aqueous polyurethane dispersions

Upload: taci-alves

Post on 06-Jul-2018

270 views

Category:

Documents


4 download

TRANSCRIPT

  • 8/17/2019 Aqueous Polyurethane Dispersions

    1/13

    Colloid Polym Sci 274:599-611 (1996)

    9 SteinkopffVerlag 1996

    B.K. Kim

    queou s po lyurethan e dispersions

    Received: 17 October 1995

    Accepted: 25 January 1996

    Dr. B.K. Kim ([E~)

    Department of Polymer Science

    and Engineering

    Pusan National University

    Pusan 609-735, Korea

    Abstract This review describes basic

    chemistry, preparation process, and

    physical properties of aqueous

    polyurethane dispersions and the

    derived films, along with the methods

    of post treatment to modify the

    properties. Basic way to render

    a polyurethane water dispersible

    without external emulsifier has been

    described. Regarding the methods of

    preparation, four major processes are

    described and compared. Methods to

    improve the relatively poor water and

    solvent resistance of aqueous polyure-

    thane dispersions which is introduced

    by the hydrophilicity and linear

    structure of polyurethane have been

    discussed with an emphasis on

    acrylate incorporations.

    n t r o d u c t i o n

    An aqueous polyurethane (PU) dispersion is a binary

    colloid system in which PU particles are dispersed in a

    continuous aqueous rnedium. PU dispersions have been on

    the market since the late 1960s and have been commercial-

    ly important since the early 1970s. One technical advan-

    tage of aqueous dispersion is tha t the viscosity of disper-

    sion is normally independent of the molecular weight

    of the polymer. Thus, PU dispersion can be prepared

    at a high solid content with a molecular weight high

    enough to form films with excellent performance solely

    by physical drying. This means that film formation can

    occur by simple evaporation of water even at ambient

    temperature.

    Aqueous PU dispersions can be formulated into coat-

    ings and adhesives containing little or no cosolvent, and

    hence they are nontoxic, nonflammable, and do not pol-

    lute the air. Such environmental advantages coupled with

    increasing solvent price and the quality of those materials

    have steadily expanded their usages in textile coatings,

    fiber sizings, and adhesives for a number of polymeric

    materials and glass surfaces. Over 1000 patents have been

    issued in the last ca. 50 years of their existence. These are

    well reviewed and documented in Dieterich [1] and Ros-

    thauser and Nachtkamp [-21. A major portion of the newer

    patents centers on the modification and tailormaking of

    aqueous PU for specific end uses. A variety of aqueous PU

    dispersions has in fact been commercialized in many coun-

    tries. They are predominantly linear polymers [3]. Modifi-

    cation is mainly directed to improve the water and solvent

    resistance properties of the derived films, which on the

    other hand, is introduced by the very nature of dispersion,

    i.e., hydrophilicity and linearity of the waterborne PUs.

    Improvements in these properties have more or less been

    achieved by grafting of other polymers [4, 5], external and

    internal crosslinkings [6, 7], and blending or interpene-

    trating polymer network formations [8, 9].

    This review describes the methods of preparation of

    aqueous PU dispersions, physical properties of disper-

    sions and dispersion derived films, and important

    methods to modify the film properties together with the

    applications.

  • 8/17/2019 Aqueous Polyurethane Dispersions

    2/13

    600 Colloid & Polymer Science, Vol. 274, No. 7 (1996)

    9 SteinkopffVerlag1996

    h e m is t ry a n d d i s p e r s i o n s

    Basic polyurethane chemistry

    Polyadd ition reactions between molar excess of diisocyan-

    ates and polyols lead to the forma tion of NCO-terminated

    polyurethane prepolymers, which are chain extended with

    diamines to form polyurea groups. Therefore, typical seg-

    mented polyurethanes are polyurethane-polyurea. Linear

    products are obtained if the reactants are bifunctional but

    higher functionality leads to the formation of branched

    or crosslinked materials. Unlike polycondensation, the

    urethane forming reactions normally evolve no by-prod-

    ucts that require removal as the macromolecules are built

    up.

    Since PU dispersions are formed in water, the reaction

    of diisocyanate with water should be minimized. Water

    hydrolyzes the isocyanate groups with the evolution of

    carbon dioxide resulting in severe foaming, which is detri-

    menta l in bubble-free castings and continuous surface

    coatings [10, 11].

    ~NCO + H20 ~ ~NH-COOH ~ ~NH2 + CO2

    The amino groups can react with the remaining NCO

    groups yielding urea linkages, which can contr ibute to the

    chain extension and physical properties of high perfor-

    mance PU. However, aqueous PU dispersions which have

    been extended predominantly with water have inferior

    properties to those extended with polyamines. This is

    simply because two NCO groups yield only one urea

    group in water extension, whereas each NCO group pro-

    duces one urea group upon amine extension.

    ~NH2 + ~NCO --+ ~N H- CO -N H~

    Additional reaction of isocyanate with urea, urethane

    and anaide groups is also possible. Then chain branching

    or crosslinking occurs due to the formation of acyl urea,

    biuret and allophanate links onto the main chain. In order

    to make a linear product, water must be strictly excluded

    from the reaction.

    RNCO + ~ R' NHCOR' -~ R' NCOR' - acylurea

    CONHR-

    - RNCO + R' NHCON HR'- ~ -R '- N- CO NH R' - biuret

    C O N H R -

    - RNCO + R'NHCOOR' - -~ - R' -N -COOR'-allophanate

    CONHR-

    Regarding the raw materials suitable for the prepara-

    tion of aqueous PU dispersion, nearly any known type of

    polyisocyanates, polyols, and polyamines have been de-

    scribed. However, on isocyanate side, aliphatic isocyanates

    such as 4,4'-dicyclohexylmethane diisocyanate (H12MDI),

    isophorone diisocyanate (IPDI), and 1,6-hexamethylene-

    diisocyanate (HDI) are preferred because of the lower

    reactivity of their NCO with water. Among cycloaliphatic

    isocyanates, aqueous PUs from H~2MDI generally give

    finer dispersion and higher mechanical properties than

    those from IPDI [12]. Closer solubility parameter of

    H12MDI (17.75(cal cm-3) 1/2) to water (24.41) over the

    IPDI (13.27) and the enhanced ordering of hard segment

    domains due to the more symmetric structure of H~2MDI

    should respectively account for the finer dispersion and

    better mechanical properties of HlaMDI based PU. The

    use of mixed isocyanates is likely to disturb the hard

    segments and contribute to the soft segment-hard segment

    phase mixings [13]. Aromatic polyisocyanates can also be

    used if suitable preparation processes are followed.

    Regarding the type of polyols, wide range of linear

    polyether, polyester and polycarbonate polyols can be

    used [2]. Typically polytetramethy lene ether glycol

    (PTMG), poly(tetramethylene adipate) glycol (PTAd), and

    polycapro lactone glycol (PCL) are often used. Short chain

    diols, typically 1,4-butane diols are also used to control the

    hard segment content. Basic design variables are type and

    molecular weight. Generally, polyester gives better phy-

    sical properties due to the stronger hydrogen bondings

    within the soft segment domains. In addition hydrogen

    bonding formations between ester groups of soft segment

    and urethane groups of hard domains contribute to the

    soft segment-hard segment phase mixings. On the other

    hand, polyether shows relatively poor physical properties

    and greater hydrolytic stability. Polyca rbonat e combines

    these two properties properly [10]. Soft segments from

    polyesters and polycarbonates having sufficiently high

    molecular weight (> 1500) can be crystallized when the

    soft segment fraction is high enough [14].

    Regarding the chain extender, the aliphatic or cyclo-

    aliphatic di- or triamines react with the isocyanate groups

    order of magnitude faster than water does. Therefore it is

    possible to extend the NCO-te rminated prepo lymer in the

    form of dispersion. Chain extension with polyamines such

    as diethylene triamine (DETA) and triethylene tetramine

    (TETA) leads to the internal crosslinkings [6, 15, 16]. With

    increasing extender functionality, modulus, strength and

    thermal stability as well as the water and solvent resistance

    of the dispersion cast films are generally increased.

    Conventional polyurethane, like most polymeric ma-

    terials are immiscible with water. NCO-terminated hydro-

    phobic PU prepolymers can be dispersed or emulsified

    with suitable external emulsifier and strong shear forces.

    However the dispersions obtained in this way are coarse

    and storage unstable. Therefore certain type of hydrophilic

  • 8/17/2019 Aqueous Polyurethane Dispersions

    3/13

    B.K. Kim 601

    Aqueous po lyurethane dispersions

    modi f ica t ion i s necessary befo re d i spers ion in aqueous

    med ia i s poss ib le . Th is i s no rmal ly done by incorpora t ing

    ion ic g roups [17 ] o r hydroph i l i c po lye ther cha in segmen ts

    i n t o t h e P U s t ru c t u re [1 8 ] . P o l y u re t h a n e s c o n t a i n i n g

    i o n i c g ro u p i n t h e i r b a c k b o n e i s c a l l e d i o n o m e r . B o t h

    z wi t t e r a n i o n i c [1 9 ,2 0 ] a n d c a t i o n i c [2 1 ] g ro u p s h a v e

    b e e n u t i li z e d in t h e p r e p a ra t i o n o f P U i o n o m e r . T h e i o n i c

    g roups a re hydroph i l i c in na tu re and func t ion as in te rna l

    emuls i f i e r . Therefo re PU ionomers a re se l f -d i spers ib le

    under mi ld cond i t ions .

