RuRu

    ClCl

    Cl

    OH

    N

    CH3

    Te

    OMe

    Dichloromethane,RT

    CH3

    CH3

    CH3

    Cl

    N

    Te

    OMeCH3

    OH

    Ru

  • 8/8/2019 Arun-NALCO Presentation

    55/88

    25 / 29: R = CH3, R & R = (CH

    2)

    4

    33 / 37: R = Ph, R & R = H

    Characterization of Ru(II) complexes:

    Further Support: Change in signals of TeCH2

    andNCH

    2protons after complexation

    HRMS: (25) 720.0462 (M+Cl)(29) 734.0619 (M+Cl)(33) 733.0520 (MH+Cl)(37) 746.0614 (M+Cl)

    Metal : Ligand Ratio 1 : 1

    NCH2 TeCH2

    Ligand L13Ru(II)

    complex

    NTe

    OMeOH

    CH3

    CH3

    CH3

    Cl

    N

    Te

    OMe

    R

    OH

    R'

    R''

    Ru

    (CH2) Cl

    4

    9

    n = 1 or2

    Deshielding (49Deshielding (4975 ppm) of75 ppm) of125125Te{Te{11H} NMRH} NMRsignalsignal

    Deshielding (10Deshielding (1011 ppm) of11 ppm) ofCC55 (CH(CH22Te) SignalTe) Signal

    Deshielding (6Deshielding (67 ppm)7 ppm)of Cof C44 signalsignal

    Shielding (Shielding (~3ppm) of~3ppm) of=NCH=NCH

    22signalsignal

    CoordinationCoordinationthroughthrough

    TeTeandand

    NNCC99 carbon signalcarbon signal is Unchangedis UnchangedOH signalOH signal is present inis present in

    11HNMR spectra.HNMR spectra.

    Not throughNot through

    OOn

    5555

  • 8/8/2019 Arun-NALCO Presentation

    56/88

    =NCH2

    TeCH2

    NCH2

    TeCH2

    =NCH2 TeCH2

    NCH2+ TeCH2

    TeCH2+CH ofi-pr

    Ru(II) Complex

    TeCH2NCH2

    Ru(II) Complex

    NCH2 TeCH2 CH ofi-pr

    Ru(II) Complex

    N

    OH

    CH3

    Te

    OMe

    L12

    N

    OH

    Te

    OMe

    L14

    N

    OH

    Te

    OMe

    CH3

    L11

    5656

  • 8/8/2019 Arun-NALCO Presentation

    57/88

    Mecurry Complexes:Designing and Characterization

    5757

    Hg(II) comple es:

  • 8/8/2019 Arun-NALCO Presentation

    58/88

    TeCH2=NCH2 2.88

    N

    OH

    CH3

    Te OMe

    L12NCH

    2TeCH2 3.28

    Hg(II) Complex

    Hg(II) complexes:

    26 / 30: R = CH3, R& R = (CH

    2)

    4

    34 / 38: R = Ph, R& R = H

    MeO

    N

    (CH2)n

    R' R''

    OH

    R

    (CH2)n

    Te

    Hg

    BrBr TeOMe

    N

    R'R''

    OH

    R

    1

    23

    4

    =NCH2

    TeCH2

    3.00

    N Te

    OH

    CH3

    OMe

    Ligand L11

    =NCH2 TeCH2

    3.50Hg(II) Complex

    HRMS: (26) 1179.0170 (M+Br)(30) 1207.0450 (M+Br)

    Metal : Ligand Ratio 1 : 2

    4

    9

    9

    n = 2or3

    n = 2or3

    Shielding (85Shielding (85105 ppm) of105 ppm) of125125Te{Te{11H} NMRH} NMRsignalsignal

    Deshielding (11Deshielding (1114 ppm) of14 ppm) of

    CC55 (CH(CH22Te) SignalTe) SignalDeshielding (1.5Deshielding (1.52.5 ppm)2.5 ppm)

    of Cof C44 signalsignal

    CoordinationCoordinationthroughthrough

    TeTe

    =NCH=NCH22

    : Unchanged: UnchangedCHCH33 signalsignal :: UnchangedUnchanged (in(in 2626 andand 3030))CC1414 signal : Unchanged (insignal : Unchanged (in 3434 andand 3838))CC99 signal : Unchangedsignal : Unchanged

