applied physics on spectroscopy

71
8/16/2019 Applied Physics on Spectroscopy http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 1/71 Applied Physics On UV-vis Spectrophometry Kuwat Triyana http://triyana.staff.ugm.ac.id

Upload: dyah-uswatun-khasanah

Post on 05-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 1/71

Applied PhysicsOn

UV-vis Spectrophometry

Kuwat Triyanahttp://triyana.staff.ugm.ac.id

Page 2: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 2/71

EM Spectrum

Page 3: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 3/71

Ultra Violet (UV)

• Three regions of UV

 – UV-A:• long-wave UV, near-ultraviolet, black light, or Wood’s light 

• between 320 and 400 nm

 – UV-B:• medium-wave UV

• between 280 and 320 nm

 – UV-C :• short-wave, far ultraviolet, or germicidal UV

• between 180 and 280 nm

Page 4: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 4/71

Absorption Spectroscopy Introduction

 A.)  Absorption: electromagnetic (light) energy is transferred to atoms, ions, or molecules

in the sample. Results in a transition to a higher energy state.

- Transition can be change in electronic levels, vibrations, rotations, translation, etc.

- Concentrate on Molecular Spectrum in UV/Vis (electronic transition)

- Power (P): energy of a beam that reaches a given area per second

- Intensity (I): power per unit solid angle

- P and I related to amplitude2

Eo

E1

h  Energy required of photonto give this transition:

h = DE = E1 - Eo

(excited state)

(ground state)

Page 5: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 5/71

 Absorption and Emission

Page 6: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 6/71

Molecular Absorption and Emission

 Atoms:

Electronic states only

Molecules:

 Vibrational states within electronic states

Page 7: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 7/71

B.) Terms:

1.) Beer’s Law: A = bc

The amount of light absorbed (A) by a sample is dependent on the path

length (b), concentration of the sample (c) and a proportionality constant (e

 –  molar absorptivity)

 Amount of light absorbed is dependent on frequency (   ) 

c

 Absorbance is directly proportional to concentration Fe+2

Increasing Fe+2 concentration 

Page 8: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 8/71

B.) Terms:

1.) Beer’s Law: A = bc

Transmittance (T) = I/Io  %Transmittance = %T = 100T

 Absorbance (A) = log10

 Io/I

No light absorbed- 

% transmittance is 100%  absorbance is 0

All light absorbed- 

% transmittance is 0% absorbance is infinite

Page 9: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 9/71

Relationship Described in Terms of Beer’s Law 

 A = Absorbance = ebc = -log(%T/100)

e = molar absorptivity: constant for a compound at a given frequency ()

or wavelength (l)

units of L mol-1 cm-1

 b = path length: cell distance in cm

c = concentration: sample concentration in moles per liter.

Therefore, by measuring absorbance or percent transmittance at a given

frequency can get information related to the amount of sample (c) present

with an identified e and l. 

Note: law does not hold at high

concentrations, when A > 1

Page 10: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 10/71

C.) Components of an Instrument for UV/Vis Absorbance Measurements:

1.) Basic Design:  

Hitachi Instruments U-3010

Light Source, l selector, Sample cell holder, Detector (amplifier, recorder)

Page 11: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 11/71

a) Desired Properties of Components of UV/Vis:

Light Source   Selector  

Creates Proper l Narrow Bandpass: 

Stable: Selects Desired l

Constant P Large Light Throughput:

Good Precision Increase P

Intense: Increase P

Easier to See Absorbance

Samp le Cell Holder   Detector  Fixed Geometry: Stable

Constant b Sensitive to l of Interest

Transmits l of Interest:

Increase P

Page 12: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 12/71

Molecular Spectra

400 500 600 700

l (nm)

 Absorption Emission

   I  n  t  e  n  s   i  t  y

Bands vs. Lines (atoms)

Page 13: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 13/71

 Absorbed vs. Observed

Color absorbed → Complementary color observed 

R

BG

B

YG BV

VY

RVO

G

Page 14: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 14/71

Spectroscopy Terms Describing

 Absorption (Beer’s Law) 

• Consider a beam of lightwith an (initial) radiantintensity Io

• The light passes through asolution of concentration (c)

• The thickness of thesolution is “b” cm.