    In te rna l emuls i f i e r

    The m ain a dva ntag es o f th is self-emulsificat ion are: i) d is-

    pers ing p rocesses d o no t re qu i re s t rong shear fo rce , i i) fine

    par t i c les wi th improved d i spers ion s tab i l i ty a re ob ta ined ,

    i ii ) wa ter sens i t iv i ty o f the f i lms a f te r ev apora t ion o f water

    i s reduced , and iv ) res i s tance to nonpo lar agen ts i s h igh .

    onomer

    P U i o n o m e rs a r e s t ru c t u ra l l y m u c h m o re s u i t a b l e fo r t h e

    p re p a ra t i o n o f d i s pe r s io n s . T h o u g h P U i o n o m e r c a n b e

    prep ared in th ree types , i . e ., an ionom er , ca t ionom er , and

    z wi t t e r i o n o m e r , a n i o n o m e r a n d c a t i o n o m e r a r e o f t e n e n -

    c o u n t e r e d i n t h e p r e p a ra t i o n o f a q u e o u s P U . T a b l e 1 g i ve s

    t y p ic a l p o t e n t i a l a n i o n i c a n d c a t i o ni c c o m p o u n d s . P o l y -

    u re t h a n e c a t i o n o m e rs u s e d i n a q u e o u s d i s p e r s i o n a r e

    genera l ly p repa red by incorpora t ing te r t i a ry amine func-

    t iona l i ty in to the backbone [21 -23]~ Some ca t ion ic PUs

    s h o w u n u s u a l l y g o o d a d h e s i o n t o v a r i o u s i o n i c m o s t l y

    an ion ic-subs t ra tes such as g lass and lea ther . They a l so

    have been p roven usefu l in spec ia l app l ica t ions , i .e ., add i -

    t iv e s i n t h e c o a g u l a t i o n p ro c e s s u s e d t o m a k e p o ro m e r i c s

    [1 0 ] . P U c a t i o n o m e r b l e n d s w i t h p o l y a c ry l o n i t r i l e s c o n -

    ta in ing subs tan t ia l am oun t o f an ion ic spec ies show ed s ig -

    n i f i c a n t l y i m p ro v e d m o rp h o l o g y a n d p h y s i c a l p ro p e r t i e s

    a s c o m p a r e d w i t h P U a n i o n o m e r a n d n o n i o n o m e r b l e nd s

    [24] . Never the less , ca t ion ic d i spers ions a re no t u sed wide-

    ly a t p resen t [3 ] .

    An i o n i c d i s p e r s i o n s a r e c o m m e rc i a l l y p r e d o m i n a n t .

    S u l fo n at e s a n d c a rb o x y l a t e s g ro u p s a r e m o s t o f t en i n c o r-

    p o ra t e d i n P U a n i o n o m e rs . T h e a c i d g ro u p is s u b s q u e n t l y

    neu tral ize d w ith a base, typica l ly t rie , hylam ine, resu l t ing

    i n th e fo rm a t i o n o f p o l y u re t h a n e a n i o n o m e r . P o l y c a r -

    b o x y l a t e s p ro v i d e g o o d h y d ro p h o b i c c h a ra c t e r wh i l e p o l y -

    su l fona tes g ive d i spers ions wi th exce l len t s tab i l i ty even

    u n d e r u n fa v o ra b l e c o n d i t i o n s [1, 2 ] . Am o n g d i h y d ro x y l

    carbox y l ic ac ids, ~ , ~-d imethy lo l p rop ion ic ac id DM PA )

    is mos t o f ten encoun tered in the l i t e ra tu re as a po ten t ia l

    ion ic cen ter . The adva n tage o f D M P A l ies in the ste r ic

    Table I Ion ic internal emulsifiers

    Sulfonate types

    H2N- CH 2 CHz- N H- CH J , : S O3Na

    x = 2 o r 3

    H O - C H 2 C H z - C H C H 2 -O H

    SO3Na

    arboxylate types

    CH 3

    I

    HO C Hz-C CH2-OH + Base

    I

    OzH

    H2N- CH2)4-CH-NH 2 + Base

    r

    CO2H

    H 2 N - C H 2 C H z - N H

    CHzCH z C02N a

    ationic Types

    HO- CH 2CH 2- N- CH2C H2- OH + Ac id /Alkylat ing Agent

    I

    R

    C2H5

    |

    H O - C H z - N - C H z - O H

    [

    CH2-N- CH3)2

    + Acid/Alkylating Agent

    h i n d e ra n c e o f t h e C O O H g ro u p wh i c h p re v e n ts i t f r o m

    reac t ing wi th the i socyanate g roups . Th is s ide reac t ion i s

    n o t d e s i ra b l e b e c a u s e i t wo u l d c o n s u m e t h e p o t e n t i a l i o n i c

    g roup s and cause h igh v i scos it i es due to b ra nch ing o f the

    PU . R ecen t ly , the e ffect o f coun terca t io ns h ave a l so been

    repor ted , where ammonia , t r imethy lamine , t r i e thy lamine ,

    L i O H , N a O H , a n d K O H w e r e u s e d t o n eu t ra li z e th e

    C O O H g r o u p [ 2 0 ] .

    Nonionomer

    An o t h e r a p p ro a c h t o o b t a i n i n t e rn a l l y e m u l s i f i a b l e P U

    e m p l o y s p o l y e t h e r , p r e d o m i n a n t l y f ro m e t h y l e n e o x i d e ,

    cha in segmen t [18 ] . Though i t appears conven ien t to

    r e p l a c e s o m e o f th e h y d ro p h o b i c p o l y o l s b y p o l y e t h y l e n e

    oxide PE O) , th is techn ique is no t very effective. I t is

    n e c e s s a ry t o b u i l d a h i g h n u m b e r o f h y d ro p h i l i c p o l y e t h e r

    segmen ts in to the PU to ob ta in s tab le d i spers ions . Th is

    mak es the f i lm very w ater sensi tive . The d r ied coa t ings a re

  • 8/17/2019 Aqueous Polyurethane Dispersions

    4/13

    602 Colloid & Polymer Science, Vol. 274, No. 7 (1996)

    9 SteinkopffVerlag1996

    often water swellable or even water soluble. For most

    coatings applications, water sensitivity should be mini-

    mized. A balance between dispersibility and water

    resistance of the dried products can be achieved by incor-

    porating PE O segments into lateral or terminal positions

    of the PU chains [25-27]. This is possibly done by using

    either modified diols or diisocyanates as building blocks or

    by employing monofunct ional PEO as such. However the

    dispersions obtained by this way have generally poor

    storage stability [28]. Another distinctive feature of

    nonionic dispersion is that thermocoagulation is possible

    due to the negative temperature gradient of solubility of

    hydrophilic polyether segments in water [1]. This often

    poses problems during the process of emulsification [28].

    ombination o f ionic groups and hydrophilic segm ents

    Since the incorporation of ionic centers and hydrophilic

    PEO segments leads to a different stabilization mecha-

    nism, a considerable difference in marcroscopic properties

    is expected. Advantages of one type of dispersion may be

    offset by disadvantages.

    Nonionic dispersions have technical advantages over

    the ionic ones in terms of stability against electrolytes,

    freezing, and strong shear forces. Among these, stability

    against the electrolytes and additives are especially impor-

    tant since many of the practical formulations include pig-

    ments, fillers, thickner, and other additives. On the other

    hand, nonionomer dispersion is unstable to heating due to

    the decrease of polyether solubility in water with increas-

    ing temperature.

    Fortunately, combination of ionic and nonionic hy-

    drophilic segments in the same PU has been attempted

    and desirable synergistic effects in terms of dispersion

    stability and fine particle size at an overall reduced hy-

    drophilic group content have been reported [25-27]. For

    example, in PT Ad- IPDI -DMPA system, when 20% of the

    PTAd was replaced by PEO, particle size decreased from

    0.3 to 0.1/~m [29].

    Dispersion mechanism

    PU ionomer solution in polar solvent such as acetone and

    methyl ethyl ketone spontaneously form dispersion when

    water is stirred in. The transformation of an organic solu-

    tion into an aqueous dispersion takes place in several

    steps. Following Dieterich [1], the initial addition of water

    results in a sharp drop of viscosity owing to the reduction

    of ionic associations. The ionic associations, formed upon

    the neutralization of potential ionic centers, are a revers-

    ible process, and any water present reduces the interchain

    ionic associations. As more water is added, the solvation

    sheath of the hydrophob ic chain segments decreases owing

    to the decrease in acetone concentration, and the viscosity

    increases via the hydrophobic interac tions induced by the

    alignment of hydrophobic chain segments. Further addi-

    tion of water produces a turbidity, indicating the begin-

    ning of a dispersed phase formation, and subsequently

    turbidity increases and the viscosity drops owing to the rear-

    rangements of the agglomerates to microspheres where

    the ionic groups are situated on the particle surfaces.

