appendix(list(nopho0dbh(aml(2012(vs(2.0(2012009030( … · 2015-08-10 ·...

48
Appendix list NOPHODBH AML 2012 vs 2.0 20120930 Appendix 1 Contract with treatment centres Appendix 2 SAE registration form Appendix 3 SUSAR/death report Appendix 4 MRD Guidelines Appendix 5 PCR guidelines Appendix 6 Guidelines for CRF DNX study Appendix 7 Guidelines for CRF FLADx study Appendix 8 Biobank referral form Appendix 9 Guidelines for patient information

Upload: others

Post on 15-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  list  NOPHO-­‐DBH  AML  2012  vs  2.0  2012-­‐09-­‐30  

 

Appendix  1   Contract  with  treatment  centres  Appendix  2   SAE  registration  form  Appendix  3   SUSAR/death  report  Appendix  4   MRD  Guidelines  Appendix  5   PCR  guidelines  Appendix  6   Guidelines  for  CRF  DNX  study  Appendix  7   Guidelines  for  CRF  FLADx  study  Appendix  8   Biobank  referral  form  Appendix  9   Guidelines  for  patient  information  

Page 2: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  1  Study  contract               2011-­‐11-­‐30  

 

AML2012  study  contract  Contract  of  Participation  of  a  Clinical  Institution:  

Hospital:  _______________________________  Principal  Investigator  (local  representative):  

Name:  ___________________________________________________________________  

Phone:________________  Fax:________________  e-­‐mail:___________________  Contact  person  for  study  affairs  and  mail:  

Name:  ___________________________________________________________________  

Phone:________________  Fax:________________  e-­‐mail:___________________  Laboratory  for  analysis  of  MRD-­analysis  by  flow  cytometry:  Name,  address,  and  telephone  number:  

___________________________________________________________________  Laboratory  for  analysis  of  MRD-­analysis  by  PCR    Name,  address,  and  telephone  number:  

___________________________________________________________________  

I  have  thoroughly  read  and  reviewed  the  study  protocol  NOPHO  AML2012.  Having  read  and  understood  the  requirements  and  conditions  of  the  study  protocol,  

1. I  agree  to  treat  the  patients  according  to  this  Protocol,  the  international  good  clinical  practice  principles,  the  declaration  of  Helsinki  (version  2000)  and  regulatory  authority  requirements  for  source  document  verification  and  inspection  of  the  study.  

1. I  will  archive  the  study  documents  in  accordance  to  valid  national  regulations.  2. I  agree  to  inform  the  Study  Chair  and/or  the  National  Principal  Investigator  on  

problems  in  diagnostic  and  therapeutic  decisions.  3. I  agree  to  report  to  the  NOPHO  Leukemia  Registry  within  48  hours  

a. any  death  during  induction  or  in  first  remission,  and  b. any  SUSARs  (suspected  unexpected  serious  adverse  events).  

This  center  will  participate  in  the  randomised  DNX  study  for  AML  

□  yes  □  no  This  center  will  participate  in  the  randomised  FLADx  study  for  AML  

□  yes  □  no      Principal  Investigator:  ______________________________________________________  The  signed  contract  must  be  sent  or  faxed  to:  Jonas  Abrahamsson  Children’s  Cancer  Centre  Queen  Silvias  Childrens  and  Adolescents  Hospital,  416  85  Gothenburg  Sweden  Tlph:     +46  707  695159  Fax:     +46  31  215486  Email   [email protected]  

Page 3: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

AML2012  Toxicity  registration  

After  each  course  it  is  mandatory  to  register  toxicity  online  according  to  this  form.        

Name:__________________________  NOPHO  Nr:______________________  Course:_________________    Category   No  SAE   Grade  3   Grade  4   Additional  data  Need  of  intensive  care  

      Number  of  days  in  ICU:...........  

Hypoxia     Decreased  O2  sat  at  rest  req  O2  therapy  

Decreased  O2  saturation  requiring  CPAP  or  assisted  ventilation  

Days  in  ventilator:..................  

Multi-­‐organ  failure    Shock  with  azotemia  and  acid-­‐base  disturbances;  significant  coagulation  abnormalities  

Life-­‐threatening  (e.g.,  vasopressor  dependent  and  oliguric  or  ischemic  colitis  or  lactic  acidosis)  

 

ARDS    Present  with  radiologic  findings;  intubation  not  indicated  

Life-­‐threatening  respiratory  or  hemodynamic  compromise;  intubation  or  urgent  intervention  indicated  

 

Infection     Pathogen  identified  iv  antibiotics   Septic  shock/hypotension  

Pathogen  ...................  Fungal  infection  yes/no  Suspected/probable/proven  

Abdominal  pain    Severe  pain  strongly  interfering  with  daily  life  activities  

Paralytic  ileus  or  intestinal  obstruction    

Abdominal  symptoms       Leading  to  laparotomy    

Typhlitis    

Symptomatic  (e.g.  abdominal  pain,  fever,  change  in  bowel  habits  with  ileus);  peritoneal  signs  

Life-­‐threatening  consequences;  urgent  operative  intervention  indicated  

 

Congestive  heart  failure  (CHF)     Mild  CHF  compensated  with  

therapy   Severe/refractory  CHF    

Cardiac  arrhythmia     Requiring  intervention   Life-­‐threatening   Specify  arrhythmia:  ...................  

