ars p es 99slides jan10

Upload: samer723

Post on 30-May-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 ARS P Es 99Slides Jan10

    1/99

    1

    Recommended Text Books

    1) Power Electronics - circuits, devices &applications by M H Rashid

    2) Power Electronics - Principles andApplications by J Vithayathil

    3) Introduction to Power Electronics byDenis Fewson

    Topic1: Introduction

  • 8/14/2019 ARS P Es 99Slides Jan10

    2/99

    2

    This course deals with the techniques of designing high current

    electronic circuits using power semiconductor devices, likeDiodes, Transistors and Thyristors.

    The subject covers:

    Power semiconductor devices, their working, characteristics,

    protection, and drive circuits.

    Power electronic converters for controlled rectification,

    inversion, dc-dc conversion, and ac-ac conversion, are covered.

    Applications of power electronic equipment with emphasis on

    dc and ac motor drives.

    Course Objectives:

  • 8/14/2019 ARS P Es 99Slides Jan10

    3/99

    3

    What is Power Electronics ?

    Conversion and control of electricpower using semiconductor electronicdevices and related control techniques

    Conversion: ac to dc ( rectification ), dc to ac ( inversion )

    Control: To vary voltage, current, Hz, power etc

    Note:

    In Power Electronics applications, the devices operate in

    switching (ON/OFF) mode only, rather than in the linear (active)

    mode.

    Topic1: Introduction

  • 8/14/2019 ARS P Es 99Slides Jan10

    4/99

    4

    What is Power Electronics? Contd.

    Load

    Controller

    Power Circuit(Power Electronic

    Converter)

    Source

    A C Mains ,

    Battery,

    etc

    Motor

    Power Input Power Output

    Light

    Heating

    etc, etc

    Ref Measurement

    s

    Control Signals

    E

    l

    e

    Electronic

    Equipment

    Topic1: Introduction

    http://img.alibaba.com/photo/50160597/Waterproof_Electric_Heater.jpghttp://mirror-us-ga1.gallery.hd.org/_exhibits/light/_more2003/_more05/light-bulb-glowing-filament-light-blue-uncropped-3-AHD.jpg
  • 8/14/2019 ARS P Es 99Slides Jan10

    5/99

    5

    ControlsDigital | Analog

    ControlsDigital | Analog

    Power ElectronicsPower Electronics

    PowerEquipment

    Static | Rotating

    PowerEquipment

    Static | Rotating

    ElectronicsDevices | Circuits

    ElectronicsDevices | Circuits

  • 8/14/2019 ARS P Es 99Slides Jan10

    6/99

    6

    Diodes, Transistors and Thyristors

  • 8/14/2019 ARS P Es 99Slides Jan10

    7/99

    7

    Comparison of Transistors & Thyristors

  • 8/14/2019 ARS P Es 99Slides Jan10

    8/99

    8

    DEVICE CLASSIFICATION according to

    degree of controllability

    Group I: Uncontrollable,

    eg: Diodes

    Group II: Semi-controllable,

    eg: SCR, TRIAC

    Group III:Fully-controllable,

    eg: BJT, MOSFET, IGBT, GTO

  • 8/14/2019 ARS P Es 99Slides Jan10

    9/99

    9

    CONTROL CHARACTERISTICS

    OF POWER DEVICES

  • 8/14/2019 ARS P Es 99Slides Jan10

    10/99

    10

    CONTROL CHARACTERISTICS OF POWER DEVICES (contd.)

  • 8/14/2019 ARS P Es 99Slides Jan10

    11/99

    11

    CONTROL CHARACTERISTICS OF POWER

    DEVICES (contd.)

  • 8/14/2019 ARS P Es 99Slides Jan10

    12/99

    12

    CONTROL CHARACTERISTICS OF POWER

    DEVICES (contd.)

  • 8/14/2019 ARS P Es 99Slides Jan10

    13/99

    13

    Voltage and Current Capabilities

    Bipolar voltage withstanding capability(e.g. SCR, GTO,TRIAC).

    Unipolar voltage withstanding capability

    (e.g. BJT,MOSFET, IGBT, GTO, ).