    OH signal : Present inOH signal : Present in11

    HNMR spectraHNMR spectra

    Not throughNot through

    NNandand

    OO

    5858

  • 8/8/2019 Arun-NALCO Presentation

    59/88

    =NCH2TeCH2

    N

    OH

    Te

    OMe

    2.95

    =NCH2

    N

    OH

    Te

    OMe

    TeCH2

    2.83 ppm

    =NCH2 TeCH2

    3.49

    =NCH2

    TeCH2 3.22 ppm

    Ligand L13

    Ligand L14 Hg(II) Complex

    Hg(II) Complex

    5959

  • 8/8/2019 Arun-NALCO Presentation

    60/88

    Tellurides and Ditelluridescontaining Schiff base functionality

    6060

  • 8/8/2019 Arun-NALCO Presentation

    61/88

    Syntheses of Ditellurides containing Schiff base functionalityand their mono telluride analogues

    N

    OH

    CH3Te

    N

    OH

    CH3

    N

    OH

    CH3

    TeN

    OH

    CH3

    N

    OH

    TeN

    OH

    TeN

    OH

    CH3Te

    N

    OH

    CH3

    TeN

    OH

    CH3

    TeN

    OH

    CH3

    TeN

    OH

    TeN

    OH

    O

    OH

    CH3

    O

    OH

    CH3

    O

    OH

    Te Te NH2NH2

    DryMeOH, r.t.

    Te Te NH2NH2

    DryMeOH, r.t.

    Te Te NH2NH2

    DryMeOH, r.t.

    TeNH2

    NH2

    DryMeOH, r.t.

    TeNH2

    NH2

    DryMeOH, r.t.

    TeNH2

    NH2

    DryMeOH, r.t.

    Novel DitelluridescontainingSchiffbasefunctionalty

    CorrespondingMono-tellurideanalogues

    (5)

    (1)

    (4)

    (6)

    (2)

    (3)

    Characterization of1 to 6 has been carried out byproton, carbon13 and tellurium125 NMR spectroscopy

    6161

    NMR S f Di ll id 2 & di ll id 1

  • 8/8/2019 Arun-NALCO Presentation

    62/88

    NMR Spectra of Ditelluride 2 & corresponding telluride 1

    1H NMR Spectrum of2 13C{1H} NMR Spectrum of2

    67

    9

    8

    1 2

    OH

    CH3

    125Te{1H} NMR 220.84 ppm 97.97 ppm

    The 1H and 13C{1H} NMR spectra of 1 and 2 are almost similar except the position ofTeCH

    2protons in 1HNMR spectra.

    TeCH2

    signal in 1HNMR 3.04 ppm 3.36 ppm

    OH

    N

    CH3

    Te Te N

    CH3

    OH

    N

    CH3

    OH

    Te

    OH

    N

    CH3

    (2)

    1 2

    3

    4

    5

    6 7

    8

    9

    First Example of Ditelluride containingSchiff Base Functionality

    (1)

    2

    3

    4

    5

    67

    8

    9

    1

    Corresponding Monotelluride containingsame Schiff Base Functionality

    2

    3

    5

    4

    9

    7

    8

    61

    CH3

    6262

  • 8/8/2019 Arun-NALCO Presentation

    63/88

    Significance of Ditellurides containing Schiff base functionality

    The borohydride reduction of such compounds can generate firstexamples of (N, O, Te) ligands, which can be reacted further with a

    variety of functionalized organic halides to prepare diversemultidentate hybrid organotellurium ligands.

    Thus importance of such compounds as precursors in thecontext of furtherance of ligand chemistry of tellurium isimmense.

    NaBH4

    / NaOH

    Dry C2H

    5OH,Reflux

    TeNa

    (CH2)n

    NH

    OH

    R

    Chlorocompoundin C

    2H5OH

    New Organotellurium Ligand

    First Example of intermediatecontaining (O, N, Te) donor sites

    N

    OH

    R

    (CH2)n Te Te (CH

    2)n N

    R

    OH

    6363

    Ligand Exchange Reaction of (2)

  • 8/8/2019 Arun-NALCO Presentation

    64/88

    125Te{1H} NMR Spectrum ofEquilibrium Mixture of (2), (2a) and (2b)

    2b

    2a 2

    455.35 287.7 251.8 97.97

    DEPT 135 NMR Spectrum ofEquilibrium Mixture of (2), (2a) and (2b)

    TeCH2NCH2

    OMe

    CH3

    14.6314.76

    3.474.54

    52.3452.44

    LigandExchangeReactionof(2)

    N

    CH3

    Te

    OH

    Te

    OMe

    Te Te

    OMeMeO

    N

    CH3

    OH

    N

    CH3

    Te

    OH

    Te

    (2)(2

    a)

    (2b)

    +

    Mixing of 2 with 2a in equimolar ratio inCDCl3 leads to the formation of an asymmetricditelluride (2b).