    Recent studies on dispersion suggested, based on the

    viscosity and conductivity measurements, that water is

    first adsorbed on the surface of the hard segments micro-

    ionic lattices, and then enters successively into the dis-

    ordered and ordered hard domains [21]. Dispersion can

    disrupt the order of hard domains, and hence the phase

    separations between the soft and hard segments.

    Particle stabilization

    The stabilizing mechanisms of ionomer dispersion and

    nonionomer dispersion are different [1,2]. The ionomer

    dispersion is stabilized by the formation of electrical

    double layers between the ionic constituents which are

    chemically boun d to the PU, and their counterions which

    migrate into the water phase around the particle. The inter-

    ference of the electrical double layers of different particles

    results in particle repulsion, leading to the stabilization

    mechanism of dispersion. Addition of inert electrolytes

    to the ionomer dispersion provides additional ions in the

    water phase which reduces the range of double layer repul-

    sion, and induces coagulation.

    In nonionomer dispersion, the hydrophilic PEO seg-

    ments are anchored on the surface of the particle, stretch-

    ing into the water phase. The stabilization mechanism for

    this type of particle structure can be explained in terms of

    entropic repulsion. When the particles approach closely,

    the freedom of motion of PEO chains in water phase is

    restricted, leading to a reduction of entropy. Therefore

    repulsion between particles is driven spontaneously.

    r e p a r a ti o n p r o c e s s

    The earliest process to prepare the aqueous PU dispersion

    was the acetone process which still remains technically

    important [10]. During the last couple of decades several

    new processes have been developed. A common fea ture to

    these processes is however that the first step is to prepare

    the NCO-terminated P U prepolymers of medium molecu-

    lar weight. The critically different step among the various

    processes lies in the chain extension step which is normally

  • 8/17/2019 Aqueous Polyurethane Dispersions

    5/13

    B.K. Kim 603

    Aqueous polyurethane dispersions

    p e r f o r m e d u s i n g a m i n e s [ 2 ] . I n c h a i n e x t e n s i o n s te p , c o n -

    t ro l o f e x t re m e l y f as t N C O - N H r e a c ti o n a c c o m p a n i e d b y

    t h e v i sc o s i ty ri se is t h e m o s t i m p o r t a n t p a r a m e t e r t o

    c o n t r o l .

    A c e t o n e p r o c e s s

    N C O - t e r m i n a t e d P U p r e p o l y m e r s a r e c h a i n e x te n d e d

    w i t h d i a m i n e i n a n o r g a n i c s o l v e n t s u c h a s a c e to n e , m e t h y l

    e t h y l k e t o n e , o r t e t r a h y d r o f u r a n , f o l l o w e d b y m i x i n g w i t h

    w a t e r t o f o r m d i s p e rs i o n , a n d r e m o v a l o f t h e s o l v e n t b y

    d i s t i l l a t i o n . T h i s w e l l e s t a b l i s h e d p r o c e s s u s e s a n o r g a n i c

    s o l v e n t to c o n t r o l t h e v i s c o si t y d u r i n g t h e c h a i n e x t e n s i o n

    s t e p. A c e t o n e i s e s p e c i a l l y s u i ta b l e b e c a u s e i t i s i n e r t w i t h

    t h e P U f o r m i n g r e a c t i o n s , m i s c i b l e w i t h w a t e r , a n d h a s

    a l o w b o i l i n g p o i n t . I n a d d i t i o n , i t r e d u c e s t h e h i g h

    N C O - N H r e ac t iv i ty t h r o u g h r ev e rs ib l e k e t im i n e f o rm a -

    t i o n. T h e a d v a n t a g e s o f a c e t o n e p r o c e s s i n c l u d e s w i d e

    s c o p e o f v a r i a t i o n i n s t r u c t u r e a n d e m u l s i o n , h ig h q u a l i t y

    o f e n d p r o d u c t s , a n d r e l ia b l e r e p ro d u c i b i l i t y . T h e s e a d -

    v a n t a g e s a r e m a i n l y d u e t o t h e f a c t t h a t t h e p o l y m e r

    f o r m a t i o n i s a c c o m p l i s h e d i n a h o m o g e n e o u s s o l u t i o n .

    H o w e v e r , P U o b t a i n e d i n a c e t o n e p r o c e s s i s p r e d o m i -

    n a n t l y l i n e a r a n d s o l u b l e in a c e t o n e s i nc e t h e c h a i n e x t e n -

    s i o n is c a r r i e d o u t i n a c e t o n e . D i s t i ll a t io n o f la r g e a m o u n t

    o f a c e t o n e m a k e s t h e p r o c e s s e c o n o m i c a l l y u n f a v o r a b l e .

    T h i s p r o c e s s a l s o s u f f e r s f r o m a l o w r e a c t o r v o l u m e y i e l d

    d u e t o t h e l a r g e q u a n t i t i e s o f s o l v e n t u s e d .

    P r e p o l y m e r m i x i n g p r o c e s s

    T h e p r e p o l y m e r m i x i n g p r o c e s s a v o i d s t h e u s e o f l a r g e

    a m o u n t s o f s o l v en t . H y d r o p h i l i c a l l y m o d i f i e d N C O - t e r -

    m i n a t e d P U p r e p o l y m e r s a r e m i x e d w i t h w a t e r t o f o r m

    e m u l s i o n . T h e v i s c o s it y o f p r e p o l y m e r i s c ri t ic a l a n d m u s t

    b e l i m i t e d o r t h e d i s p e r s i o n s t e p w i l l b e d i f fi c u lt . T h e r e f o r e

    t h i s p r o c e s s i s s u i t a b l e f o r l o w v i s c o s i t y p r e p o l y m e r .

    A s m a ll a m o u n t o f s o l v e n t c a n b e a d d e d t o t h e p r e p o l y m e r

    t o r e d u c e t h e v i s c o s i t y . C h a i n e x t e n s i o n i s a c c o m p l i s h e d

    b y t h e a d d i t i o n o f d i - o r p o l y a m i n e s t o t h e a q u e o u s d i s p e r -

    s i o n . D i s p e r s i o n s t e p h a s t o b e c a r r i e d a t l o w e n o u g h

    t e m p e r a t u r e s o t h a t t h e N C O - w a t e r r e a c t i o n i s i n s i g n i f i -

    c a n t . F o r t h i s r e a s o n , c y c l o a l i p h a t i c d i i s o c y a n a t e s a r e

    m o s t o f t e n u s e d d u e t o t h e i r l o w r e a c t i v i t y w i t h w a t e r .

    S i n c e t h e c h a i n e x t e n s i o n s a r e p e r f o r m e d i n a h e t e r o -

    g e n e o u s p h a s e , t h e y d o n o t p r o c e e d i n a q u a n t i t a t i v e w a y .

    A s a r e s u lt , t h e p r o p e r t i e s o f P U d i s p e r s i o n p r e p a r e d i n

    t h i s p r o c e s s a r e g e n e r a l l y i n f e r i o r t o t h o s e f r o m a c e t o n e

    pr oces s .

    M e l t d i s p e r si o n p r o c e s s

    P r o b l e m s r e l a t e d t o t h e a m i n e c h a i n e x t e n s i o n a r e a v o i d e d

    i n t h is p ro c e s s. T h e N C O - t e r m i n a t e d P U p r e p o l y m e r s a re

    r e a c t e d w i t h a n e x c e s s o f a m m o n i a o r u r e a , r e s u l t in g i n

    a p r e p o l y m e r w i th t e r m i n a l u r e a o r b i u r e t g r o u p s. T h i s

    c a p p e d o l i g o m e r c a n b e r e a d i l y d is p e r s ed i n w a t e r w i t h o u t

    Fig. 1 Acetone process

    n H 0 ~ ' ~ O H +2n 0 C N - R - N C 0

    o o

    I [ I I

    O CN - R - N H CO ~ , ~ O C N H - R - N CO

    Acetone

    H2NCH2CH2NHCH CH2SO3 Na+

    O O O O O O

    II

    I I I [ r l

    I[

    OCN H R - NHCNI-ICH2CH2NCNH-R -NH CO ~ OCNH - R - NHCO r

    C H z C H 2 S O 3 - N a

    Water

    Dispersion of Polyurethane in Water A cetone

    i Acetone Removal

    Aqueous Dispersion of Polyurethane

  • 8/17/2019 Aqueous Polyurethane Dispersions

    6/13

    604 Colloid & Polym er Science, Vol. 274, No. 7 (1996)

    ,9 SteinkopffV erlag 1996

    Fig. 2 Prepolymer mixing

    process

    2 n H O ~ O H +

    n H O C H 2 - - IC - - C H 2 O H

    C O 2 H

    + 4 n O C N - R - N C O

    o c 3

    II

    i l I I I I

    O C N R - N H C O w O C N H - R - N H C O - C H f f - C - C H f f - O C N I - I - R - N H C O v,, O C N H - R - N C O

    C O 2 H

    O O O C I H 3 O O O

    I] ii I] II II II

    O C N - R -- N H C O v ,, O C N H - R - N H C O - C H E - C - C H ~ O C N H - R - N t t C O v,, O C N H - - R - N C O

    C O 2 H N + R 3

    Hyd rophilic Isocyanate Terminated Prepolymer

    [ W a t e r

    ~ H 2 N - R ' - N H 2

    O O CH3 O O O O

    I I I I I I[ II IL II

    , , m O C N H - R - N H C O - C H U C - C H E - O C N H - R - N H C N H - - R ' - - N H C N H - R - N H C O

    C O 2 H N + R 3

    queous Dispe rsion of P olyurethane

    a n y o r g a n i c c o s o l v e n t . T h e r e a c t i o n w i t h u r e a i s c a r r i e d

    o u t a t h i g h t e m p e r a t u r e ( > 1 3 0~ a n d t he r e s u lt i n g

    o l i g o m e r s a r e u s u a l l y d i s p e r s e d a t s u f f i c i e n tl y h i g h t e m p e r -

    a t u re ( > 100 ~ t o r educe t he v i scos i t y . Ch ai n ex t e ns i on i s

    a c c o m p l i s h e d b y m e t h y o l o l a t i o n o f t h e b i u r e t g r o u p s w i t h

    f o r m a l d e h y d e .