    Bidirectional current capability

    (e.g. TRIAC, MOSFET ).

    Unidirectional current capability

    (e.g. SCR, GTO, BJT, IGBT, & Diode).

  • 8/14/2019 ARS P Es 99Slides Jan10

    14/99

    14

    What is Power Electronic

    Converter ?

    An Equipment whichaccepts electric powerfrom the existing

    source (fixed V/Hz a.c,Battery etc.) andconverts it in acontrolled manner into

    a suitable formcompatible with theparticular load.

    Source

    Converter

    Set

    Load

    Source

    Prof A Rashid, PNEC/NUST

  • 8/14/2019 ARS P Es 99Slides Jan10

    15/99

    15

    Power Electronic Converters

    A C

    A C D C

    D C

    RECTIFIERS(Controlled / Uncontrolled)

    DC-DCCONVERTERS

    INVERTERS

    AC-AC

    CONVERTERS

    (DC Choppers)

    AC Voltage

    Controllers

    Cycloconverters

    DC Link

    Converters

    Prof A Rashid, PNEC/NUST

  • 8/14/2019 ARS P Es 99Slides Jan10

    16/99

    16

    POWER ELECTRONIC CONVERTERS

    AC to DC: RECTIFIERAC to DC: RECTIFIER

    DC to DC: CHOPPERDC to DC: CHOPPER

    DC to AC: INVERTERDC to AC: INVERTER

    AC to AC:AC to AC:

    CYCLOCONVERTER, ACCYCLOCONVERTER, AC

    VOTAGE CONTROLLERVOTAGE CONTROLLER

    AC Input DC Output

    DC Input DC Output

    DC Input AC Output

    AC Input AC Output

    Prof A Rashid, PNEC/NUST

  • 8/14/2019 ARS P Es 99Slides Jan10

    17/99

    17

    Why Power Semiconductor

    Converters?

    1) High efficiency

    2) Long Life

    3) Low maintenance

    4) Compact size

    5) Low Cost

    6) Fast response7) Low power consumption in their

    control circuits

  • 8/14/2019 ARS P Es 99Slides Jan10

    18/99

    A Si l Ph F ll W U t ll d R tifi Ci it (Di d F ll

  • 8/14/2019 ARS P Es 99Slides Jan10

    19/99

    19

    A Single Phase Full Wave Uncontrolled Rectifier Circuit (Diode Full

    Wave Rectifier) using a Center Tapped Transformer

  • 8/14/2019 ARS P Es 99Slides Jan10

    20/99

    20

    Half-WaveControlled Rectifier

    (a) Cicuit

    V

    (b) Waveforms

  • 8/14/2019 ARS P Es 99Slides Jan10

    21/99

    21

    A Single Phase Full Wave Controlled Rectifier

    Circuit using a Center Tapped Transformer

  • 8/14/2019 ARS P Es 99Slides Jan10

    22/99

    22

    Full-Wave

  • 8/14/2019 ARS P Es 99Slides Jan10

    23/99

    23

    Single-Phase ac-ac converter

  • 8/14/2019 ARS P Es 99Slides Jan10

    24/99

    24

    CHOPPERS

  • 8/14/2019 ARS P Es 99Slides Jan10

    25/99

    25

    INVERTERS

  • 8/14/2019 ARS P Es 99Slides Jan10

    26/99

    26

    Static Switches

    bidirectional

    voltage blocking

    and current

    conduction

  • 8/14/2019 ARS P Es 99Slides Jan10

    27/99

    27

    INVERSIONUncontrolled and half-controlled rectifiers will

    permit power to flow only from the a.c systemto d.c load and are therefore referred to asunidirectionalconverters.

    In case of fully controlled rectifiers, it ispossible to transfer power from d.c side of therectifier back into the a.c system by controllingthe phase angle .

    Such mode is known as inverting mode. Thefully controlled converter may therefore be

    called as a Bidirectional converter.

  • 8/14/2019 ARS P Es 99Slides Jan10

    28/99

    28

    Inductive Smoothing of D.C Without L, the voltage waveform at M and N

    has Ripple Voltage component in additionto dc component.

    L will smooth out Ripple Voltage and makeit negligibly small.