Allergic  reaction     Bronchospasm  requiring  parenteral  medication   Anaphylaxis    

Renal  dysfunction     Creatinine  3-­‐6  x  UNL   Creatinine  >  6  x  UNL    Bilirubin     Bilirubin  3-­‐10  x  UNL   Bilirubin  >  10  x  UNL    

Thrombosis     Requiring  systemic  anticoagulation  

Severe  thrombosis  causing  organ  dysfunction    

Haemorrhage      Catastrophic  bleeding  requiring  non-­‐elective  intervention  

Organ:...................  

Disseminated  intravascular  coagulation  

  Laboratory  findings  and  bleeding  

Life-­‐threatening  consequences;  urgent  intervention  indicated    

Central  neurotoxicity    

Somnolence  >  50%/day  or  severe  disorientation  or  hallucinations  

Coma  or  seizures    

   

Page 4: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  3  SUSAR/Death  report  form  2012-­‐09-­‐30  

  1  

SUSAR  /  Death  Report  form  AML2012  

NOPHO  #  ___________     Treatment  Centre___________________________  Country______________  Name  ________________________  Date  of  birth  __________________    Type  of  report   Initial     Follow-­‐up      Category     Death     SUSAR  If  death   Date  ______________    Stage     Death  in  CCR     Cause     Therapy  related  

Induction  death       Disease  related       Death  after  relapse       Therapy  and  disease  related       Death  after  SMN       Unknown  Date  of  onset  of  symptoms  of  SAE  ________________  Is  the    event  due  to/complicated  by  persisting  AML   Yes     No     No  data  

Other  seriousness  criteria     Congenital  anomaly/birth  defect             Other  significant  medical  defects  

Expedited  reported  criteria     Involved  or  prolonged  hospitalisation  

(Check  all  appropriate)     Involved  persistence  of  significant  disability  or  incapacity             Death    

SAE  description  in  medical  terms:  

Case  description  (Include  related  symptoms,  treatment,  outcome  and  suspected  cause:  

Page 5: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  3  SUSAR/Death  report  form  2012-­‐09-­‐30  

  2  

 Immediately  preceding  or  ongoing  course  _________________  Drugs  at  or  before  onset  of  SAE_____________________________________________________________________  Last  chemotherapy  start  date  _______________   Drugs  given  __________________________________  

SUSAR/death  reports  are  required  to  be  sent  within  48  hours  of  the  occurrence  of  the  event.  The  report  should  preferably  be  submitted  online  in  the  NOPHO  AML2012  database  but  can  also  be  sent  by  fax  to  the  NOPHO  leukemia  registry.  The  data  centre  will  immediately  forward  the  report  to  the  study  and  national  coordinators  and  action  will  be  taken  according  to  section  14.2.1  in  the  AML2012  protocol.    

Action  taken  

Outcome  of  event     Complete  recovery       Date  recovery  _________________  

        Recovered  with  sequelae           Condition  improving           Condition  still  present  and  unchanged           Condition  deteriorating    

Name  email  and  telephone  number  of  reporter  

 

 Date  of  report  _____________________  

Page 6: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  1  

 

Guidelines  for  the  detection  of  minimal  residual  disease  

using  multiparameter  flow  cytometry  

 

Background  

 

Monitoring   of   minimal   residual   disease   (MRD)   has   been   for   many  

years   standard   care   in   ALL   (D   Campana   2012).   Evidence   is   now  

emerging  that  MRD  has  also  prognostic  and  therapeutic  implications  

in   AML   and   could   be   used   for   risk-­‐adapted   treatment   (E   Coustan-­‐

Smith  2003,   N   Feller  2004,  C  Langebrake  2006,  VHJ  van  der  Velden  

2010,  GJ   Schuurhuis  2010,   EJ  Rubnitz  2011,  Walter  2011,  MR  Loken  

2012;   CD   DiNardo   2012).   A   central   review   of   the   MRD   data   of   the  

AML–NOPHO  2004  protocol  revealed  that  patients  with  MRD  >  0.1  %  

had  a  significantly  worse  EFS  as  well  as  OS  compared  to  patients  with  

MRD  <0.1%  on  day  15  after  first  induction  and  before  consolidation  

In  the  NOPHIO-­‐DBH  AML  2012  study  protocol,  the  MRD  results  after  

the   two   induction   courses   will   be   used   as   primary   endpoints   to  

evaluate  the  randomized  studies.  Furthermore  MRD  will  be  used  for  

risk  stratification  and  a  level  of  MRD  >  0.1%  before  consolidation  will  

be   used   as   a   high-­‐risk   criterion,   allocating   patients   that   become  

eligible  for  transplantation.  

The  detection   of  MRD  by  using  multiparameter   flow   cytometry   has  

been  shown  to  be  applicable  in  80-­‐90  %  of  AML  (M  Vidriales  2003,  C  

Langebrake   2005,   A   Al-­‐Mawali   2008,   A   AL-­‐Mawali   2009,   W   Kern  

2010;   GJ   Ossenkoppele   2011).   It   is   applied   to   detect   aberrant  

leukemia-­‐associated   antigen   expression   (LAIP)   that   is   not   or  

infrequently   present   on   normal   hematopoietic   cells.   The   most  

Page 7: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  2  

relevant   aberrant   phenotypes   include   the   following:   expression   of  

lymphoid-­‐associated  antigens  on  myeloid  blasts,  the  simultaneous  or  

asynchronous   expression   of   an   immature   and   mature   cell   marker,  

absence   as   well   as   increased   expression   of   a   myeloid   marker   and  

changes  in  light  scatter.    