    K e t i m i n e a n d k e t a z in e p r o c e s se s

    T h e k e t i m i n e a n d k e t a z i n e p r o c e s s e s a r e s i m i l a r t o t h e

    p r e p o l y m e r m i x i n g p ro c e ss , w i t h o n e i m p o r t a n t d i ff e re n c e

    t h a t a b l o c k e d d i a m i n e a n d a b l o c k e d h y d r a z i n e a r e r e -

    s p e c t iv e l y u s e d a s a l a t e n t c h a i n e x t e n d e r . D i a m i n e s a n d

    h y d r a z i n e s a r e r e a c t e d w i t h k e t o n e s t o y i e ld k e t im i n e s a n d

    k e t a z i n e s , re s p e c t iv e l y . K e t i m i n e s a n d k e t a z i n e s a r e p r a c -

    t i c a ll y i n e r t t o w a r d t h e i s o c y a n a t e s i n n o r m a l p r o c e s s i n g

    c o n d i t io n s . T h e s e a r e m i x e d w i t h t h e N C O - t e r m i n a t e d

    p r e p o l y m e r s c o n t a i n i n g i o n i c g r o u p s w i t h o u t p r e m a t u r e

    e x t e n s i o n . C h a i n e x t e n s i o n o c c u r s s i m u l t a n e o u s l y w i t h

    d i s p e r s i o n f o r m a t i o n . R e a c t i o n w i t h w a t e r l i b e r a t e s t h e

    d i a m i n e o r h y d r a z i n e , w h i c h r e a c t s w i t h t h e p r e p o l y m e r .

    D i s p e r s i o n s p r e p a r e d b y t h i s p r o c e s s y i e l d h i g h p e r f o r -

    m a n c e c o a t in g s . P U d i s p e rs i o n f r o m a r o m a t i c i s o c y a n a te s

    are eas i l y access i b l e i n t h i s p rocess .

    h y s i c a i p r o p e r t i e s

    I n t h i s s e c t i o n s o m e t y p i c a l p h y s i c a l p r o p e r t i e s o f P U

    d i s p e r s i o n a l o n g w i t h t h o s e f o r d e r i v e d f i l m s a n d f i l m

    fo rmi ng p roper t i es wi l l be d i scussed .

    D i s p e r s i o n p r o p e r t i e s

    U n l i k e t h e s o l v e n t - b o r n e P U , t h e p a r t i c l e s m u s t f i rs t r e j o i n

    i n t o a c o n t i n u o u s o r g a n i c p h a s e b e f o r e t h e i n d i v i d u a l

    p o l y m e r c h a i n s c a n e n t a n g l e a n d d e v e l o p t h e u l t i m a t e f il m .

    P o o r c o a l e s c e n c e c a n r e s u l t i n l o w g l o s s fi lm s , a n d u s u a l l y

    i n a r e d u c t i o n o f o v e r a l l p h y s i c a l p r o p e r t ie s . T h e p a r t i c le

    s iz e o f a q u e o u s d i s p e r s io n s c a n b e v a r i e d f r o m a b o u t 0 . 01

    t o 5 / 2 m a n d h a s a d i r e c t im p a c t o n t h e d i s p e r s i o n s t a b il i ty .

    D i s p e r s i o n s w i t h r e l a t iv e l y la r g e a v e r a g e p a r t i c l e s iz e

    ( 1 /~ m < ) a r e g e n e r a l l y u n s t a b l e w i t h r e s p e c t t o s e d i m e n t a -

    t i o n . D i s p e r s i o n s w i t h s m a l l e r a v e r a g e p a r t i c l e s i z e a r e

  • 8/17/2019 Aqueous Polyurethane Dispersions

    7/13

    B . K . K i m 6 0 5

    A q u e o u s p o l y u r e t h a n e d i s p e r s io n s

    F i g . 3 M e l t d i s p e r s i o n p r o c e ss

    II I[ f II

    O C N R - N HC O a~ ', 'v~ OCNrH - R - NHCOCH2CH2CHCH2OCNH - R - N CO

    SO3-Na+

    ~

    2 N C N H2

    O O O O O O O O

    l i i l i t I I I i i l [ i [I

    H 2 N C N H CN H - R - N H C O ~ ' ~ O C N H - R - N H CO C H 2 CH 2 C IH C H 2 OC N H R - - N H C N H C N H 2

    SO3Na +

    Hy drop h i l i c B is - B i rue t

    i Wate r

    Formaldehyde

    O O O

    I I l i I[

    r162O C N H - R- N H C N H C N H

    1

    c z

    N H C N H C N H - R N H C O 4 ~

    J l i E i l

    O O O

    A q u e o u s D i s p e r s io n o f P o l y u r e t h a n e

    F i g . 4 K e t i m i n e a n d k e t a z in e

    process

    O O O CIH O

    O C N - R - N H C O ~ w O C N H - -R - -N H C O C H 2 CC H 2 O C N H - R - N C O

    CO 2- +

    H N R 3

    Hyd r o p h i l i c I so cya n a t e T e r m in a t e d P r e p o l ym e r

    +

    K e t im in e / K e t a z in e

    W a te r C = N - R . .. . N = C

    R R

    t < I I

    2 C = O + H 2 N - - N - - 2

    R

    O O O O C H 3 O O

    H I i l r i F / I E II

    ~ a ~ w N H C N H - R - N H C O ~ v~ O C N H - R N H C O CH 2 CC H 2O C N H -R - N H C N H ~ w w

    I +

    C 0 2 H N R 3

    A q u e o u s D i s p e r s io n o f P o l y u r e th a n e

    m o r e u s e fu l s in c e s u ch d i s p e r s i o n s a r e s t o r a g e s t a b l e a n d

    h a v e h i g h s u r f a c e e n e r g y , w h i c h r e s u l t s i n a s t r o n g d r i v i n g

    f o r c e f o r f i l m f o r m a t i o n [ 3 ] . T h e r e f o r e a b i l i t y t o c o n t r o l

    t h e p a r t i c l e s i ze is p r a c t i c a l l y i m p o r t a n t . S i n c e t h e p a r t i c l e

    d i a m e t e r l ie s o v e r s e v e r a l o rd e r s o f m a g n i t u d e s t h e a p p e a r -

    a n c e c a n v a r y fr o m a n o p a q u e t r a n s l u c e n t s o l t o a m i l k y

    w h i t e d i s p e r s i o n [ 3 0 ] . I n f ac t , P U d i s p e r s i o n i s a g o o d

    e x a m p l e i n t h a t t h e r e is n o d i s t i n c t b o a r d e r l i n e b e t w e e n

    s o l u t i o n , c o l l o i d a l s o l, d i s p e r s i o n , s u s p e n s i o n a n d l a t e x

    [ d

  • 8/17/2019 Aqueous Polyurethane Dispersions

    8/13

    606 Co l lo id & Pol ym e r Sc ie nc e , Vol . 274 , No . 7 (1996)

    9 S t e i n k o p f f V e r l a g 1 9 96

    The par t i c le s i ze o f PU d i spers ion i s mo re o r l es s

    c o n t ro l l e d b y s u c h m i x in g c o n d i t i o n s a s r p m a n d t e m p e r -

    a tu re . However , i t i s mos t ly governed by the overa l l hy -

    d roph i l i c i ty o f the PU , i . e . , h igher hyd roph i l i c i ty o f PU

    leads to smal le r pa r t i c le s ize [ -31] . Typ ica l exam ples a re

    s h o w n i n F i g . 5 fo r P U c a t i o n o m e r d i s p e rs i o n s [2 2 ] . Th e

    decrease o f average par t i c le s ize wi th increas ing N-m ethy l -

    d ie thano lamine (MDEA) con ten t i s c lear ly seen .

    Th e i o n o m e r d i s p e r si o n s s h o w a n a s y m p t o t i c d e c re a s e

    o f par t i c le s ize wi th ion ic con ten t . Th is beha v io r i s due to

    the du al effect of ionic centers . T hat is , part icle s ize is

    decreased due to the increased hydroph i l i c i ty , and in -

    creased by the increased water swel l , and an overa l l

    asympto t ic behav io r i s expec ted .