    Capacitor can also be connected in parallel,but in high power applications the capacitorwill draw too much charging current fromsupply band cause other problems.

    In electronic circuits( light current)application capacitor is preferred.

    (Ref. VIT p. 142)

  • 8/14/2019 ARS P Es 99Slides Jan10

    29/99

    29

    Applications of Controlled Rectifiers

    1) DC Motor speed control

    2) Electrochemical andElectrometallurgical

    processes

    3) Magnetic power supplies

    4) Converters at the input end of dc

    transmission line

    5) Portable handtool drives

  • 8/14/2019 ARS P Es 99Slides Jan10

    30/99

    30

    Generalized Power Converter System

  • 8/14/2019 ARS P Es 99Slides Jan10

    31/99

    31

    Design of Power Electronics Equipment

    1) Design of power circuits( Devices,

    their ratings and configuration)

    2) Protection of power devices (Fuse,Heat-Sink etc.)

    3) Determination of control strategy

    (Phase-angle control, ON-OFF control etc)

    4) Design of logic and gating circuit.

  • 8/14/2019 ARS P Es 99Slides Jan10

    32/99

  • 8/14/2019 ARS P Es 99Slides Jan10

    33/99

    33

    (c) Appearance

    SCR Structure, Symbol and Appearance

    A

    K

    G

    PJ1

    N

    P

    NJ2

    J3

    (a) Structure

    Lesson Plan Topic 2.1

    (b) Symbol

    Anode

    Cathode

    Gate

    Low

    Power

    Medium

    Power

    http://images.google.com.pk/imgres?imgurl=https://www.alliedelec.com/Images/Products/Small/935-3546.jpg&imgrefurl=https://www.alliedelec.com/Search/ProductDetail.aspx%3FSKU%3D9353546%26MPN%3DNTE5569%26R%3D9353546%26SEARCH%3D9353546%26DESC%3DNTE5569&h=200&w=200&sz=6&hl=en&start=38&usg=__n6jdEoIXLreFjd9x7wKShkZcdeQ=&tbnid=3_54I90sV8ksOM:&tbnh=104&tbnw=104&prev=/images%3Fq%3Dsilicon%2Bcontrolled%2Brectifier%26start%3D20%26gbv%3D2%26ndsp%3D20%26hl%3Den%26sa%3DNhttp://images.google.com.pk/imgres?imgurl=https://www.alliedelec.com/Images/Products/Small/935-3546.jpg&imgrefurl=https://www.alliedelec.com/Search/ProductDetail.aspx%3FSKU%3D9353546%26MPN%3DNTE5569%26R%3D9353546%26SEARCH%3D9353546%26DESC%3DNTE5569&h=200&w=200&sz=6&hl=en&start=38&usg=__n6jdEoIXLreFjd9x7wKShkZcdeQ=&tbnid=3_54I90sV8ksOM:&tbnh=104&tbnw=104&prev=/images%3Fq%3Dsilicon%2Bcontrolled%2Brectifier%26start%3D20%26gbv%3D2%26ndsp%3D20%26hl%3Den%26sa%3DNhttp://images.google.com.pk/imgres?imgurl=http://www.smcelectronics.com/SCR1.JPG&imgrefurl=http://www.smcelectronics.com/semi.htm&h=187&w=90&sz=11&hl=en&start=85&usg=__5KOZr_-rIlOpqij_Jd6Y4BbWrEg=&tbnid=8hDPhSof7S37pM:&tbnh=102&tbnw=49&prev=/images%3Fq%3Dsilicon%2Bcontrolled%2Brectifier%26start%3D80%26gbv%3D2%26ndsp%3D20%26hl%3Den%26sa%3DNhttp://images.google.com.pk/imgres?imgurl=https://www.alliedelec.com/Images/Products/Small/935-3546.jpg&imgrefurl=https://www.alliedelec.com/Search/ProductDetail.aspx%3FSKU%3D9353546%26MPN%3DNTE5569%26R%3D9353546%26SEARCH%3D9353546%26DESC%3DNTE5569&h=200&w=200&sz=6&hl=en&start=38&usg=__n6jdEoIXLreFjd9x7wKShkZcdeQ=&tbnid=3_54I90sV8ksOM:&tbnh=104&tbnw=104&prev=/images%3Fq%3Dsilicon%2Bcontrolled%2Brectifier%26start%3D20%26gbv%3D2%26ndsp%3D20%26hl%3Den%26sa%3DN
  • 8/14/2019 ARS P Es 99Slides Jan10