A   standard   8-­‐   or   10-­‐colour   combination   antibody   panel   has   been  

respectively  designed  for  the  MRD  analysis  on  a  Facscanto/LSR2  and  

Navios  (Addendum  1).  The  MRD  antibody  combinations  are  aimed  at  

the  detection  of  LAIP  on  the  leukemic  blasts  of  the  major  AML  disease  

entities   and   the   characterization   of   the   maturation   profiles   of   the  

granulocytic   and   monocytic   limeage   (EG   Van   Lochem   2004;   GJ  

Ossenkoppele  2011;  JMM  van  Dongen  2012).  CD45,  CD34,  CD117  and  

HLA-­‐DR  comprise  the  backbone  markers  of  the  8-­‐colour  combination  

panel,  whereas  CD33  was  added  as  a  fifth  backbone  marker  in  the  10-­‐

colour  combination  panel.  By  using  these  backbone  markers  gating  of  

the  leukemic  blasts  is  feasible  in  the  majority  of  AML  cases  (JJM  van  

Dongen  2012).  Cross-­‐lineage  antigen  expression  is  detected  using  the  

lymphoid-­‐associated  markers  such  as  CD4,  CD7,  CD19,  and  CD56.  The  

combination  of  maturation-­‐stage  specific  markers  respectively  of  the  

granulocytic   and  monocytic   lineage   is   aimed  at   the   identification  of  

asynchronous   antigen   expression   and   aberrant  maturation   profiles.    

The   expression   of   the   protein   NG2   is   associated   with   the  

rearrangement   of   the   mixed   lineage   leukemia   (MLL)   gene   that   is  

identified  in  about  20%  of  childhood  leukemia.  

Since  evidence  is  emerging  that  the  detection  of  leukemic  stem  cells  

may   have   potential   clinical   significance,   one   antibody   combination  

was   designed   for   the   identification   of   leukemia   stem   cells   (LSC)   (A  

van  Rhenen  2007,  DS  Kraus  2007).  In  order  to  study  LSC  and  possibly  

Page 8: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  3  

differentiate   LSC   from   normal   HSC,   the   markers   CD123,   CD7   and  

CD96  are  combined  with  CD38  and  CD34.    Unlike  normal  HSC,  CD123  

and   CD96   have   been   reported   being   expressed   by   CD34   positive,  

CD38   negative,   CD90   negative   leukemic   stem   cells,   respectively   in  

100  and  66  %  of  AML  cases  (AB  Bakker  2004;  N  Hosen  2007;  A  Van  

Rhenen   2007;   R   Majeti   2011).     CD96   is   also   demonstrated   being  

positive  in  30%  of  AML  as  shown  by  an  immunohistochemical  study  

and   in   a  minor   subpopulation  of  normal  CD34+  progenitor   cells.  Of  

interest,   the   LSC   antibody   combination   identifies   normal   CD34+  

precursors  expressing  CD7  thereby  facilitating  the  MRD  detection  of  

CD7+   leukemic   blasts.   In   regenerating   marrows   and   to   a   minor  

extent  also  in  marrows  of  normal  donors,  the  CD123  bright  positive  

dendritic  cell  precursors  as  well  as  the  CD96  dim  positive  precursors  

are  partly  positive  for  CD7.    

It  is  estimated  that  in  at  least  80-­‐85  %  of  AML  cases,  it  will  be  feasible  

to  detect  LAIP  using  the  standard  panels.   It   is  of  utmost   importance  

to  search  for  a  specific  LAIP  on  the  leukemic  blasts.  The  most  specific  

LAIP   is   characterized   by   the   expression   of   a   brightly   expressed  

progenitor   cell  marker,   at   least   one  myeloid  marker   and  preferably  

more   than   one   aberrant   marker.   The   quality   of   the   LAIP   for   MRD  

detection  further  depends  on  its  specificity  (Spe),   its  sensitivity  (Se)  

and  stability.  The  specificity  depends  on  the  percentage  (%)  of  LAIP  

expression  on  precursors  in  normal  and  regenerating  bone  marrows.  

Since   the  aberrant  expression  of  markers  usually  doesn’t  exceed  10  

%  on  normal  precursors,  the  latter  is  often  defined  as  the  cut-­‐off  level  

for  identifying  LAIP.  The  sensitivity  is  determined  by  the  %  LAIP  on  

the   leukemic   cell   population   at   diagnosis   and   the   number   of   cells  

analyzed  at   follow-­‐up.  Three   levels  of   sensitivity  are  defined  by   the  

Page 9: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  4  

European   working   group   on   Clinical   Cell   Analysis:     >   50   %   LAP  

expression   (good),   >   20%   <50%   (intermediate)   and   >10%   <20%  

(low).   Third,   phenotypic   shifts   including   loss   or   gain   of   aberrantly  

expressed  markers  do  occur  which  may  result  in  false  negative  MRD.  

Loss   of   aberrant   expression   is   more   frequent   for  markers   that   are  

dimly  expressed.    In  contrast,  some  markers  that  are  negative  at  the  

time   of   diagnosis   may   become   positive   during   follow-­‐up   or   at  

relapse.   It   is   also  noted   that  MRD  detection   in  AML  with  monocytic  

differentiation   may   be   challenging   since   the   leukemic   blasts   often  

lack  the  expression  of  progenitor  cell  markers.  