    Aqueous PU d i spers ion has re la t ive ly low v i scos i ty .

    Ty p i c a l c o m m e rc i a l g r a d e s h a v e t h e i r r o o m t e m p e ra t u r e

    viscosi ty , 10 700 cP, with typical sol id conte nt , 30 ~ 40 .

    Typ ica l d i spers ion v i scos it i es a re a l so show n in F ig . 5

    w h e re a d r a m a t i c v a r i a t i o n o f v i s c o si t y w i t h i o n i c c o n t e n t

    is noted.

    Dispe rs ion v i scos i ty (~) i s d i rec t ly p ropo r t iona l to the

    ef fec tive vo lum e f rac t ion o f d i spersed ph ase (0 ) a t low

    dispersed phase concen t ra t ion (0 < 0 .02 ) , and concen t ra -

    t i o n d e p e n d e n c e b e c o m e s m o re p ro n o u n c e d a t h i g h ~ ,

    genera l ly expressed as fo l lows [32 ] :

    F] = 1 q- kl /p q- k21p 2 q- . . . ,

    whe re l ?s i s the v i scos i ty o f med ium, and k ' s a re con s tan t .

    S ince ne t so l id con ten t o f typ ica l PU d i spers ion i s over

    30 wt , h igher o rder t e rms shou ld con t r ibu te s ign i f ican t ly

    as shown in the figure. Swellabi l i ty , which general ly in-

    creases wi th increas ing hy droph i l i c i ty o f raw m ater ia l s

    a l so con t r ibu tes to the e f fec tive vo lu me f rac t ion o f the

    Fig . 5 Av e ra ge pa r t i c le s iz e a nd d i spe r s ion v i sc os i ty as a func t io n of

    c a t i o n i c c o n t e n t

    d ispersed phase in the above equat ion . Elec t rov i scous e f -

    fec t o f iono me r d i spers ion a l so increases the v i scos i ty .

    F i l m p ro p e r t ie s

    PU d i spers ions exh ib i t exce l len t f i lm-fo rming p roper t i es

    e v e n a t l o w t e m p e ra t u r e . Th e y c a n b e i m p ro v e d b y

    the add i t ion o f h igh bo i l ing coa lescen t so lven ts such as

    N -m e t h y l p y r ro l i d i n o n e o r k e t o n e , o r b y a d d i t i o n o f

    p las t i c izers . Coalescen t agen ts a re o f ten necessary wi th

    cross l inked PU d i spers ions , s ince the f i lm fo rming ab i l i ty

    decreases wi th increas ing c ross l ink dens i ty . F i lm fo rming

    proper t i es a re a l so improved wi th h igher d ry ing temper-

    ature.

    G e n e ra l s t r u c t u r e -p ro p e r t y r e l a t io n s h i p o f d is p e r s io n

    der ived f ilm i s es sen t ia lly the same w i th so lven t -borne PU .

    The ov era l l f ilm p roper t i es a re de te rm ined b y the type and

    a m o u n t o f s o f t a n d h a rd s e g m e n ts , s of t s e g m e n t -h a rd

    segmen t phase separa t ion , c ross l ink ing dens i ty , e tc . [33 ] .

    How ever , there a re cer ta in p roper t i es o f d i spers ions tha t

    a r e g e n e ra ll y i n fe r io r t o t h e s o l v e n t -b o rn e t w o -c o m p o n e n t

    PUs . These inc lude water swel l res i s tance , hydro ly t i c s t a -

    b i l ity , and so lven t res is tance [1 ] . S ince these p roper t i es a re

    re la ted to the very na tu re o f d i spers ion , the improve me n t

    i s a l so l imi ted [2 ] . Water swel l res i s tance and hydro ly t i c

    s tab i l i ty increases wi th decreas ing am oun ts o f ion ic

    cen ters , in wh ich c ase fo rmat ion o f st ab le and f ine d i sper -

    s ions becomes d i f f i cu l t . So lven t res i s tance cou ld be im-

    proved wi th increas ing c ross l ink ing dens i ty , wh ich on the

    o ther hand , makes the f i lm fo rmat ion d i f f i cu l t due to

    increased g lass t rans i t ion t empera tu re and hence the f i lm-

    fo rming tempera tu re . I t i s however poss ib le to min imize

    these d i sadvan tages by us ing fo rmula t ions wh ich have

    a carefu l ba lance in te rms o f the am oun t o f hydroph i l i c

    g roups and the degree o f c ross link ing .

    N

    l Z O

    8

    4

    I I I

    M D E c o n t e n t (wt )

    2

    1

    m

    511

    rtl

    odif ica t ions

    The ob jec t ive o f mod i f ica t ion is to im prove cer ta in p roper-

    t i es such as w ater , so lven t , and genera l chem ica l res i s tance ,

    and the m echan ica l p ro per t i es o f the f ilms. Amo ng o thers ,

    g raf t ings , and c ross l ink ings a re mos t o f ten encoun tered

    [2 , 30 ] . B lend ing and in te rp ene t ra t ing po ly me r ne two rk

    are a l so sub jec t s o f recen t a t t em pts to m od i fy these p roper -

    ties [8, 9].

    G ra f t i n g a n d b l o c k c o p o l y m e r i z a t i o n

    Graf t ing i s u sua lly accompl i shed in the aque ous phase us ing

    t h e c o n v e n t i o n a l e m u l s i o n p o l y m e r i z a t i o n t e c h n i q u e s .

  • 8/17/2019 Aqueous Polyurethane Dispersions

    9/13

    B.K . Kim 607

    Aqueous polyurethane dispersions

    Fig. 6 Grafting of acrylic

    monom er onto unsaturated

    polyester polyvol (a) and

    propylene glycol (b) segm ent of

    polyurethane ionomers

    o o o

    [ I J l I 1

    , ,v w ~ N H C O a ,w w ~ O C ~ _ _ / C O ~ , ~

    Drier i 02

    O O 0

    I I I I U

    ~ N H C O ~ O C C O ~

    ~ 'r ~ OC C O ~

    I f H I~

    o o 0

    R

    Acryl ic

    x idat ive

    D r y i n g

    a )

    Acrylic

    I I I I

    ~ N H C O ~ v ~ O C

    0 ~ , ~

    Acrylic

    0 c n 3

    I F ' R

    ~ w ~ N - C - O - C - C H 2 - - O ~ ' ~

    t I Acryl ic

    H H

    b )

    O C H 3

    I r J

    ~ v , N - C - O - C - - C H 2 - - O ~ w

    A c ry l i c

    M o n o m e r a n d f r e e r a d i c a l i n i t i a t o r a r e a d d e d t o

    t h e a q u e o u s p h a s e [ 5 ] . B o t h a n i o n i c a n d c a t i o n i c P U s

    c o n t a i n i n g u n s a t u r a t e d p o l y e s t e r p o l y o l s ( F ig . 6 a ) a n d

    p o l y p r o p y l e n e g l y c o l ( F i g . 6 b ) i n t h e i r b a c k b o n e h a v e o f -

    t e n b e e n u s e d to g r a f t a c ry l a t e m o n o m e r s o n t o t h e m a i n

    c h a i n [ 2 ]. A n i o n i c P U s c o n t a i n i n g c a r b o x y l a t e s a lt c a n b e

    f u r t h e r c r o s s l i n k e d w i t h e p o x y r e s i n s .

    T h o u g h g r a f ti n g is a u s e f u l t e c h n i q u e t o m o d i f y t h e P U

    i o n o m e r , i t i s g e n e r a l l y l i m i t e d t o P U c o n t a i n i n g u n -

    s a t u r a t e d p o l y e s t e r a n d p o l y p r o p y l e n e g l y c o l s e g m e n t s .