    34/99

    34

    Thyristor Construction

    C

  • 8/14/2019 ARS P Es 99Slides Jan10

    35/99

    35

    BJT Characteristics

    T f Ch t i ti f NPN

  • 8/14/2019 ARS P Es 99Slides Jan10

    36/99

    36

    Transfer Characteristics of NPN

    Transistor

    Lesson Plan Topic 2.2

  • 8/14/2019 ARS P Es 99Slides Jan10

    37/99

  • 8/14/2019 ARS P Es 99Slides Jan10

    38/99

    EFFECT OF GATE CURRENT

  • 8/14/2019 ARS P Es 99Slides Jan10

    39/99

    39

    EFFECT OF GATE CURRENT on

    FORWARD BLOCKING VOLTAGE

  • 8/14/2019 ARS P Es 99Slides Jan10

    40/99

    40

    TURN-ON CHARACTERISTICS

    on d r t t t= +

  • 8/14/2019 ARS P Es 99Slides Jan10

    41/99

    41

    Reverse Recovery Characteristic of

    Diode

    t1

    t2

    tr r

    0 . 2 5 IR R

    t

    IR R

    IF

  • 8/14/2019 ARS P Es 99Slides Jan10

    42/99

  • 8/14/2019 ARS P Es 99Slides Jan10

    43/99

    43

    Methods of Thyristor Turn-on

    1) Gate Current : Normal method

    2) Light: Normal method for LASCR ( Light

    Activated SCR)

    3) High Voltage: False Turn-on (If appliedvoltage exceeds the rated value)

    4) dv/dt :False Turn-on (If applied dv/dt exceedsthe rated value)

    5) Thermal Turn-on: False Turn-on

    Zener Diode

  • 8/14/2019 ARS P Es 99Slides Jan10

    44/99

    44

    Zener Diode

  • 8/14/2019 ARS P Es 99Slides Jan10

    45/99

    45

    Zener-Diode Application

    Uni Junction Transistor

  • 8/14/2019 ARS P Es 99Slides Jan10

    46/99

    46

    Uni-Junction Transistor

    E

    B 2

    B 1B 1

    A

    B 2

    E

    R B 2

    R B 1n - t y p e

    p - t y p e

    E t a - p o i n t

    B a s i c S t r u c t u r e S y m b o l

    1 2 BB B B R R R= +

  • 8/14/2019 ARS P Es 99Slides Jan10

    47/99

  • 8/14/2019 ARS P Es 99Slides Jan10

    48/99

    48

    UJT Relaxation Oscillator

    R R 2

    V B B

    R 1C

    E

    B 2

    B 1V e v o

    V e

    V p

    V V

    V o

    t

    t

    C a p a c i t o r

    c h a r g i n g

    1 = R C

    T

    V + V

    B B

    V P

    2 1= R C

    C a p a c i t o

    d i s c h a r g

    Vv

  • 8/14/2019 ARS P Es 99Slides Jan10

    49/99

    49

    UJT Firing Circit

    (Synchronised UJT Oscillator)

    R

    C

    +

    -

    D 1 D 3

    D 4 D 2

    V d c

    R 1

    V Z

    +

    -

    Z

    i 1

    v c

    +

    -

    R 2

    G 1

    C 1

    G 2

    C 2

    P u l s e T r a nE

    B 2

    B 1

    T o SG a t e

    V lt f A

  • 8/14/2019 ARS P Es 99Slides Jan10

    50/99

    50

    Voltage-waveforms Across

    Zener, Capacitor, Output

    1 2 1 2 1 2

    P u l s eV o l t a g e

    v c ,

    v d c

    v c v c v c

    V d cV Z

    V Z

    t

    t

  • 8/14/2019 ARS P Es 99Slides Jan10

    51/99

    51

    UJT FIRING CIRCUIT

    Triggering Circuits Using ICs

  • 8/14/2019 ARS P Es 99Slides Jan10

    52/99

    52

    Triggering Circuits Using ICs

    Resistance Firing Circuit (Half-Wave)