• The intensity of the lightafter passage through thesolution (where absorptionoccurs) is I

I0  hv I

b

   C  o  n  c  e  n   t  r  a   t

   i  o  n

   (  c   )

Page 15: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 15/71

We Define

• Transm ittance (T)  = I/I0 (units = %)

• Absorbance (A )  (units = none)

 – A = log (I0/I)

 – A = -log (T) = log (1/T)

 – A = abc (or εbc) <--- Beer’s Law • a = absorptivity (L/g cm)

• b = path length (cm)

• c = concentration (g/L)

• ε = molar absorptivity (L/mol cm) – Used when concentration is in molar units

Page 16: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 16/71

Other expression of Lambert’s Law of Absorption 

 xe

 I 

 I 

 I  x

 I 

 

 

=

=

0

d

d

• The intensity I 0 if a beam of light decreases exponentially as it passes though a uniform

absorbing medium with the linear decay constant α .

Restatement: In a uniform absorbing medium, the intensity of a beam of light decreases

by the same proportion for equal path lengths traveled.

• The linear decay constant α  is a characteristic of the medium. It has units of reciprocal

length. α  is the path length over which the intensity is attenuated to 1/e.

α  

I 0

I ( x ) 

 x  

Lambert described how intensity changes with

distance in an absorbing medium.

 xe I  x I     = 0)(

l e I  I     = 0

I  

l

 xe I  I 

 x I  I 

 

 

=

=

0

dd

The distance traveled through the medium is

called the path length. 

Page 17: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 17/71

Lambert’s Law of Absorption (base 10) 

 xk  x

e I 

 I    ==100

 

Typically base 10 is used in photometry.

 xk  x  I e I  I    == 1000

  10ln =k 

k  is the path length over which the intensity is attenuated to 1/10.

 xk 

 I 

 I    =100

Page 18: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 18/71

Lambert’s Law Example If one slab of absorbing material of thickness l  reduces the intensity of a beam of light

to half. 

α  I 0

2

110

0

==     l k 

 I 

 I I  

l

 And three slabs will reduce the intensity of a beam of light to one eight .

Then two slabs of the same absorbing material will then reduce the

intensity of a beam of light to one quarter .

4

1

2

110

2

2

0

  

 ==     l k 

 I 

 I α  I 0 I  

l

α  

l

8

1

2

110

3

3

0

=

 

 

 

 ==     l k 

 I 

 I α  I  

l

α  

l

α  I 0

l

Page 19: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 19/71

Beer’s Law Beer found that Lambert’s linear decay constant k  for a solutionof an absorbing substance is linearly related to its

concentration c  by a constant, the absorptivity ε , acharacteristic of the absorbing substance.

Restatement: The linear decay constant k  is linear in concentrationc  with a constant of proportionality ε . 

(August Beer, 1825-1863)

 A colored absorber has an absorptivity that is dependent on wavelength of thelight ε ( λ).

The absorptivity is the fundamental property of a substance. This is the property

that contains the observable spectroscopic information that can be linked to

quantum mechanics (also see absorption cross section.)

ck    e =

Typical units are: k   cm−1; c   M (moles/liter); ε   M−1cm−1 

Page 20: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 20/71

Photometric Quantities

Transmittance (T)

 Absorbance (A) (AKA optical density, O.D.)

0 I 

 I T  = usually given in percent

T  I 

 I  A loglog

0

  

 = by convention, base 10 logs are used

In photometry we measure the intensity  of light and characterize its

change by and object or substance. This change is typicallyexpresses as percent transmittance or absorbance.