    P U i o n o m e r s c a n b e m o d i f i e d i n a s im i l a r w a y t o t h e u l t r a

    v i o le t ( U V ) c u r in g . N C O - t e r m i n a t e d P U p r e p o l y m e r s c o n -

    t a i n i n g p o t e n t i a l i o n i c g r o u p s a r e f i r s t c a p p e d w i t h a r e -

    a c t i v e d i l u e n t s u c h a s 2 - h y d r o x y e t h y l a c r y l a t e ( H E A ) v i a

    p o l y a d d i t i o n . T h e n t h e p o t e n t i a l i o n i c g r o u p s a r e n e u -

    t r a l i z e d a n d a c r y l a t e m o n o m e r s p o l y m e r i z e d a t t h e H E A

    t e r m i n i v ia a r a d i ca l p o l y m e r i z a t i o n m e c h a n i s m . T h e

    so lu t i on i s d i sper sed wi th wat er s t i r r ed i n . As a r esu l t ,

    b l o c k c o p o l y m e r s o f P U i o n o m e r s a n d p o l y a c r y l a te s ar e

    o b t a i n e d . V a r i o u s t y p e s o f a c r y l a t e s s u c h a s m e t h y l

    m e t h a c r y l a t e ( M M A ) , e t h y l m e t h a c r y l a t e ( E M A ) , t - b u t y l

    m e t h a c r y l a t e ( t- B M A ) , c y c l o h e x y l m e t h a c r y l a t e ( C H M A ) ,

    t r i p r o p y l e n e g l y c o l d i a c r y l a t e ( T P G D A ) , a n d t r i m e t h y l

    p r o p a n e t r ia c r y l a t e ( T M P T A ) h a v e b e e n i n c o r p o r a t e d i n

    P U i o no m e r s f ro m H 1 2 M D I - P C L D M P A [ 4] . W i t h

    M M A i n c o r p o r a t i o n , s w e l l i n w a t e r i s s i g n if i c a n t ly d e -

    c r e a s e d , t o g e t h e r w i t h t h e i n c r e a s e i n c o n t a c t a n g l e w i t h

    2

    8 5

    9

    16

    I 2

    8 0

    7 5

    9

    r

    7 0

    r

    6 5

    0 1 0 2 0 5 4

    M MA e o n t a n t ( w t )

    Fig. 7 Effect of MM A con tent on wate r swell and contact angle of

    PU acrylate fi lms ( based on solid)

    w a t e r ( F ig . 7 ). W i t h a c r y l a t e i n c o r p o r a t i o n , h a r d n e s s ,

    m o d u l u s , a n d e l o n g a t i o n a t b r e a k a r e s i g n i f i c a n t l y

    increased .

    R e g a r d i n g t h e m i c r o s t r u c t u r e , a c r y l a t e s c o n t r i b u t e t o

    t h e h a r d s e g m e n t d o m a i n s s i n c e t h e y a r e m o r e l i k e l y

    m i s c i b l e w i t h t h e h a r d s e g m e n t o f P U . A s a r e s u lt , s o ft

    s e g m e n t c h a r a c t e r i s t i c s d i s a p p e a r . T h e n w i t h i n c r e a s e d

  • 8/17/2019 Aqueous Polyurethane Dispersions

    10/13

    608 Colloid & Polym er Science, Vol. 274, No. 7 (1996)

    9 SteinkopffV erlag 1996

    e~

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    0 .0

    9 MMA20 "

    o M M A 3 0 ~ ' o k c~

    ; 9 o

    m o ~ " n o

    a m o o o 9

    t 2. ,o

    e d d~

    0 i 6

    50 0 50 1 O0 150

    T e m p e r a t u r e ( ~

    Fig. 8 The tan c5 curve of PU acrylate films as a func tions of MM A

    content

    1 2 9

    1 1

    =

    5q

    l 0

    9

    8 0

    B o :

    9

    7

    7 0

    M M A E M A

    t - B M A C H M A T P G D A T M P T A

    F i g . 9 E f f e c t o f a c r y l a t e t y p e o n w a t e r s w e l l a n d c o n t a c t a n g l e o f P U

    a c r y l a t e f i l m s

    h a r d d o m a i n f r a c t i o n , t h e s o f t s e g m e n t g l a s s t r a n s i t i o n

    d i s a p p e a r s a n d h a r d s e g m e n t g l a s s t r a n s i t i o n m o v e s t o -

    w a r d t h e h i g h e r t e m p e r a t u r e ( F i g . 8 ) .

    R e g a r d i n g t h e e f f e c t o f a c r y l a t e t y p e c o n t a c t a n g l e w i t h

    w a t e r i n c r e a s e s w i t h i n c r e a s i n g a c r y l a t e f u n c t i o n a l i t y , d u e

    p r o b a b l y t o t h e i n c r e a s e d c r o s s l i n k i n g d e n s i t y o f t h e P U

    a c r y l a t e s , e s p e c i a ll y in t h e i r h a r d d o m a i n s ( F ig . 9). A m o n g

    m o n o a c ry l a te s s u ch a s M M A a n d E M A m o n o m e r w i th

    a l a r g e s u b s t i t u e n t g r o u p g e n e r a l l y s h o w s r e l a t iv e l y li t tl e

    s w e l l a n d l a r g e c o n t a c t a n g l e , d u e p r e s u m a b l y t o t h e

    h y d r o p h o b i c i t y o f l a r g e a l k y l s u b s t it u e n t s . I t s e em s t h a t

    m e c h a n i c a l p r o p e r t ie s a s w e l l a s w a t e r r e s i s t a n c e o f P U

    i o n o m e r s c a n b e p r o p e r l y i m p r o v e d b y p r o p e r s e le c t io n o f

    a c r y l a t e m o n o m e r t o i n c o r p o r a t e i n P U .

    o

    II t f

    CH3CH3C (- CH 20 - C - CH2CH - -N ,~ )3

    +

    C O 2 " H N E t 3

    - - N E t 3

    ..~ -

    C = O

    I

    o

    t

    C H 2 - - C H 2 -- O H

    R

    I

    + N

    C 0 2 H C H / ~ CH 2

    C = O

    I

    o

    C H 2 - - C H 2 - - N I - I R

    F i g . 1 0 C r o s s l i n k i n g w i t h p o l y f u n c t i o n a l a z i r i d in e

    E x t e r n a l c r o s s l i n k i n g

    A q u e o u s P U d i s p e r s i o n c a n b e c r o s s l i n k e d i n m u c h t h e

    s a m e w a y a s t h e o t h e r w a t e r - b o r n e p o l y m e r s . M o s t r e a c -

    t i o n s c e n t e r o n t h e c a r b o x y l i c a c i d g r o u p s [ 3 4 ] .

    A z i r i d i n e s

    P o l y a z i r i d i n e s , e s p e c i a l l y t r i f u n c t i o n a l a z i r i d i n e s h a v e

    b e e n e x t e n s i v e l y u s e d f o r c r o s s l in k i n g a n i o n i c t y p e P U

    d i s p e r si o n s . T h e a z i r i d in e m u s t b e a d d e d j u s t p r i o r t o t h e

    a p p l i c a t i o n s i n ce i t c a n l o s e a c t i v i t y a f te r 2 d a y s ' s t o r a g e i n

    w a t e r a t r o o m t e m p e r a t u r e [ 2 ] . A d e s i r a b l e f e a t u r e o f

    p o l y a z i r i d i n e s is t h a t t h e c r o s s - l in k i n g r e a c t i o n p r o c e e d s a t

    l o w t e m p e r a t u r e . A n e g a t i v e f e a t u r e i s t h a t t h e r e i s s o m e

    d o u b t a b o u t t h e t o x i c i t y o f t h i s cl a s s o f p r o d u c t s .

    B l o c k e d i s o c y a n a t e s

    A b l o c k e d i s o c y a n a t e i s a n i s o c y a n a t e w h i c h h a s b e e n

    r e a c t e d w i t h a m a t e r i a l w h i c h w i l l p r e v e n t i t s r e a c t i o n a t

    r o o m t e m p e r a t u r e w i t h c o m p o u n d s t h a t c o n v e n t i o n a l l y

    r e a c t w i t h i s o c y a n a t e s b u t w i l l p e r m i t t h a t r e a c t i o n t o

    o c c u r a t h i g h e r t e m p e r a t u r e [ 3 5] . B l o c k e d i s o c y a n a t e s

    h a v e b e e n w i d e l y u s e d b o t h i n c o n v e n t i o n a l a n d w a t e r -

    b a s e d p o l y u r e t h a n e s [ 3 6] . E x a m p l e s o f b lo c k i n g a g e n t s

    w h i c h h a v e b e e n c o m m e r c i a l ly u s e d a r e c a p r o l a c t a m a n d

    m e t h y l e t h y l k e t o x in e . W a t e r - b a s e d b l o c k e d P U p r e p o l y -

    m e r s c a n b e m a d e b y b l o c k i n g t h e N C O - t e r m i n a t e d

    p r e p o l y m e r s w i t h a s u i t a b l e b l o c k i n g a g e n t , f o l l o w e d b y

  • 8/17/2019 Aqueous Polyurethane Dispersions

    11/13

    B . K . K i m 6 0 9

    A q u e o u s p o l y u r e t h a n e d i s p e r s i o n s

    F i g . 1 1 C r o s s l i n k i n g w i t h

    b l o c k e d i s o c y a n a t e

    2 @ - N C O ) 3 + 4 H O - B L

    O

    11

    2 BL--O C - N H

    ~ - N C O

    B L ~ C - - N H

    O

    O

    ~ O

    CH

    I

    ) H O C H 2 - f C H 2 O H

    C O 2 H

    2 ) N Et 3

    o

    CH 3 I!

    B L - O C - - N H ii I

    N H C O B L

    , ~ - N - C - - 0 . C H ~ - C - - C H 2 - 0 - C - N "

    " I " N H _ C O _ B L

    B L O C - N H H C O O " H N + E t 3 II

    O O

    O

    II

    ~ x

    L e g a n d ' T ~ = ~ w ( C H E ) 6 - - N N - - ( C H 2 ) 6 "w ~

    r

    O ~ C \ N ~ C ' > o

    CH2 6

    C H 3

    B L = v w , N C ~ C H 2 C H 3

    F i g . 1 2 C r o s s l i n k i n g w i t h

    m e l a m i n e / f o r m a l d e h y d e r e s i n

    2 , , ~ N H C N H r

    CH2OR

    + R - N

    c~2oR

    o

    - - R ' O H , C H 2 - - N C N H

    R - N

    C H 2 - - N C N H ~w~

    I J

    ~ O C NH ~ , ~ , ~

    9C H 2 O R '

    + R - N

    C H 2 O R '

    , C H 2 O R '

    R - N =

    C H 2 O R '

    - - R ' O H

    o

    , C H 2 - - N C O ~

    R - N

    C H 2 N C O

    N ( C H 2 O R ' ) 2

    N ~ N

    ( R O C H 2 ) 2 N N N ( C H 2 O R ' ) 2

    n e u t r a l i z a t i o n a n d e m u l s i f i c a t i o n i n t h e n o r m a l f a s h i o n .