  • 8/14/2019 ARS P Es 99Slides Jan10

    53/99

    53

    Resistance Firing Circuit (Half Wave)

    L O A D

    v Oa b

    i R 1

    R 2

    D

    R V g

    V T

    v = V s i n tS m

  • 8/14/2019 ARS P Es 99Slides Jan10

    54/99

    54

    Waveforms for Resistance Firing Circuit (Half-Wave)

    V S

    2 3 4

    t

    V s i n tm

    V g V g t

    t

    t

    t

    t

    V o

    i o

    V T

    V g p V g tV g p

    ( a )

    t

    t

    t

    t

    t

    t

    t

    t

    t

    t

    2 3 4

    2 3 4

    V S

    V g

    V o

    i o

    V T

    V S

    V g

    V o

    i o

    V T

    V = Vg p g t

    2 7 00

    2

    3 4

    9 00 = 9 0

    0

    ( c )( b )

    < 9 00

    V > Vg p g t

  • 8/14/2019 ARS P Es 99Slides Jan10

    55/99

    55

    R C Half-Wave Trigger Circuit

    L O A D

    v O

    R

    C

    V T

    v = V s i n tS m

    D 2

    V C

    +

    -

    D 1

  • 8/14/2019 ARS P Es 99Slides Jan10

    56/99

    56

    Waveformsfor R C Half-Wave Trigger Circuit

    v s

    0

    V s i n tm

    0 t

    t t

    av c

    - / 2

    a

    v c

    Vg t

    v o

    v T

    2 3

    V m

    - Vm

    v s

    0

    V s i n tm

    0 t

    av c

    - / 2

    a

    v c

    Vg t

    0

    0

    v o

    v T

    V m V m

    2 3 - Vm

    ( 2 + )

    ( a ) ( b )

    t t

  • 8/14/2019 ARS P Es 99Slides Jan10

    57/99

    57

    RC Triggering

    L O A D

    v O

    R

    C

    V T

    v = V s i n tS m

    D 2

    V C

    +

    -

    D 1

  • 8/14/2019 ARS P Es 99Slides Jan10

    58/99

    58

    R C Full-Wave Trigger Circuitv O

    R

    C

    V T

    v = V s i n tS m

    +

    -

    L O A D+

    -

    D 1 D 3

    D 4 D 2

    v d

    Waveforms of RC full-wave triggering

  • 8/14/2019 ARS P Es 99Slides Jan10

    59/99

    5959

    v s

    v d

    v o

    v T

    t

    t

    t

    V s i n tm

    v d

    v c v c v cv g t

    gg gwith Rat high value

    Waveforms of RC full-wave triggering( ) ith R HIGH l (b) ith R LOW l

  • 8/14/2019 ARS P Es 99Slides Jan10

    60/99

    60

    (a) with R, HIGH value (b) with R, LOW value

    v s

    vd

    v o

    v T

    t

    t

    t

    t

    V s i n tm

    v d

    v c v c v cv g t

    V s i n tm v s

    vd

    v o

    v T

    t

    t

    t

    v g t

    ( a ) ( b )

    Triggering Device

  • 8/14/2019 ARS P Es 99Slides Jan10

    61/99

    61

    Triggering Device

    A device is classified as triggering device

    if it changes from one stable off-state toanother stable on-state upon sensing a

    particular voltage level called the Trigger,

    FiringorPeak-Pointvoltage.

    In most applications triggering devices

    sense voltage magnitude across a

    capacitor. When the capacitor voltage

    reaches the trigger voltage, the deviceturns on and provides a discharge path

    for capacitor.