Frequently when your primaryinterest is the light beam

Used almost exclusively when your interest

concerns the properties of the material

Page 21: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 21/71

Beer-Lambert LawLambert’s and Beer’s Laws are combined to describe the

attenuation of light by a solution. It is easy to see how the twostandard photometric quantities can be written in terms of this law.

 xc I  I    e = 100

 xc A

 I 

 I  A

e =

=

 

 

 

 = loglog

0

 xcT 

 I 

 I T 

=

=

10

0

Transmittance Absorbance

Page 22: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 22/71

Cross-Sections and Absorptivitythe connection to single particles and molecules

The absorption of light by particles (and single molecules) ischaracterized by an absorption cross section C . In this model theparticle is replaced by a perfectly absorbing sphere with a crosssectional area C . This cross section is a property of the particleand is not related to its geometric cross sectional area. Theconcentration of particles per unit volume is N .

 

  

 =

=

=

3

3

cm

liter  1010ln

10ln

C  N 

 NC k 

 NC 

 Ae 

 

typical units are: C   cm2; N   cm−3

The cross section can be directly related to the

molar absorptivity. N  A is Avagadro’s number.

units are: C   cm2; N   cm−3; N A mole−1; ε 

M−1cm−1 

Page 23: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 23/71

Efficiency

The absorption efficiency Q of a particle is the ratio of its absorption

cross section C  to its geometric cross section C geo.

 Absorption efficiency is dimensionless.

 geoC 

C Q =

Page 24: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 24/71

Extension to Scattering and

Extinction

 Attenuation of light by absorption and scattering both obey

Lambert’s Law. Thus we can extend our treatment of absorption to

scattering and extinction. (Recall that extinction is the effect of

absorption + scattering.)

cxcx A

QQQ

C C C 

 scaabsext 

 scaabsext 

 scaabsext 

 scaabsext 

e e e 

e e e 

==

=

=

= The scattering efficiency can be much larger than unity.

Extinction paradox: Qext = 2 (Qabs = 1; Qsca = 1)

for an perfectly absorbing particle very large compared

to the wavelength of light.

Note:

• All of these quantities are in general wavelength dependent.

•Our discussion has not included the mechanism (cause) of absorption and scattering.

•There are many different mechanisms that cause of absorption and scattering.

Page 25: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 25/71

Instrumentation

• Spectrometer:  measures I  vs λ.Simply measures the spectrum of the light (e.g. emission spectroscopy). 

• Spectrophotometer:  measures I /I 0 vs λ.Measures how the sample changes the spectrum of the light (e.g.

transmission, reflection, scattering, fluorescence).All spectrophotometers contain a spectrometer.

• -meter:  the detector is electronic 

• -graph:  light intensity recorded on film

• photometer:  measures I /I 0 without λ selection.

Page 26: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 26/71

OU NanoLab/NSFNUE/Bumm & Johnson

The Spectrophotometer

Measures absorbance as a function of wavelengthComponents: light source, monochromator, sample cell, detector,

optical system.

monochromator sample cell

detector

light source

  s   l   i   t

   d

   i   f   f  r  a  c   t   i  o  n 

  g  r  a   t   i  n  g 

Page 27: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 27/71

balance the

forces: 

Computer  controlled

acquisitionof absorption spectra 

Cary 50 UV-Vis Spectrophotometer

sample 

detector  

lightsource 

monochromator  

Can you find thediffraction grating and theslit? 

www.varianinc.co

Page 28: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 28/71

Making a Measurement with the Cary 50

• First, measure the baseline using a blank  sample. This is raw I 0.The blank sample is the cuvette with deionized water(everything but your nanoparticles). This corrects for anyabsorption due to the cuvette, water, and variations of the lightintensity of the light source, monochromator, etc.

• Second, measure the zero by inserting the beam block . Thiscorrects the instrument for the detector background.

• Third, measure your sample. This is the raw I . The Cary 50automatically calculates the corrected intensities (I  and I 0) bysubtracting the zero from each of the raw intensities.

• Subsequent measurements do not require re-measuring the

blank  and zero, simply repeat step 3.