 

Specimen  

Either   bone   marrow   aspirates   or   peripheral   blood   samples   can   be  

used  for  AML  diagnosis.  The  MRD  analysis  is  always  performed  on  a  

bone  marrow  sample.    

Heparin   is   the   anticoagulant   of   choice   for   bone   marrow   samples.  

EDTA  or  heparin  tubes  can  be  used  for  peripheral  blood  samples,      

It  is  recommended  that  the  sample  is  processed  within  24  hours  after  

collection.    

 

MRD  time  points  

MRD   analysis   must   be   performed   on   the   following   time   points  

(NOPHO  AML-­‐2012  protocol):  

•After  the  1st  course:  Day  22,  last  sample  before  the  2nd  course  

•After  the  2nd  course:  Day  22  in  patients  with  poor  response  after  the  

1st  course,  and  last  sample  before  course  3.      

 

Antibody  panel  used  in  diagnostic  samples  

Page 10: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  5  

At  diagnosis,  the  sample  needs  to  be  stained  with  cell  lineage  as  well  

as   myeloid   markers   that   fully   characterize   the   leukemic   cell  

population   according   to   the   recommendations   of   the   WHO  

classification   of   AML   (WHO   2008).   As   a   minimum   the   following  

markers   must   be   included   in   the   panel:   1.   the   lineage   markers  

cytoplasmic   CD3,   CD7,   cytoplasmic   CD79,   CD19   and   cytoplasmic  

myeloperoxidase   (MPO)   and   2.   the   myeloid   markers   CD13,   CD14,  

CD15,   CD33,   CD34,   CD36,   CD41,   CD42b,   CD64,   CD71,   CD105,  

CD117and  HLA-­‐DR.    

In   addition,   it   is   compulsory   to   analyze   the   diagnostic   sample  with  

the   complete   standard  MRD  panel   in  order   to   identify   the   antibody  

combinations  showing  LAIP.   It   is  recommended  to  use   the  antibody  

clones   proposed   by   Euroflow   where   applicable   (JMM   van   Dongen  

2012).  A   list  of   recommended  clones   for  both  panels   is  provided   in  

addendum  2.  All  antibodies  need  to  be  titrated  before  use.  

Preliminary  experience  with  the  MRD  panel  has  shown  that  aberrant  

phenotypes   frequently   can  be   identified   in   at   least   2  different  MRD  

combinations.  If  only  one  or  none  of  the  standard  tubes  reveal  LAIP,  

the  design  of  a  tailored  antibody  combination  needs  to  be  considered  

and   analyzed   on   the   diagnostic   sample.   In   this   instance,   it   is  

recommended  to  discuss  the  design  of  the  tailored  antibody  with  the  

national  coordinator.  

 

Antibody  panel  used  in  follow-­up  samples  

The  standard  or   tailored  MRD  antibody  combinations  chosen  at   the  

time  of  diagnosis  are  analyzed  on  all  follow-­‐up  samples.  In  addition,  

it   is   recommended   to   always   stain   the   cells   with   tube   1   and/or   2  

(granulocytic   and   monocytic   tubes,   respectively)   of   the   standard  

Page 11: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  6  

panels  in  order  to  identify  the  distribution  of  the  cell  populations.    If  

the   sample   has   an   adequate   cell   count,   it   should   be   considered   to  

analyze  the  antibody  combination  aiming  at  identifying  the  leukemic  

stem  cells.  

 

Instrument  setup  and  fluorescence  compensation  

For   the  BD  platform  users,   it   is  compulsory   to  use   the  standardized  

procedures   for   instrument   set-­‐up   and   establishing   the   optimal  

compensation   settings   as   outlined   by   Euroflow   (JMM   van   Dongen  

2012;  www.euroflow.org).  Monitoring  of   instrument  performance   is  

done   using   Rainbow   8-­‐peak   beads   (Sperotech)   (JMM   van   Dongen  

2012;  T  Kalina  2012).  

For   the   users   of   a   Navios   flow   cytometer,   instrument   set-­‐up   and  

establishing   compensation   settings   are   performed   according   to  

Beckman  Coulter’s  recommendations.  

 

Sample  preparation  and  staining  

It  is  recommended  to  use  a  lyse,  stain  and  wash  method.  Bulk  lysis  of  

the  sample  is  performed  using  NH4CL  as  described.  

The   staining   is   performed   according   to   standard   operating  

procedures.    Briefly,  the  respective  antibody  tubes  are  prepared  with  

the  pretitrated  and  diluted  antibodies   to  which  50  microliter  of  cell  

suspension   is   added.     The   cells   are   incubated  during  15  minutes   in  

the   dark   at   room   temperature   and   washed   twice   using   PBS   0.1%  

BSA.     An   extratube   can   be   stained   with   a   living   cell   dye   such   as  

Syto16  and  the  backbone  markers  for  acccurate  quantification  of  the  

leukemic  blasts.      

Page 12: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  7  

The  stained  cells  are  kept  from  the  light  and  at  4  oC  until  acquisition  

on  the  flow  cytometer  not  later  than  4  hours  after  staining.  