    Si l G t T i

  • 8/14/2019 ARS P Es 99Slides Jan10

    62/99

    62

    Simple Gate Trigger

  • 8/14/2019 ARS P Es 99Slides Jan10

    63/99

    63

    SCR Triggered by Light Pulse

    PhotoTransistor

    Light

    V I Ch t i ti f TRIAC

  • 8/14/2019 ARS P Es 99Slides Jan10

    64/99

    64

    V-I Characteristics of TRIAC

    C

  • 8/14/2019 ARS P Es 99Slides Jan10

    65/99

    65

    DIAC is a two terminal five layer semi-conductor bi-directional switching device.

    P

    N N

    N

    N

    P

    PP

    T 1

    T1

    T2

    T 2

    DIAC can conduct in both directions when the

  • 8/14/2019 ARS P Es 99Slides Jan10

    66/99

    66

    DIAC can conduct in both directions when thevoltage applied across the device terminals

    exceeds its break over voltage.

    T1

    T1T 2 T 2

    RL

    RL

    V V

    I

    I

  • 8/14/2019 ARS P Es 99Slides Jan10

    67/99

    67

    Diac Characteristics

    V B 0 2

    V B 0 1

    B l o c k i n g s t a t e

    F o r w a r dc o n d u c t i o n

    R e v e r s ec o n d u c t i o n r e g i o n

    I

    V

    Circuit Turn-off Time t

  • 8/14/2019 ARS P Es 99Slides Jan10

    68/99

    68

    Circuit Turn-off Time tc

    It is the turn-off time that the circuit

    presents to the SCR.

    The circuit turn-off time tc must always be

    greater than the turn-off time of SCR

    (tqor toff), otherwise the SCR may revert to

    the on-state.

    Losses in Thyristor

  • 8/14/2019 ARS P Es 99Slides Jan10

    69/99

    69

    y

    1) Load current forward conduction loss

    = IA x VF

    2) Forward leakage power loss = IFB x VS

    ( due to forward leakage current)

    3) Reverse leakage power loss ( only in a.c;

    due to reverse leakage current )

    4) Gate power loss: It is due to energy input

    from firing circuit. Pulse firing reduces

    this loss.

  • 8/14/2019 ARS P Es 99Slides Jan10

    70/99

    70

    Losses in Thyristor ( contd.)

    5) Switching loss (or Dynamic loss)

    Loss during turn-on and turn-off periods.

    At high frequency ( above 1 kHz ) this

    loss is significant.

    For high frequency operation, thyristors ofInverter-grade are used.

    H t Si k

  • 8/14/2019 ARS P Es 99Slides Jan10

    71/99

    71

    Heat Sinks

  • 8/14/2019 ARS P Es 99Slides Jan10

    72/99

    Comparison between different types of Diodes

  • 8/14/2019 ARS P Es 99Slides Jan10

    73/99

    73

    p ypGeneral PurposeDiodes

    Fast Recovery DiodesSchottky Diodes

    Upto 6000V &3500A Upto 6000V and1100A Upto 100V and300A

    Reverse recoverytime High

    Reverse recoverytime Low

    Reverse recoverytime Extremely

    low.

    Switching frequency Low

    (Max 1KHz)

    Switching frequency High

    (Max 20KHz)

    Switching frequency Very high. (Max

    30KHz)

    0.7 to 1.2VF

    V = 0 . 8 t o 1 . 5 VFV =

    25rr

    t s 0.1 s to 5 srrt = a few nano sec

    rrt =

    73

    0.4 to 0.6VFV

  • 8/14/2019 ARS P Es 99Slides Jan10

    74/99

    74

    POWER DIODES APPEARANCE

  • 8/14/2019 ARS P Es 99Slides Jan10

    75/99

    Bipolar Junction Transistor (BJT)Bipolar Junction Transistor (BJT)

  • 8/14/2019 ARS P Es 99Slides Jan10

    76/99

    76

    Bipolar Junction Transistor (BJT)Bipolar Junction Transistor (BJT)

    Ratings: Voltage: VVCECE

  • 8/14/2019 ARS P Es 99Slides Jan10

    77/99

    77

    Ratings: VoltageVoltage VVDSDS

  • 8/14/2019 ARS P Es 99Slides Jan10

    78/99

    78

    Combination of BJT and MOSFET characteristics.