    D i s p e r s i o n s o f t h i s t y p e m a y e i t h e r b e u s e d a s t h e s o l e

    c o m p o n e n t o f a c o a t i n g f o r m u l a t i o n o r a l t e rn a t i v e l y u s e d

    a s c r o s s l i n k e r s f o r t h e l i n e a r t y p e s .

    elamine~formaldehyde resin

    T h e u s e o f m e l a m i n e / f o r m a l d e h y d e a s c r o s sl i n k e rs i s w e ll

    e s t a b l i s h e d , e s p e c i a ll y i n c o n n e c t i o n w i t h a c r y l i c p o l y m e r s .

    I n t h e c a s e o f p o l y u r e t h a n e d i s p e r s io n , t h e c r o s s li n k i n g

    g e n e r a l l y o c c u r s a t e l e v a t e d t e m p e r a t u r e s , a n d p r o c e e d s

    v i a e i t h e r t h e u r e t h a n e o r u r e a l i n k a g e s [ 2 ] .

    Radiation induced crosslinkinc]

    T h e U V o r e l e c t r o n b e a m c u r i n g s a v es e n e rg y , a n d r e d u c e s

    o r e l i m i n a t e s s o l v e n t e m i s s i o n . T h e r e f o r e , th i s t e c h n i q u e

    h a s b e c o m e c o m m e r c i a l l y i m p o r t a n t r a n g i n g f r o m p r o t e c -

    t i v e c o a t i n g s t o p h o t o r e s i s t s f o r f a b r i c a t i o n o f m i c r o e l e c -

    t r o n i c d e v i c e s [ -3 6 - 38 ] . M o s t o f t h e c o m m e r c i a l s y s t e m s

  • 8/17/2019 Aqueous Polyurethane Dispersions

    12/13

    610 Colloid & Polym er Science, Vol. 274, No. 7 (1996)

    9 SteinkopffV erlag 1996

    u s e a c r y l ic - b a s e d m o n o m e r s a n d r e s i n w h i c h c u r e b y a f re e

    r a d i c a l m e c h a n i s m . R e c e n t l y , t h e r e h a s b e e n a g r o w i n g

    t r e n d i n t h i s a r e a f o r th e u s e o f w a t e r - b a s e d r a d i a t i o n

    c u r i n g [ 3 9 ] . T h e m a i n r e a s o n f o r t h is is t h a t t h e a m o u n t o f

    a c r y l i c m o n o m e r u s e d a s r e a c t i v e d i l u e n t c a n e i t h e r b e

    g r e a t l y r e d u c e d o r e v e n e l i m i n a t e d . T h i s im p l i e s t h a t u s u -

    a l l y b e t t e r p h y s i c a l p r o p e r t i e s o f t h e d e r i v e d c u r e d s y s t e m

    a r e a c h i e v e d . T h e l o w d i s p e r s i o n v i s c o s i t y i s a n o t h e r a d -

    v a n t a g e c o m p a r e d w i t h t h e c o n v e n t i o n a l s o li d t y p e w h i c h

    r e q u i r e s a v e r y h i g h p r o p o r t i o n o f r e a c t i v e d i lu e n t t o

    r e d u c e w o r k a b l e v i s c o s i t i e s , w i t h c o r r e s p o n d i n g d e c r e a s e

    in phys i ca l p roper t i es [21 .

    T o p r e p a r e t h e w a t e r d i s p e r si b l e P U a c r y l a t e s , t h e

    N C O - t e r m i n a t e d P U i o n o m e r p r io r t o e m u l s i f ic a t io n is

    r e a c t e d w i t h a h y d r o x y a c r y l a t e [ 3 8, 3 9 ]. T h e n t h e m i x t u r e

    o f P U a c r y l a t e s , r e a c t i v e d i l u e n t , a n d p h o t o i n i t i a t o r a r e

    c a s t o n a g l a s s p l a t e , a n d i r r a d i a t e d . C o n s i d e r a b l e w o r k

    h a s r e c e n t ly b e e n d e v o t e d t o d e v e l o p w a t e r s o l u b le p h o t o -

    i n i t i a t o r s fo r t h i s sys t em.

    p p l i c a t i o n s

    A q u e o u s P U d i sp e r s io n s a r e p r e d o m i n a n t l y li n e a r p o l y -

    m e r s a n d h a v e f o u n d a p p l i c a t i o n s i n a r e a p r e v i o u s l y

    d o m i n a t e d b y c o n v e n t i o n a l s o l v e n t - b o r n e p o l y u r e t h a n e

    c o a t i n g s . I n a d d i t i o n , a q u e o u s d i s p e r s i o n s f i n d t h e i r

    a p p l i c a t i o n s a s a d h e s i v e s o n a v a r i e t y o f s u b s t r a t e s . S o m e

    of these ap p l i ca t i ons a re l i s t ed be low [ -3 ]:

    C o a t i n g s f o r f l e x ib l e s u b s t r a t e s

    9 t ex t i l e 9 pap er

    9 r u b b e r 9 l e a t h e r

    9 v iny l 9 f i lm an d fo i l

    C o a t i n g s f o r f i n i s h in g

    9 m a c h i n e h o u s i n g

    9 p l as t i c par t s

    9 m e t a l p r i m e r

    C o a t i n g f o r w o o d

    9 f u r n i t u r e 9 p a n e l i n g

    9 f l oo r ing 9 sea l e r s

    T h e e a r l i e s t a p p l i c a t i o n o f a q u e o u s P U d i s p e r s io n s

    was fo r t ex t i l e coa t i ng wh ich i s s t i l l one o f t he l a rges t

    m a r k e t a r e a [ 40 , 4 1 ]. C o a g u l a t i o n o f f il m s o f a q u e o u s P U

    d i s p e r s i o n a n d s u b s e q u e n t l a m i n a t i o n o n t o t e x t i l e r e s u l t s

    i n p r o m e r i c s . P r o m e r i c s a r e m i c r o p o r o u s p l a s t i c s w h i c h

    a r e p e r m e a b l e t o a i r a n d w a t e r v a p o r s , b u t i m p e r m e a b l e t o

    w a t e r . P r o m e r i c s a r e u s e d a s c o a t i n g o n s p l i t l e a t h e r , a n d

    e s p e c i a ll y in t h e p r e p a r a t i o n o f l e a t h e r s u b s t i tu t e s .

    A q u e o u s P U s a r e u s e d a s s i z in g a g e n t f o r t e x ti l e f i be r s

    t o p r o v i d e i n c r e a s e d t e n s i l e s t r e n g t h a n d r e s i s t a n c e t o d r y

    c l e a n i n g s o l v e n t s a n d a q u e o u s d e t e r g e n t s o l u t i o n s

    [ 41 , 4 2 ] . P a p e r f i b e r s a r e a l s o s i ze d w i t h a q u e o u s P U s t o

    i n c r e a s e t h e s t r e n g t h o f p a p e r a s w e l l a s t o r e d u c e t h e

    t e n d e n c y t o i n k t o r u n o n t h e s u r f a c e [4 2 ] . I s o c y a n a t e o r

    b l o c k e d i s o c y a n a t e c o n t a i n i n g P U s s h o w e x c e l l e n t a d -

    h e s i o n t o c e l l u l o u s m a t e r i a l s . W o o d c o a t i n g , e s p e c i a ll y f o r

    f l o o r i n g , a r e m a d e u s i n g a q u e o u s P U a s s u c h o r w i t h

    w a t e r b o r n e a c r y l i c s. P U c o a t i n g s p r o v i d e h i g h g l o ss , h i g h

    a b r a s i o n r e s i s t a n c e , a n d h i g h f o u l i n g r e s i s t a n c e t o m o s t

    h o u s e h o l d c l e a n s e r s . O r g a n i c s o l v e n t a g g r e s s i v e ly a t t a c k

    m a n y p l a s t i c s u r f a c e s . A q u e o u s P U d i s p e r s i o n s h a v i n g

    g o o d a d h e s i o n p r o p e r t i e s a r e u s e f u l f o r p l a s t ic c o a t i n g s .

    F o r a d h e s i v e a p p l i c a t i o n s , a q u e o u s P U d i s p e r s i o n s

    h a v e b e e n u s e d f o r a n u m b e r o f p o l y m e r s u b s tr a te s , u s u -

    a l l y i n c o m b i n a t i o n w i t h o t h e r p o l y m e r t o l o w e r c o st .