 

Data  acquisition  

It   is   recommended   to   flush   the   flow   cytometer   with   destilled   H20  

before   starting   the   acquisition   of   the   diagnostic   or  MRD   sample   as  

well   as  between  each  antibody   tube  For  diagnostic   samples  30  000  

total   cells   are   required.   In   case   of  MRD   samples,   between   500   000  

and   preferably   1   million   cells   need   to   be   acquired.   If   cells   are  

acquired  until  the  tube  is  empty,  the  time  parameter  can  be  included  

to  gate  out  events  generated  by  air  bubbles.    

 

Data  analysis  

Data  analysis  is  performed  using  the  software  programs  available  in  

the   laboratory.   The   creation   of   standard   dot-­‐plots   and   the   gating  

strategy  is  described  in  addendum  3.  

LAIP   is  determined  on  the   leukemic  blasts  present   in  the  diagnostic  

sample.  The   leukemic  blast   population   is   defined  on   a  CD45  versus  

side   scatter   (ssc)  dot-­‐plot.   It   can  be   localized   in  one  or  more  of   the  

following  regions  in  the  CD45  /ssc  dot-­‐plot:  1.  CD45  dimly  positive  or  

negative   versus   low   scc.   2.   CD45   positive   versus   low   ssc.   3.   CD45  

brightly   positive   versus   low   to   intermediate   ssc.   Subsequently,   the  

leukemic  blast  population  is  further  characterized  by  the  expression  

of  the  backbone  markers  CD34,  CD117  and/  or  HLA-­‐DR  antigens.  The  

expression  of  the  latter  markers  together  with  CD45  and  light  scatter  

of  the  leukemic  blasts  finally  determine  the  gating  strategy  to  be  used  

for   MRD   evaluation   in   the   follow-­‐up   samples.   The   majority   of  

myeloid  leukemic  blasts  can  be  identified  by  the  expression  of  CD34  

Page 13: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  8  

and/or   CD117.   If   the   former   markers   are   negative,   CD133   can   be  

used  if  positive  on  the  leukemic  blasts.  In  case  of  AML  with  monocytic  

differentiation  HLA-­‐DR  expression  together  with  CD33  can  be  used  to  

identify   the   leukemic   blasts.   Note   that   CD33   is   present   in   2   of   the  

standard  MRD  antibody  tubes  in  the  8-­‐colour  combination  panel  and  

in   all   three   standard   tubes   of   the   10-­‐colour   antibody   combination  

panel.     It   is   of   note   that   myeloid   leukemic   blasts   may   display   a  

heterogeneous   phenotype   with   respect   to   the   expression   of  

progenitor   cell   markers.   All   subpopulations   exceeding   10%   of   the  

total  blasts  need  to  be  characterized.      

Next,   the   expression   of   the   non-­‐backbone  markers   is   evaluated   for  

each   of   the   major   leukemic   blast   populations   in   order   to   identify  

LAIP.   In   this   respect,   the   three   major   reference   populations   for  

leukemic   blasts   include   the   CD34+/CD117+,   CD34+/CD33+,   CD34-­‐

/CD117+  and  CD33+/  HLA-­‐DR+  cells.  An  atlas  of  the  expression  of  all  

non-­‐backbone   markers   is   compiled   for   these   populations   in  

regenerating  as  well  as  normal  bone  marrow  (NOPHO  database).   In  

addition,   normal   reference   patterns   of   granulocytic   and   monocytic  

cell  maturation  have  been  described  (van  Lochem  2004).  

LAIP  expressions  that  exceed  >  10%  of  the  leukemic  cell  populations  

are  analyzed  in  the  follow-­‐up  samples.    

Data  analysis  for  the  screening  of  residual  leukemic  cells  in  follow-­‐up  

samples   is  performed  according   to   the  gating  strategy   identified   for  

the   leukemic   blasts   in   the   diagnostic   sample.   A   cluster   of   >   100  

events   with   a   leukemic   phenotype   are   considered   as   minimal  

residual   disease.   In   addition,   a   standardized   gating   strategy   is  

performed   in   the   follow-­‐up   sample   for   the   identification   of   the  

following   cell   populations:   the   normal   CD34   positive   cells,   CD34  

Page 14: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  9  

positive/CD19   positive   B-­‐lymphoblasts,   granulocytes,   monocytes,  

erytroblasts  as  well  as  lymphocytes  (Addendum  3).  

 

Data  reporting  

There  are  two  report  forms  respectively  one  for  reporting  the  results  

on   the   diagnostic   sample   and   one   for   reporting   the   MRD   result.  

Reporting  of  the  data  is  done  as  outlined  in  the  NOPHO  database.  

At  diagnosis,  the  following  data  are  reported:  the  percentage  and  the  

complete   phenotype   of   the   leukemic   blasts   as   well   as   a   detailed  

description   of   the   LAIP.   The   Bethesda   guidelines   should   be   used  

when   reporting   a   marker   expression   (cfr   NOPHO   database   for  

specifications).  

The   following   categories   of  markers  will   be   reported   for   the  major  

leukemic  cell  population  

(a) CD45    

(b) Backbone   and   progenitor   cell  markers:   CD34,   CD117,   CD133,  

HLA-­‐DR  

(c) Myeloid   markers:   CD11a,   CD11b,   CD13,   CD14,   CD15,   CD16,  

CD35,  CD36,  CD41,  CD42b,  CD64,  CD71,  CD105,  IREM2,  MPO  

(d) Lymphocyte  markers:  CD2,  CD3,  CD4,  CD5,  CD7,  CD19,  CD56  

(e) Other  markers:  CD38,  CD96,  CD99,  CD123,  NG2,    

Finally,   the   number   of   LAIP   is   recorded   for   each   of   the   standard  

antibody  tubes  that  are  analyzed.    