    98.0 ppm 457.0 ppm

    Spectra are the sum of the contributions from each component of the equilibriummixture.

    6464

    C l i

  • 8/8/2019 Arun-NALCO Presentation

    65/88

    Novel ditellurides containing Schiff base functionality have been designed for the firsttime and their ligand exchange reactions with other ditellurides have been explored.

    Monotellurides containing Schiff base functionality have been designed and comparedwith ditellurides containing the same functionality.

    Sulphated, Selenated and Tellurated Schiff bases (total 14 in number) have beendesigned and their complexation with Pd(II), Pt(II), Ru(II) and Hg(II) has been carried out.

    The complexation of selenated and tellurated Schiff bases with Pt(II) becomes differentwhen value of n in the ligand backbone >C=N(CH

    2)nE changes from 2 to 3.

    In 77Se{1H} and 125Te{1H} NMR spectra of Pd (II) / Pt(II) complexes, the shift of signalrelative to free ligand depends on the size of chelate ring (5-membered > 6 membered)

    Study on the catalytic activity of Pd (II) complexes of (O, N, E)Schiff base ligands forCC coupling reactions (Suzuki and Heck Type) has been made. The advantage of usingthem is that they are air stable and also not moisture sensitive.

    The catalytic activity of Pd (II) complexes of tellurated ligand in CC coupling reactions(Suzuki and Heck Type) has been explored first time.

    Conclusion

    List of PublicationsList of Publications

  • 8/8/2019 Arun-NALCO Presentation

    66/88

    List of PublicationsList of PublicationsIn JournalsArun Kumar, Ajai K. Singh, First ditelluride containing Schiff base functionality: synthesis and instantaneous ligandexchange with other ditelluride investigated by 125Te NMR Inorg. Chem. Commun. 10 (2007) 1315.

    Arun Kumar, Monika Agarwal and Ajai K Singh, Selenated Schiff bases of 2hydroxyacetophenone and their palladium(II) and platinum(II) complexes: syntheses and crystal structures and applications in Heck reactionPolyhedron 27(2008) 485.

    Arun Kumar, Monika Agarwal, Ajai K. Singh, Schiff bases of 1hydroxy2acetonaphthone containing chalcogenfunctionalities and their complexes with and (pcymene)Ru(II), Pd(II), Pt(II) and Hg(II) : synthesis, structures andapplications in CC coupling reactions J. Organomet. Chem. (Accepted).

    Arun Kumar, Monika Agarwal, Ajai K. Singh, Palladium(II), platinum(II), ruthenium(II) and mercury(II) complexes ofpotentially tridentate Schiff base ligands of (E, N, O) type (E = S, Se, Te): Synthesis, crystal structures and applicationsin Heck and Suzuki CC coupling reactions Inorg. Chim. Act. (Under Review).

    In Conferences / SymposiaArun Kumar, Ajai K. Singh, Secondary interactions in crystals water soluble derivatives of tellurated alkylamines,tellurated Schiff bases and metal complexes of hybrid organotellurium ligands, 11th Symposium on Modern Trends inInorganic Chemistry (MTICXI), held at IIT Delhi, Dec 08-10, 2005.

    Arun Kumar, Raghavendra Kumar P., Ajai K. Singh, Multidentate organsulphur and organotellurium ligands and theirmetal complexes: synthesis and structural aspects, OMCA 07 National Symposium on Recent Trends in OrganometallicCompounds and Their Industrial Applications, held at KIIT University Bhubaneswar, Orissa, Feb 2628, 2007.

    Arun Kumar, Ajai K. Singh, Polydentate tellurium and selenium ligands and their metal complexes: synthesis andstructural aspects, 12th Symposium on Modern Trends in Inorganic Chemistry (MTICXI), held at IIT Chennai, Dec0608, 2007.