    P o l y u r e t h a n e io n o m e r s h a v e g o o d a d h e s i o n t o n a t u r a l

    a n d s y n t h e t i c ru b b e r s u r f a c e s, a n d c a n b e u s e d i n t h e

    m a n u f a c t u r e o f f o o t w a r e [ 42 , 4 3 ] .

    P U i o n o m e r d i s p e r s i o n s h a v e b e e n u s e d a s m e d i a i n

    w h i c h m o n o m e r s h a v e b e e n p o l y m e r i z e d . T h i s t e c h n i q u e is

    k n o w n a s l a t e x i n te r p e n e t r a t i n g p o l y m e r n e t w o r k , a n d i s

    u s e f u l t o c o n t r o l t h e p h a s e s e p a r a t i o n . A q u e o u s P U d i s -

    p e r s i o n s a r e a l s o u s e d f o r m e t a l c o a t i n g s s u c h a s m e t a l

    p r i m e r s , c o i l c o a t i n g r e s i n s , a n d a s w i r e c o a t i n g s . C a t i o n i c

    e l e c t r o d e p o s i t i o n c o a t i n g s a r e w i d e l y u s e d f o r a u t o m o t i v e

    m e t a l p r im e r s w h i c h p r o v i d e e x c e l l e n t c o r r o s i o n r e s i s t a n c e

    t o c a r b o d i e s . M o r e d e t a i l s r e g a r d i n g t h e p a t e n t a p p l i c a -

    t i ons a re found i n r e f . [2 ] .

    C o n c l u s i o n s

    T h e d e v e l o p m e n t o f a q u e o u s p o l y u r e t h a n e d i sp e r s io n s h a s

    b e e n m o t i v a t e d p r i m a r i l y b y e n v i r o n m e n t a l c o n s i d e r -

    a t i o n s . A v a r i e t y o f a q u e o u s p o l y u r e t h a n e d i s p e r s io n s

    h a v e b e e n d e v e l o p e d a n d s u c c e s s f u ll y a p p l i e d f o r t e x t il e

    c o a t i n g s , f i b e r s i z i n g s , a n d a d h e s i v e s f o r a n u m b e r o f

    s u b s t r a t e s . T h e y a r e b a s i c a l l y o n e c o m p o n e n t f u l l y r e a c t e d

    a n d p r e d o m i n a n t l y l i n e a r p o l y m e r s . T h e r e a r e c e r t a i n

    t y p e s o f p r o p e r t i e s s u c h a s r e s i s ta n c e t o w a t e r a n d s o l v e n t

    w h i c h a r e i n f e r i o r t o t h e c o n v e n t i o n a l s o l v e n t - b o r n e

    p o l y u r e t h a n e s . T h e s e p r o p e r t i e s a r e r e l a t e d t o t h e v e r y

    n a t u r e o f d i s p e rs i o n , v iz . h y d r o p h i l i c i t y a n d l i n e a r it y ,

    w h i c h a p p a r e n t l y m a k e t h e i m p r o v e m e n t l i m i t e d . H o w -

    e v e r , t h e s e p r o b l e m s h a v e p r o p e r l y b e e n r e d u c e d o r e v e n

    r e s o l v e d b y i n t r o d u c i n g c r o s s l in k i n g s , g r a f t i n g s a n d o t h e r

    m e t h o d s .

    S i nc e th e p e r f o r m a n c e o f a q u e o u s p o l y u r e t h a n e

    d i s p e r s i o n i s c o m p a r a b l e i n m a n y w a y s t o t h a t o b t a i n e d

    f r o m s o l v e n t - b o r n e p o l y u r e t h a n e a n d a i r p o l l u ti o n r e g u l a -

    t i o n b e c o m e s s t r i n g e n t i n m a n y c o u n t r i e s , t h e m a r k e t

    f o r a q u e o u s p o l y u r e t h a n e d i s p e r s i o n s e e m s t o g r o w

    c o n t i n u o u s l y .

  • 8/17/2019 Aqueous Polyurethane Dispersions

    13/13

    B.K. K im 611

    A q u e o u s p o l y u r e t h a n e d i s p e r s io n s

    eferences

    1 . Die te r ich D (1981) Prog Org C oa t 9 :28 i

    2 . Ros thause r JW Na chtk am p K (1987) In :

    F r i s c h K C , K l e m p n e r D ( e d s ) A d v i n

    Ure thane Sc i and Techno l . Technomic ,

    Lancaster , GB, 10:121 162

    3 . T i rpak RE, Ma rkusc h PH (1990) Proc o f

    wate r -borne and h igher so l id coa t ings

    sympos ium , p 308

    4 . Kim BK, Lee JC (1995) J Appl Po lym

    Sci 58:1117

    5 . K a ize rm au S , Alon ia RR (1980) US Pa t -

    ent 4198330

    6 . Kim BK, Lee JC , accep ted fo r pub l ica -

    t i o n in P o l y m e r

    7. Rosthau ser JW (1985) US Paten t 4522851

    8 . K im SJ , Kim BK (1992) J Kore an Ind &

    Eng Chem 3(4):614

    9 . Bechara 1 , Brown T (1994) Amer Pa in t

    & Coa t J , Oc t , 58

    10. Hepbu rn C (1993) Po ly re thane E las to -

    mers , second ed i t ion , E l sev ie r App l Sc i ,

    L o n d o n

    11 . Die te r ich D, Gr iga t E , Hahn W (1985)

    In : Oer te l G (ed) Po lyure thane Hand-

    b o o k . H a n s e r P u b l i ch e r s , N e w Y o r k

    12 . Kim BK, Lee YM (1992) J Macromol

    Sci-Pure Appl Chem, A29(12):1207

    1 3 . K i m B K , K i m C K , J e o n g H M ( 1 9 9 5 )

    ibid, A32(11):1905

    14 . Lee YM, Lee JC , Kim BK (1994) Po ly -

    mer 35(5):1095

    1 5. K i m T K , K i m B K ( 1 99 1 ) C o l l o i d P o l y m

    Sci 269:889

    16 . Nol l K , Mosbach J , Peda in J , Nach t -

    kamp K, Schwind t J (1988) US Pa ten t

    4745151

    1 7. M a r k u s c h P H , M a s o n A W , W e n z e l W D

    (1988) US Patent 4742095

    18. Noll K (1975) US Patent 3909929

    19. Ai -Sa lah HA , Fr i sch KC, Xiao H X,

    Mclean JA (1987) J Po lym Sc i , Pa r t A ,

    25:2127

    20 . C hen Y, Chen Y -L (1992) J Appl Po ly m

    Sci 46:435

    21 . Chan W-C , Chen S-A (1988) Po lym er

    29:1995

    22 . Lee JS, Kim BK (1995) Prog Org C oa t

    25(4):311

    23 . Lee JC , Kim BK (1994) J Po lym Sc i ,

    Part A 32:1983

    24 . O h YS, Lee YM, Ki ln BK (1994) J M ac-

    romol Sc i - Phys , B33(2) :243

    25 . Nol l K , Nach tkamp K, Peda in J (1980)

    US Pa ten t 4237264

    26 . Nach tkamp K, Peda in J , Nol l K (1981)

    US Pa ten t 4303774

    27 . Ma rkusch P , Nol l K , Die te r ich D (1980)

    US Pa ten t 4238378

    2 8. K i m C K , K i m B K ( 19 91 ) J A p p l P o l y m

    Sci 43:2295

    29 . Kim BK, Lee YM (1994) J Appl Po lym

    Sci 54:1809

    30 . Xiao HX, Fr i sch KC (Ed) (1995) Ad-

    vanced in u re thane ionomers . Tech-

    nomic, Basel

    31 . Kim BK, Lee JC , accep ted fo r pub l ica -

    t ion in J Po lym Sc i , Pa r t A

    32 . Evere t t D H (1988) Bas ic p r inc ip les o f

    co l lo id sc ience , Roya l Soc Chem, Lon-

    d o n

    33 . Hsu SL, Xiao HX, Szmant HH, Fr i sch

    KC (1984) J A ppl Po ly m Sc i 29 :2467

    34 . John s ton CW , Tef fenhart JM (1988) US

    Patent 4743673

    35 . Wicks ZW (1975) Prog Org Coa t 3 :73

    3 6 . S p e c k h a r d T A , H w a n g K K S , L i n B S ,

    T s a y S Y , K o s h i b a M , D i n g Y S , C o o p e r

    SL (1985) J Ap pl Po lym Sc i 30:647

    37 . Ch iang W-Y, L in W-T (1994) J Appl

    Polym Sci 51:1901

    38. Kim BK, Lee KH, accep ted fo r pub l ica -

    t i o n in P o l y m e r

    3 9 . K i m B K , L e e K H , K i m H D , a c c e p t e d

    for pub l ica t ion in J A ppl Po lym Sc i

    40 . Rem ley K H (1977) US P a ten t 4048001

    41 . Oblson JL , I sgur IE (1980) US Pa ten t

    4201803

    4 2. L i n d e n m a n M K , K i m D ( 1 9 8 7 ) U S

    Paten t 4686260

    4 3. L i n d e n m a n M K , K i m D ( t 98 7 ) U S

    Paten t 4683165