    Compromises include:

    Gate behaviour similar to MOSFET - easy to turn on and off. Low losses like BJT due to low on-state Collector-Emitter

    voltage (2-3V).

    IGBT

  • 8/14/2019 ARS P Es 99Slides Jan10

    79/99

    79

    IGBT

    Ad f IGBT

  • 8/14/2019 ARS P Es 99Slides Jan10

    80/99

    80

    Advantages of IGBT

    Combines the advantages of BJT & MOSFET

    High input impedance like MOSFET

    Voltage controlled device like MOSFET

    Simple gate drive, Lower switching loss Low on state conduction power loss like BJT

    Higher current capability & higher switching speed

    than a BJT. ( Switching speed lower than MOSFET)

    Gate-Turn-Off Thyristors (GTO)

  • 8/14/2019 ARS P Es 99Slides Jan10

    81/99

    81

    Gate-Turn-Off Thyristors (GTO)

    Slow switching speeds

    Used at very high power levels

    Require elaborate gate control circuitry

    Switching Waveforms for

  • 8/14/2019 ARS P Es 99Slides Jan10

    82/99

    82

    Switching Waveforms for

    GTOs

    tt

    tt

    iiGG

    tt

    iiAA

    vvSS

    large in magnitude ~ 1/3 ilarge in magnitude ~ 1/3 iAA

    Neededtoturn-offNeededtoturn-off

  • 8/14/2019 ARS P Es 99Slides Jan10

    83/99

    8383

    di/dt Protection

    S

    S

    Vdidt L

    =

  • 8/14/2019 ARS P Es 99Slides Jan10

    84/99

  • 8/14/2019 ARS P Es 99Slides Jan10

    85/99

    8585

    Static & Dynamic Equalization

  • 8/14/2019 ARS P Es 99Slides Jan10

    86/99

    8686

    PARALLEL OPERATION

    Switches comparison

  • 8/14/2019 ARS P Es 99Slides Jan10

    87/99

    87

    Switches comparisonDevice Type Year

    madeRated

    VoltageRated

    CurrentSwitchingFrequency

    RatedPower

    DriveCircuit

    Comments

    SCR 1957 6kV 3.5kA 500Hz 100s MW Simple Cannot turn-off usinggate signal

    GTO 1962 4.5kV 3kA 2kHz 10s MW VeryDifficult

    King in very highpower

    BJT 1960s 1.2kV 400A 5kHz 1 MW Difficult Phasing out in newproduct

    MOSFET 1976 500V 200A 1MHz 100 kW VerySimple

    Good performance inhigh frequency

    IGBT 1983 3.3kV 1.2kA 100kHz 100s kW VerySimple

    Best overallperformance

    Harmonics

  • 8/14/2019 ARS P Es 99Slides Jan10

    88/99

    88

    ( )

    =

    ++=1

    0 )sin()cos()(n

    nn tnbtnaatf

    =

    tdtntfan )(cos)(1

    =

    tdtntfbn )(sin)(1

    It can be defined as a sinusoidal component of a periodic waves or quality

    having frequencies that are an integral multiple of the fundamental frequency.

    =

    2

    0

    0 )(2

    1tdtfa =

    2

    0

    )(cos)(1

    tdtntfan=

    2

    0

    )(sin)(1

    tdtntfbn

    For Odd Functions: =

    0

    )(sin)(2

    tdtntfbn00 == naa

    For Even Functions: =

    0

    )(cos)(2

    tdtntfan=

    0

    0 )(1

    tdtfa 0=nb

    A Simple Circuit (R-L Load) Current continues to flows for a while even after the input

  • 8/14/2019 ARS P Es 99Slides Jan10

    89/99

    89

    Current continues to flows for a while even after the input

    voltage has gone negative

    ADVANTAGES OF THYRISTORISED

  • 8/14/2019 ARS P Es 99Slides Jan10

    90/99

    90

    POWER CONTROLLERS

    1) High efficiency due to low losses in the Thyristors.

    2) Long life and reduced/minimal maintenance due to

    the absence of mechanical wear.

    3) Control equipments using Thyristors are compact in

    size.4) Easy and flexibility in operation due to digital

    controls.