    6666

  • 8/8/2019 Arun-NALCO Presentation

    67/88

    Thankyou forThankyou for

    youryour

    listening!!!listening!!!6767

    Ring Opening Polymerization

  • 8/8/2019 Arun-NALCO Presentation

    68/88

    Asymmetric Enantoselective Conjugate Additionto , unsaturated imide

    R R'

    O uHR R'

    Nu O

    ( , )-[(salen)Al]2O

    NuH HN3, HCN, HSAr, R"CH

    2NO

    2,

    Al

    O

    NN

    OBu-t

    t-Bu Bu-t

    t-Bu

    (S,S)-(salen)Al

    O O

    O

    Catalyst

    n

    O CH2.CH2.CH2.OC

    O

    Ring Opening Polymerization

    Macromolecules 38 (2005) 5406

    6868

    Selective Organic Transformations

  • 8/8/2019 Arun-NALCO Presentation

    69/88

    Selective Organic Transformations

    O2

    OH

    H

    OH

    N

    OH

    N

    Hy ro ylatio of Styre e

    (R)[CoII(L)]L=

    ee: 38.0 %

    OH

    N

    Br

    OH

    Al ol Co e satio

    O

    R H

    OMe

    Me R Me

    OOH L=(R)[TiIV(L)(OPri)

    2

    ee: 66-98 %2N HCl

    +

    +

    6969

  • 8/8/2019 Arun-NALCO Presentation

    70/88

    OH

    N

    N

    OHEpo i atio of Alke es

    NaClOO

    ee: 1315 %

    (S)[MnII(L)]L=

    Ru

    O

    NN

    O

    PP3

    PP3

    O2N

    NO2 O2N

    NO2

    O NH

    OH

    O

    N

    O

    O

    O

    Dehydrogenation plus intramolecular DielsAlder cycloaddition

    +

    7070

    M lti l t R d C t l i

  • 8/8/2019 Arun-NALCO Presentation

    71/88

    Multielectron Redox Catalysis

    2e, H+2

    Oxovanadium acetylacetonate[ VO(acac)

    2]

    Oxidative Coupling ofAryl Sulfides

    SR S

    R

    SR+

    O2

    S

    R

    S S

    R

    R

    ++ H+

    [VV]

    [VIII]

    J. Org. Chem.61 (1996) 1912

    nS S

    R R

    [ VO(sale -(NO2)

    2)], O

    2

    CF3

    SO3

    H, CH2

    Cl2

    S

    Electrophilic Substitutio Reactio of sulfo ium catio sforme bt the multi-electro o i atio of aromatic isulfi e 7171

    Kharasch Addition and Enol Ester Synthesis

  • 8/8/2019 Arun-NALCO Presentation

    72/88

    Kharasch Addition and Enol Ester Synthesis

    O

    R OH

    R' HO

    O

    R'

    R

    O

    ORR'

    O

    OR

    R'

    Markovnikov anti-Markovnikov [E] anti-Markovnikov [Z]

    R'

    R

    CXCl3

    ORu

    NR

    Cl

    R = Me ort-Bu

    R'

    R

    Cl

    CXCl2[X = Cl]

    Atom ra sfer Ra ical Additio (or KharaschAdditio )

    Enol Ester Synthesis

    +

    +

    +

    +

    7272

    Alkene Polymerisation

  • 8/8/2019 Arun-NALCO Presentation

    73/88

    Ru

    [Ru] [Ru]

    H

    n

    Norbornene Polymerization

    Alkene Polymerisation(RingOpening Metathesis)

    RingRing--opening metathesis is used as a method of polymerization.opening metathesis is used as a method of polymerization.

    Usually, it is applied most often when ring opening creates aUsually, it is applied most often when ring opening creates a

    relief of strain, as in some bicyclic alkenes.relief of strain, as in some bicyclic alkenes.

    Norbornene Polynorbornene

    7373

    Ol fi M t th iOl fi M t th i

  • 8/8/2019 Arun-NALCO Presentation

    74/88

    Olefin MetathesisOlefin Metathesis

    InIn crossedcrossed--olefinolefin metathesis,metathesis, oneone alkenealkene isis convertedconverted toto aa mixturemixtureofof twotwo newnew alkenesalkenes..