T  A

 zero I raw

 zero I raw

 I 

 I T 

log

00

=

==

Page 29: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 29/71

Transmittance 

T => transmittance

IT = -----

Io

Io I

b

Page 30: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 30/71

I0  = 10,000 I = 5,000

5.010000

5000

0

=== P 

 P T 

-b-

Example

A = -log T = -log (0.5) = 0.3010

Page 31: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 31/71

Beer’s Law 

A = abc = ebc

where T => transmittance

%T => percentage transmittance

I => transmitted Iower of radiation

Io => incident power of radiation

A => absorbance

a => absorptivity

b => path length

c => concentration

e => molar absorptivity, extinction coefficient

Page 32: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 32/71

Beer’s Law 

A = abc = ebc

 A

c

Page 33: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 33/71

Beer’s Law  A = ebc

Path Length Dependence, b

Readout

 Absorbance

0.82

Source

Detector

Page 34: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 34/71

Beer’s Law  A = ebc

Path Length Dependence, b

Readout

 Absorbance

0.62

Source

Detector

b

Sample

Page 35: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 35/71

Beer’s Law  A = ebc

Path Length Dependence, b

Readout

 Absorbance

0.42

Source

Detector Samples

Page 36: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 36/71

Beer’s Law  A = ebc

Path Length Dependence, b

Readout

 Absorbance

0.22

Source

Detector Samples

Page 37: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 37/71

Beer’s Law  A = ebc

Wavelength Dependence, a

Readout

 Absorbance

0.80

Source

Detector

b

Page 38: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 38/71

Beer’s Law  A = ebc

Wavelength Dependence, a

Readout

 Absorbance

0.82

Source

Detector

Page 39: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 39/71

Beer’s Law  A = ebc

Wavelength Dependence, a

Readout

 Absorbance

0.30

Source

Detector

b

Page 40: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 40/71

Beer’s Law  A = ebc

Wavelength Dependence, a

Readout

 Absorbance

0.80

Source

Detector

b

Page 41: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 41/71

Non-Absorption Losses

"Reflection andscattering losses."

Page 42: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 42/71

Limitations to Beer’s Law 

• Real –  At high concentrations charge distribution effects

occur causing electrostatic interactions betweenabsorbing species

• Chemical –  Analyte dissociates/associates or reacts with solvent

• Instrumental

 – ε = f(λ); most light sources are polychromatic notmonochromatic (small effect)

 – Stray light – comes from reflected radiation in themonochromator reaching the exit slit.

Page 43: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 43/71

Chemical Limitations

 A reaction is occurring as you record

 Absorbance measurements

Cr 2O72-  + H2O 2H+  + CrO4

2-

A550 A446

concentration concentrationwavelength

400 500300

CrO42-

Cr 2O72-

Page 44: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 44/71

Instrumental Limitations - ε = f(λ)

• How/Why does εvary with λ? 

• Consider awavelength scan fora molecular

compound at twodifferent wavelengthbands

• In reality, a

monochromator cannot isolate a singlewavelength, butrather a smallwavelength band

Larger the Bandwidth – larger deviation

Page 45: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 45/71

Instrumental Limitations – Stray Light

• How does stray light effect Absorbanceand Beer’s Law? 

•  A = -log I/Io = log Io/I

• When stray light (Ps) is present, theabsorbance observed (Aapparent) is the sum

of the real (Areal) and stray absorbance

(Astray)

Page 46: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 46/71

Instrumental Limitations – Stray Light

•  Aapp = Areal + Astray =

•  As the analyte concentration increases([analyte]↑), the intensity of light exiting the

absorbance cell decreases (I↓) 

• Eventually, I < Is 

o s

s

I Ilog

I I

Page 47: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 47/71

Instrumental Limitations – Stray Light

• Result – non-linearabsorption (Analyte

vs. Conc.) as a

function of analyteconcentration

 – Similar to

polychromatic light

limitations

Page 48: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 48/71

Solution too Concentrated

• Refractive index changes with larger

concentrations

A   e  e n n 

n2 + 2

Page 49: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 49/71

 Allura Red

Formula: C18H14N2Na2O8S2 

Molar mass: 496.42 g/mol

2Na+ 

Page 50: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 50/71

During Absorption… 

Starting e- arrangement: After photon absorption:

Page 51: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 51/71

 Absorption is random

•Photons collide with molecules•Certain probability of absorption

Page 52: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 52/71

Transmittance, T

I0  I1  TII

0

1 =

 T:  ratio of light “in” vs. “out” 

= fraction of light passing through

Depends on: 

# of molecules b & c

molecules’ identity   e

Pathlength, b

Concentration,c

Page 53: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 53/71

Transmittance and Pathlength

1

2

0

1

II

II =

For cell with same pathlength: constant T

1

2

II

I0  I1 

0

1

II

I2 

Page 54: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 54/71

Transmittance and Pathlength

1

2

I

I

0

1

I

I

2

0

1

1

2

0

1

0

2

I

I

I

I

I

I

I

  

 ==I0 

For cells with same pathlength: constant T

Double pathlength: square T

I2 

#1 #2

2

121total TTTT   ==

Page 55: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 55/71

T and Pathlength

1- b

 b

I

I

0

1

I

I

1- b

 b

0

1

 b

0

1

0

 b

I

I

I

I

I

I

I

I

 

 

 

I0 

For b cells (b pathlengths = 1cm)

 Tb

 

Ib 

#1 #b

 b1

 b

1total TTTT   == 

… 

b in power

Page 56: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 56/71

Concentration

• # photons absorbed depends on #molecules in path

I0  I1 

Transmittance and

Page 57: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 57/71

Transmittance and

Concentration

1

2

I

I

 b

0

cm1

I

IT

 

 

 

 =

0

1

I

I

I0  I1  I2 

1.0 M reference solution gives

2.0 M:  Double concentration,c→“Double pathlength, b”… 

 bc

0

1Mcm,1 bc

1I

ITT

 

  

 ==

… 

bc in powerpathlength and

concentration

Page 58: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 58/71

Molar Extinction Coefficient, e 

e

  Probability of absorption 

 – Specific to molecule

 – Function of l

lmax Most efficient absorption 

 – Peak of absorption curve

 –“Best l” for experiment 

 T:  concentration c & pathlength b What about: molecular identity?

Page 59: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 59/71

b, c, and e 

  εcb- bcε-

 bc

0

1Mcm,11010

I

IT   ==

 

  

 =

 I

Ilogε

0

1Mcm,1

 

 

 

 

=

e in powermolar extinction coeff.

ε

0

1Mcm,110

I

I  =

 

 

 

 

 Therefore: 

 bc

0

1Mcm,1 bc

1I

ITT

 

 

 

 ==

bc in powerpathlength and concentration

Page 60: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 60/71

 Absorbance

Beer’s Law : Defines absorbance, A  

εbc A

 A

 T  A

εbc

=

=

=10log

log

 A : Directly proportional to concentration

high A ≡ low T 

Part 1 Spectral Profile of Allura

Page 61: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 61/71

Part 1 Spectral Profile of Allura

Red, lmax 

•Use stock solution (record conc.) cstock 

•Record %T, 400 – 700 nm %T

 – 10 nm intervals near lmax

 

 – 20 nm intervals elsewhere

•Record cell width, b = pathlength b

•Calculate A  A

•Plot A vs. l 

•Determine lmax l

max

Page 62: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 62/71

Part 1: lmax 

400 500 600 700l (nm)

 Absorption Transmittance

   I  n  t  e  n  s   i  t  y

Find l where

%T is lowest

 A is highest

 This is not

necessarily

 Allura Red

(but would

appear red)

Page 63: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 63/71

Spectral Profilel (nm)   Absorbance 

400  0.078 

420  0.130 

440  0.268 460  0.555 

480  0.966 

490  1.189 

500  1.383 

510  1.485 

520  1.515 

530  1.459 

540  1.217 

560  0.395 

580  0.063 

600  0.019 

620  0.015 

640  0.010 

660  0.009 

680  0.006 

700  0.000 

Spectral profile - Allura Red

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

400 450 500 550 600 650 700

 wavelength (nm)