    5) Faster dynamic response compared to the electro

    mechanical converters.6) Lower acoustic noise when compared to electro

    magnetic controllers, relays and contactors.

    DISADVANTAGES OF THYRISTORISED

    POWER CONTROLLERS

  • 8/14/2019 ARS P Es 99Slides Jan10

    91/99

    91

    POWER CONTROLLERS

    1) All the thyristorised power controllers generate

    harmonics (unwanted frequency components) due to theswitching ON and OFF of the thyristors. These harmonics

    adversely affect the performance of the load connected to

    them. For example when the load are motors, there are

    additional power losses (harmonic power loss) torqueharmonics, and increase in acoustic noise.

    2) The generated harmonics are injected into the supply

    lines and thus adversely affect the other loads/equipments

    connected to the supply lines.

    3) In some applications example: traction, there is

    interference with the commutation circuits due to the

    power supply line harmonics and due to electromagnetic

    radiation.

    DISADVANTAGES OF THYRISTORISED

  • 8/14/2019 ARS P Es 99Slides Jan10

    92/99

    92

    POWER CONTROLLERS( contd.)

    4) The thyristorised AC to DC converters and AC to ACconverters can operate at low power factor under some

    conditions.

    5)Special steps are then taken for correcting the line supply

    power factor (by installing PF improvement apparatus).

    6) The thyristorised power controllers have no short time over

    loading capacity and therefore they must be rated for

    maximum loading conditions. This leads to an increase in the

    cost of the equipment.

    7) Special protection circuits must be employed inthyristorised power controllers in order to protect and safe

    guard the expensive thyristor devices. This again adds to the

    system cost.

    Synchronous Speed

  • 8/14/2019 ARS P Es 99Slides Jan10

    93/99

    93

    Synchronous Speed

    pfNs

    120=

    s is syncronous speed [rad/sec]

    Ns is syncronous speed [rpm]

    p is numbers of poles

    is the supply frequency [rad/sec]f is the supply frequency [Hz]

    Nm is motor speed

    A t d N i l th th d f th t ti fi ld N

  • 8/14/2019 ARS P Es 99Slides Jan10

    94/99

    94

    Armature speed N is less than the speed of the rotating field Ns

    by an amount equal to theslip speed s.

    The frequency of an induction machine at the rotor side isnt

    the same as the frequency at primary side.

    Rotor Frequency,

    where fr

    and fs

    are rotor current frequency and mains supply

    frequency, respectively.

    s

    s

    N

    NNs =

    sr sff =

    TorqueSpeedCharacteristic

  • 8/14/2019 ARS P Es 99Slides Jan10

    95/99

    95

    Characteristic

    For small values of slip,developed torque is proportional

    to slip.

    TORQUE-SPEED CHARACERISTIC

    f I d ti M t

  • 8/14/2019 ARS P Es 99Slides Jan10

    96/99

    96

    of Induction Motor

    Tmax

    Smax

    Tst

    Td

    S=0sNs

    S=1

    TL

    S=SmmNmNm =0

    Tm=TLOperating point

    Stator Voltage Control

  • 8/14/2019 ARS P Es 99Slides Jan10

    97/99

    97

    gControlling Induction Motor Speed by Adjusting The Stator Voltage

    Tmax

    S=0sNs

    S=1

    TL

    Nm =0

    Td

    Vs1Vs Vs2> >

    1 2

    Tst

    Tst1

    Tst2

    Varying supply voltage and supply

  • 8/14/2019 ARS P Es 99Slides Jan10

    98/99

    98MZS

    FKEE, UMP

    98

    The best method since supplyvoltage and supply frequency is

    varied to keep VV//ff constant

    Maintain speed regulation

    uses power electronics circuit forfrequency and voltage controller

    Constant maximum torque

    y g pp y g pp y

    frequency

    T

    nNL1

    T

    nr1nr2nr3 n

    f

    decreasing

    nNL2nNL3

    Frequency Voltage Control

  • 8/14/2019 ARS P Es 99Slides Jan10

    99/99

    Frequency Voltage ControlControlling Induction Motor Speed by Adjusting The Frequency Stator Voltage

    Tmax

    S=0

    TL

    Td