    2 CH3CH=CH2catal st

    CH2=CH2 + CH3CH=CHCH3

    TheThe reactionreaction isis reversible,reversible, andand regardlessregardless ofof whetherwhether wewe startstart withwithpropenepropene oror aa 11::11 mixturemixture ofof ethyleneethylene andand 22--butene,butene, thethe samesame

    mixturemixture isis obtainedobtained..

    The reaction is generally catalyzed a transition metal complex.The reaction is generally catalyzed a transition metal complex.

    Typically Ru, W, or Mo are used. Shown below is Grubbs catalyst.Typically Ru, W, or Mo are used. Shown below is Grubbs catalyst.

    p-cy

    p-cy

    CH

    Cl

    Cl 7474

  • 8/8/2019 Arun-NALCO Presentation

    75/88

    Ru CHPh

    p-cy

    Cl

    O

    NR'

    Dissociation

    Association - Olefin

    Olefin

    Ru CHPh

    p-cy

    Cl

    O

    NR'

    R"

    Ru CHPh

    p-cy

    Cl

    O

    NR'

    Vacancy

    Ru CHPh

    ClCl

    O

    NR'

    Ru ClMeMe

    - Olefin

    Olefin

    Ru CHPh

    ClCl

    O

    NR'

    Ru ClMe

    Me

    Ru CHPhCl

    O

    NR'

    Vacancy

    Ru CHPhCl

    O

    NR'

    R"

    MeMe

    RuClCl

    MeMe

    RuClCl

    +

    Mechanism of Ring Closing Metathesis (RCM) andRing Opening Metathesis ROMP

    7575

    Mechanism of Pd(0)Pd(II)

  • 8/8/2019 Arun-NALCO Presentation

    76/88

    L

    PdL

    Br

    Oxidative Addition

    Pd Br

    L

    LR

    Pd BrL

    L

    R

    InsertionPdR

    H

    H Br

    L

    L

    R

    Pd BrH

    L

    L

    RPd BrH

    L

    L

    Base

    HBr / Base

    Reductive Elimination

    Mechanism ofPd(0) Pd(II)Heck Coupling Reaction

    Complex

    P

    d intermediate

    H elimination

    Complex

    (0)

    (II)

    (II)

    (II)

    (II)

    7676

    Mechanism of Pd(II)Pd(I ) Heck Coupling Reaction

  • 8/8/2019 Arun-NALCO Presentation

    77/88

    Mechanism ofPd(II) Pd(I ) Heck Coupling Reaction

    Oxidative dditiono h r

    aser / ase

    R

    Pd

    Br

    Y

    Y

    AcO

    Pd

    BrAcO

    Pd

    BrBr

    PhY

    oss o cO

    YPdBr

    Br

    Ph

    Migration o Ph toterminal carbon

    Pd

    BrBr

    Y

    PhBeta ydro gen limination

    Y

    P

    Pd

    BrBr

    H

    Pd

    Br

    Attack of AcO

    (shown on the term inal carbon atombut could be on the internal carbon.

    Tetrahedron

    63 (2007) 6949

    Chem. Eur. J.7 (2001) 1703

    7777

  • 8/8/2019 Arun-NALCO Presentation

    78/88

    Mechanism of Suzuli Coupling Reaction

  • 8/8/2019 Arun-NALCO Presentation

    79/88

    B OHAr'

    OH

    OH

    Mechanism of Suzuli Coupling Reaction

    PhBr

    PhPd(II)Br

    NaOH

    NaBrPhPd(II)OH

    ArB(OH)2

    NaOH

    B(OH)4

    PhPd(II)Ar

    PhArPd(0)

    7979

    Mechanism of Suzuli Coupling Reaction

  • 8/8/2019 Arun-NALCO Presentation

    80/88

    S C p g

    8080

  • 8/8/2019 Arun-NALCO Presentation

    81/88

    Mechanism ofHeck CouplingReaction

    8181

    Attack of AcO has been shown on the terminal carbon atom but

  • 8/8/2019 Arun-NALCO Presentation

    82/88

    Tetrahedron 63(2007)6949Chem. Eur. J. 7(2001)1703

    it could be on the internal Carbon.