     A     b    s   o    r     b   a    n   c

   e

Part 2 Absorbance for Various

Page 64: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 64/71

Part 2 Absorbance for Various

Concentrations

•Stock solution, 4 dilutions, and blank•  n1  = n2 

•  M1 .  V1 = M2 

.  V2 

• 

•Determine %T at lmax for each

%T 

•Calculate A

A

•Plot A vs. conc (Beer’s Law plot) 

•Slope =  eb 

Page 65: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 65/71

Part 2 Concentrations•1 blank: pure DI water M0 = 0.00 M allura red

•1 stock: 0.002% allura red M5 = 4×10-5 M

•4 dilutions, each by ½:

 – (4×10-5 M)(25.00 mL) = (M1 )(50.00 mL) M1 = 2×10-5 M –  (2×10-5 M)(25.00 mL) = (M2 )(50.00 mL) M2 = 1×10-5 M

 –  (1×10-5 M)(25.00 mL) = (M3 )(50.00 mL) M3 = 5×10-6 M

 –  (5×10-6 M)(25.00 mL) = (M4 )(50.00 mL) M4 = 2×10-6 M

 M  solution L

 solution g 

red allura g 

red alluramol 

 solution g 

red allura g  5

001.0

1

42.496

1

100

002.0104%002.0   ==

diluteed concentrat dilutediluteed concentrat ed concentrat    nnV  M V  M    ==  

Page 66: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 66/71

Beer’s Law 

e,b constant 

 xm ==

=

y

cεbA

 TlogA

 A === 1010

%100

%TT   εbc

c varied 

Page 67: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 67/71

Beer’s Law Plot 

cεbA   =

 x y =m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Molarity

     A     b    s    o    r     b    a    n    c    e

 y = 1.9 x

 yD

εb=D

D=  

 x

 y slope

 xD

B ’ L Pl l

Page 68: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 68/71

Beer’s Law Plot example 

Dilution Factor  M (mol/L)   T   A = -logT 

0  0  1.00  0.000 

1/16  2.E-06  0.87  0.060 

1/8 5.E-06  0.73  0.137 

1/4 1.E-05  0.58  0.240 

1/2 2.E-05  0.32  0.495 

1  4.E-05  0.10  1.000 

Stock M  4E-05  mol/L 

 A =  e×b×c 

Slope = D

 A/D

c Here:

e×b =  24943 

 A 1-cm cell: e

24943  cm-1M-1 

 Absorbance vs. Concentration - Allura Red

y = 24943x

R 2 = 0.9995

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0.E+00 1.E-05 2.E-05 3.E-05 4.E-05

Molarity (mol/L)

     A     b    s   o    r     b   a    n   c   e

Part 3 Allura Red Concentration in

Page 69: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 69/71

Part 3 Allura Red Concentration in

Mouthwash

•Use 1:25 dilution

• 

•Determine %T at lmax %T 

•Calculate AA

•Measure b b

•Find concentration, c  c

 soεbc A =b

 Ac

=

Page 70: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 70/71

Part 3 Example

Mouthwash trials (1:25 dilution):  T   A  M

dilute  Mconcentrated 

0.68  0.167  7E-06  1.7E-04 

0.70  0.155  6E-06  1.6E-04 0.65  0.187  8E-06  1.9E-04 

0.69  0.161  6E-06  1.6E-04 

Mdilute= A/(b×e ) if cell length b  is constant

 Average Mconcentrated = 1.7×10-4 M = 2×10-4 M 

Page 71: Applied Physics on Spectroscopy

8/16/2019 Applied Physics on Spectroscopy

http://slidepdf.com/reader/full/applied-physics-on-spectroscopy 71/71

Report•  Abstract

• Data/Results

• Sample calculations including:

 – Absorbance from transmittance

 – Dilution

 – Slope and extinction coefficient

 – [Allura red]cuvette and [Allura red]mouthwash 

 – # allura red molecules in 1 mL mouthwash

• Discussion/review questions