For   the  MRD  samples,   the   level  of  residual   leukemic  cells  as  well  as  

their   phenotype   is   reported   as   outlined   in   the   MRD   report   form.  

Residual   leukemic  cells  are  quantified  as  percentage  of   total  as  well  

as  of  CD45  positive  cells.  In  addition,  it  is  recommended  to  report  the  

major  cell  populations  described  above.    

Page 15: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  10  

If   the   levels   of  MRD  differ   between   the   antibody   tubes,   the   highest  

level  of  MRD  is  the  result  used  for  clinical  decision.    The  MRD  level  is  

divided   in   five   categories:   1.  MRD  <0.1  %,  negative;   2.  MRD  <0.1%,  

positive;    3.  MRD  >  0.1%  and  <  5%;  4.  MRD  >5%  and  <  15%;  5.  MRD  

>15  %.    

The   data   files   of   the   diagnostic   samples   as  well   as   of   the   follow-­‐up  

samples   will   be   evaluated   by   2   independent   laboratories.   If   no  

consensus  on  the  MRD  level  is  reached,  the  expertise  of  a  member  of  

the  AML-­‐NOPHO  coordinator  group  will  be  sought.    The  MRD  result  is  

reported  to  the  clinician  48-­‐72  hours  after  sample  collection.    

A   consensus   result  will   be   reported   in   the  NOPHO  database   and   to  

the  clinician  treating  the  patient.    

The   data   files   of   all   samples   will   be   submitted   to   a   NOPHO-­‐AML  

server.  

 

 References    

1. Al-­‐Mawali   A,   D   Gilis,   and   I.   Lewis   I   The   role   of   multiparameter   flow  

cytometry   for   detection   of   minimal   residual   disease   in   acute   myeloid  

leukemia.    Am  J  Clin  Pathol.  2009;  131:  16-­‐26  

2. Al-­‐Mawali   A,   D   Gilis,   P   Hissaria,   and   I   Lewis.   Incidence,   sensitivity,   and  

specificity  of   leukemia-­‐associated  phenotypes  in  acute  myeloid  leukemia  

using  specific  five-­‐color  multiparameter  flow  cytometry.  Am  J  Clin  Pathol.  

2008;  129:934-­‐945.  

3. Bakker   AB,   S   Van   den   Oudenrijn,   AQ   Bakker,   et   al.   C-­‐type   lectin-­‐like  

molecule-­‐1:   a   novel   myeloid   cell   surface   marker   associated   with   acute  

myeloid  leukemia.  Cancer  Res  2004,  64:  8443-­‐8450.  

4. Campana   D.   Should   Minimal   residual   disease   monitoring   in   acute  

lymphoblastic   leukemia   be   standard   of   care?   Curr   Hematol   Malig   Rep  

2012;  7:  170  -­‐177.    

Page 16: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  11  

5. Coustan-­‐Smith   E,   Ribeiro   RC,   Rubnitz   JE   et   al.   Clinical   significance   of  

residual   disease  during   treatment   in   childhood   acute  myeloid   leukemia.  

Br  J  Haematology  2003;  123:  243-­‐252  

6. DiNArdo   CD,   and   SM   Luger.   Beyond   morphology:     minimal   residual  

disease  detection  in  acute  myeloid  leukema.  Curr  Opin  Hematology  2012;  

19:  82-­‐88.  

7. Feller   N,   MA   van   der   Pol,   A   van   Stijn   GWD   Weijers,   AH   Westra,   BW  

Evertse,   GJ   Ossenkoppele,   and   GJ   Schuurhuis.   MRD   parameters   using  

immunophenotypic   detection   methods   are   highly   reliable   in   predicting  

survival  in  acute  myeloid  leukemia.  Leukemia  2004;  18:  1380-­‐1390.  

8. Hosen   N,   CY   Park,   N   Tatsumi,   Y   Oji,   H   Sugiyama,   M   Gramatzki,   AM  

Krensky,  and  IL  Weissman.  CD96  is  a  leukemi  stem  cell-­‐specific  marker  in  

human  acute  myeloid  leukemia.  PNAS  2007;  104:  11008-­‐11013.  

9. Kern  W,  U.  Bacher,  C  Haferlach,  S.  Schnittger  and  T  Haferlach.  The  role  of  

multiparameter   flow   cytometry   for   disease   monitoring   in   AML.   Best  

Practice  &  Research  Clinical  Haematology  2010;  23:  379-­‐390.  

10. Krause  DS  and  RA  Van  Etten.  Right  on  target:  eradicating   leukemic  stem  

cells.  Trends  in  Molecular  Medicine  2007;  13:  470-­‐481.  

11. Langebrake   C,   U   Creutzig,   M.   Dworzak,   O   Hrusak,   E.   Mejstrikova,   F.  

Griesinger,  M  Zimmerman,  and  D  Reinhardt.  Residual  disease  monitoring  

in   childhood  myeloid   leukemia   by  multiparameter   flow   cytometry:   The  

MRD-­‐AML-­‐BFM  Study  group.  J  Clin  Oncol  2006;  24.  3686-­‐3692.    