    Mechanism ofHeckReactionPd(II)Pd(IV)

    8282

    (a) CH2=CHY

  • 8/8/2019 Arun-NALCO Presentation

    83/88

    Mechanism ofHeckReactionPd(II)Pd(IV)

    Tetrahedron 63(2007)6949

    (b) Reversible AttackofAcO: attack isshownon the terminal carbonatom butit couldbeon the internal Carbon.

    (c) Oxidative AdditionofArBr(d)ReversibleLossofAcO

    (e)MigrationofArtoTerminal Carbon(f) Beta-Hydrogenelimination (g)Removal ofHBrby AcO

    8383

    Spin: 1/2

  • 8/8/2019 Arun-NALCO Presentation

    84/88

    Natural abundance: 0.89%Chemical shift range: 5800 ppm(-1400 to 3400)

    requenc ratio: 26.169742%Reference compound: Me

    2Te inC

    6D

    6Receptivit r el. to1Hat natural abundance: 1.64 104

    Receptivit r el. to13Cat natural abundance: 0.961

    Spin: 1/2Natural abundance: 7.07%

    Chemical shift range: 5800 ppm(1400 to 3400)requenc ratio: 31.549769%Reference compound: Me2Te (90%)Receptivit r el. to1Hat natural abundance: 2.28 103

    Receptivit r el. to13Cat natural abundance: 13.4

    Spin: 1/2Natural abundance: 7.63%Chemical shift range: 3000 ppm (1000 to 2000)

    requenc ratio: 19.071513%Reference compound: Me2SeReceptivit r el. to1Hat natural abundance: 5.37 104

    Receptivit r el. to13Cat natural abundance: 3.15

    123TeNMR

    125TeNMR

    77SeNMR

    8484

  • 8/8/2019 Arun-NALCO Presentation

    85/88

    Atomic

    Number

    Electronic

    Configuration

    ElectronsperShell

    Common Oxidation States of palladium are 0, +1, +2 and +4. Althoughoriginally +3 was thought of as one of the fundamental oxidation states ofpalladium, there is no evidence for palladium occurring in the +3 oxidationstate; this has been investigated via X-Ray diffraction for a number ofcompounds, indicating a dimer of Palladium(II) and palladium (IV) instead.

    Recently, compounds with an oxidation state of+6

    were synthesised.

    2828 4646 7878

    [Ar] 3d[Ar] 3d88, 4s, 4s22 [Kr]4d[Kr]4d1010 [Xe][Xe]

    4f4f1414 5d5d996s6s112,8,16,22,8,16,2 2,8,18,18, 02,8,18,18, 0 2, 8, 18, 32, 17, 12, 8, 18, 32, 17, 1

    Palladium PlatinumNickel

    8585

    Octahedral, Tetrahedral & SquarePlanarOctahedral, Tetrahedral & SquarePlanar

  • 8/8/2019 Arun-NALCO Presentation

    86/88

    , q, q

    CF Splitting pattern forCF Splitting pattern forvarious molecular geometryvarious molecular geometry

    M

    dz2dx2-y2

    dxzdxy dyz

    M

    dx2-y2 dz2

    dxzdxy dyz

    M

    dxz

    dz2

    dx2-y2

    dxy

    dyz

    OctahedralOctahedral

    TetrahedralTetrahedral Square planarSquare planar

    Pairing energy s. (

    Weak field ( < Pe

    Strong field ( > Pe

    Small ( J High SpinMostly d8

    (Majority Low spin)

    Strong field ligands

    i.e.,P

    d2+

    ,P

    t2+

    , Ir+

    , Au3+

    8686

  • 8/8/2019 Arun-NALCO Presentation

    87/88

    3434 5252

    [[ArAr] 4s] 4s22

    3d3d1010 4p4p44[[KrKr] 5s] 5s22

    4d4d1010 5p5p44

    2, 8, 18, 62, 8, 18, 6 2, 8, 18, 18, 62, 8, 18, 18, 6

    AtomicNumber

    ElectronicConfiguration

    ElectronsperShell

    Selenium Tellurium

    8787

    Some more functionalized ditellurides

  • 8/8/2019 Arun-NALCO Presentation

    88/88

    Phosphorus Sulfur Silicon126(1997) 291

    Organometallics15 (1996) 1707

    J. Organomet. Chem.437 (1992) 299

    TeTe

    NMe2

    NMe2

    OH

    Me Te

    Te

    OH

    Me

    Te Te

    NMe2 Me2N

    Fe Fe