12. Langebrake  C,   I.  Brinkman,  A  Teigler-­‐Schliegel,  U.  Creutzig,  F.  Griesinger  

and  D.  Reinhardt.  Immunophenotypic  differences  between  diagnosis  and  

relapse   in   childhood   AML.   Implications   for  MRD  monitoring.   Cytometry  

Part  B  (Clinical  Cytometry)  2005;  63B:  1-­‐9.    

13. MR   Loken,   Todd   A.   Alonnzo,   Laura   Pardo,   Robert   B.   Gerbing,   Susana   C.  

Raimondo,  Betsy  A.  Hirsch,  Phoenix  A.  Ho,  Janet  Franklin,  Todd  M.Cooper,  

Alan   S   Gamis   and   Soheil   Messhinchi.   Residual   diasease   detected   by  

multidimensional   flow   cytometry   signifies   high   relapse   risk   in   patients  

with  de  novo  acute  myeloid  leukemia:  a  report  from  Children’s  Oncology  

Group  Blood  2012;  120:  1581-­‐1588.    

Page 17: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  12  

14. Majeti   R.   Monoclonal   antibody   therapy   directed   against   human   acute  

myeloid  leukemia  stem  cells.  Oncogene  2011,  30:  1009-­‐1019.  

15. Ossenkoppele  GJ,  van  de  Loosdrecht  A,  and  GJ  Schuurhuis.  Review  of  the  

relevance   of   aberrant   antigen   expression   by   flow   cytometry   in  myeloid  

neoplasms.  Br  J  Haematology  2011;  153:  421-­‐436  

16. Rubnitz   JE,   H   Inaba,   GV   Dahl   et   al.   Minimal   residual   disease-­‐   directed  

therapy   for   childhood   acute   myeloid   leukemia:   results   of   the   AML02  

multicentre  trial.  Lancet  Oncology  2010;  11:  543-­‐552  

17. Shuurhuis   GJ   and   G   Ossenkoppele.   Minimal   residual   disease   in   acute  

myeloid   leukemia:   already   predicting   a   safe   haven.   Expert   Rev  Hematol  

2010;  3:  1-­‐5.  

18. Van  der  Velden  VHJ,  A.  van  der  Sluijs-­‐  Geling,  Bes  Gibson,  JG  te  Marvelde,  

PG  Hoogveen,  WCJ  Hop,  K.  Wheatly,  MB  Bierings,  GJ  Schuurhuis,   SSN  de  

Graaf,   ER   van   Wering   and   JJM   van   Dongen.   Clinical   significance   of  

flowcytometric   minimal   residual   disease   detection   in   pediatric   acute  

myeloid  leukemia  patients  treated  according  to  the  DCOG  ANLL97/  MRC  

AML12  protocol.  Leukemia  2010;  24:  1599-­‐1606.  

19. Van  Dongen  JMM,  L  Hermitte,  S.  Böttcher,  J  Almeida,  VHJ  van  der  Velden,  J  

Flores-­‐Montero,   A   Rawstron,   V   Asnafi,   Q   Lécrevisse,   P   Lucio,   E  

Mejstrikova,  T  Szczepanski,  R  de  Tute,  M  Cullen,  M  Brüggeman,  L  Sedek,  M  

Cullen,   AW   Langerak,   A   Mendonca,   E   Macyntire,   M   Martin-­‐Ayuso,   MB  

Vidriales,   and   A   Orfao.   Euroflow   antibody   panels   for   n-­‐standardized   n-­‐

dimensional  flow  cytometric  immunophenotyping  of  normal,  reactive  and  

malignant  leukocytes.  Leukemia  2012;  26:  1908-­‐1975.    

20. T   Kalina,   J   Flores-­‐Montero,   VHJ   van   der   Velden,   M   Martin-­‐Ayuso,   S.  

Böttcher,   M   Ritgen,   J   Almeida,   L   Hermitte,   V   Asnafi,   A   Mendonca,   R   de  

Tute,  M  Cullen,  L  Sedek,  MB  Vidriales,  JJ  Perez,  JG  Marvelde,  E  Mejstrikova,  

O   Hrusak,   T   Szczepanski,   JMM   van   Dongen   and   A   Orfao.   Euroflow  

standardization   of   flow   cytometer   instrument   settings   and  

immunophenotyping  protocols.  Leukemia  2012,  26:  1986-­‐2010.    

21. Van  Lochem  EG,  van  der  Velden  VH,  Wind  HK,  te  Marvelde  JG,  Westerdaal  

NA,  van  Dongen  JJ.  Immunophenotypic  differentiation  patterns  of  normal  

hematopoiesis  in  human  bone  marrow:  reference  patterns  for  age-­‐related  

Page 18: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  13  

changes  and  disease-­‐induced  shifts.  Cytometry  B  Clin  Cytom  2004;  60:1-­‐

13.  

22. Van   Rhenen   A,   GA   van   Dongen,   A   Kelder,   EJ   Rombouts,   N   Feller,   B  

Moshaver   et   al.   The   novel   stem   cell   associated   antigen   CLL-­‐1   aids   in  

discrimination   between   normal   and   leukemic   stem   cells.   Blood   2007;  

110:  2659-­‐2666.  

23. Vidriales   M,   JF   Miguel,   A   Orfao,   E   Coustan-­‐Smith,   D   Campana.   Minimal  

residual  disease  monitoring  by  flow  cytometry.  Best  Practice  &  Research  

Clinical  Haematology  2003;  4:  599-­‐612.    

24. Walter   RB,   TA   Gooley,   BL   Wood   et   al.   Impact   of   pretransplantation  

minimal  residual  disease  as  detected  by  multiparametric  flow  cytometry  

on  outcome  of  myeloablative  hematopoietic  cell  transplantation  for  acute  

myeloid  leukemia.  J  Clin  Oncol  2011;  29:  1190-­‐1197.  

Page 19: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  14  

Addendum  1:  Antibody  panels    

 

8-­‐colour  combination  antibody  panel  (BD  platform)    

  Fitc     Pe   PerCPCy5.5   PeCy7   APC     APC  H7  

APC  Cy7  

APC-­

A750  

HV450  

Pacific  

Blue  

HV500  

Pacific  Orange  

KO  

1   CD56   CD13   CD34   CD117   CD33   CD11b   HLA-­‐DR   CD45  

2   CD36   CD64   CD34   CD117   CD33   CD14   HLA-­‐DR   CD45  

3   CD15   NG2   CD34   CD117   CD2   CD19   HLA-­‐DR   CD45  

4   CD7   CD96   CD34   CD117   CD123   CD38   HLA-­‐DR   CD45  

5   CD99   CD11a   CD34   CD117   CD133   CD4   HLA-­‐DR   CD45  

 

 

 

 

 

10-­‐colour  combination  antibody  panel  (BC  platform)    

    Fitc     Pe   ECD   PC5.5   PeCy7   APC     APC  -­

A700  

APC-­

A750  

 

BV421  

 

KO  

1   CD15   CD13   CD16   CD33   CD117   CD19   CD34   CD45   CD11b   HLA-­‐DR  

2   CD36   CD64   CD56   CD33   CD117   IREM2   CD34   CD45   CD14   HLA-­‐DR  

3   CD7   CD96   CD45RA   CD33   CD117   CD123   CD34   CD45   CD38   HLA-­‐DR  

4  

5  

CD99  

 

CD11a  

NG2  

CD3  

 

CD33  

CD33  

CD117  

CD117  

CD133  

CD2  

CD34  

CD34  

CD45  

CD45  

CD4   HLA-­‐DR  

HLA-­‐DR  

 

 

 

 

Page 20: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  15  

Addendum  2:  List  of  antibodies  /clones  

 CD2    APC           S5.2  (BD)      

CD3    ECD     A07748  (BC)  

CD4    APC  H7       SK3  (BD  )  

CD4    BV421     RPA-­‐T4  (BD)  

CD7  Fitc       4H9  (BD)  

CD7  Fitc     8H1  (BC  Immunotech)  

CD11a  Pe      Biolegend  

CD11b  APC  H7   ICRF44  (BD)    

CD11b  BV421  ICRF44  (Biolegend)  

CD13  Pe     L138  (BD)  

CD14  APC  H7     MøP9  (BD)  

CD14  BV421     M5E2  (Biolegend)  

CD15  Fitc       MMA  (BD)  

CD15  Fitc     MCS-­‐1  (Cytognos)  

CD16  ECD     3G8  (BC)  

CD19  APC     13-­‐119  (BC)  

CD19  APC  H7     SJ25C1  (BD)  

CD19  APC     J3119  (BC)  

CD22  APC     S5.2  (BD)  

CD33  APC     P67.6  (BD  )  

CD33  PeCy5.5     D3HL60  251  (BC)  

CD34  PercP  Cy5.5     8G12  (BD)  

CD34  APC-­‐A700   581  (BC)  

CD36  Fitc     CLB  -­‐IVC7  (Sanquin)      

CD38  APC  H7      HB7  (BD)  

CD38  BV421     HIT2  (BD)  

CD45  APC  –A750   1.33  (BC)  

CD45  KO      7.33  (BC  )  

CD45  PO      H130  (Invitrogen)  

CD45  RA       ECD   2H4  (BC)  

CD56  ECD     N901  (NKH-­‐1)  (BC)  

Page 21: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  16  

CD56  Fitc     NCAM  16.2  (BD)  

CD64  Pe     10.1  (Caltag)  

CD96  Pe     NK  92.39  (eBioscience)  

CD99  Fitc     DN16  (Serotec)  

CD117  PeCy7     104D2D1  (BC)  

CD123  APC     AC145  (Miltenyi  Biotec)  

CD123  APC     7G3  (BD  560087)  

CD133  APC     AC133  (Miltenyi  Biotec)  

HLA-­‐DR  PB     L243  (Biolegend)  

HLA-­‐DR  KO     Immu-­‐357  (BC)    

Irem2  APC     UP-­‐H2  (Immunostep  IREM2A-­‐T100)    

NG2  Pe       7.1  (BC)  

 

Page 22: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  17  

 

 

Addendum  3  Protocol  for  the  creation  of  gating  regions  and  data  analysis  (the  principles   are   outlined   for   the   8-­colour   antibody   combination   panel   using   the  Infinicyt   software;   the   strategy   is   equally   applicable   for   the   10-­colour   antibody  combination   panel   and   use   of   the   Facsdiva   or   Kaluza   software   with   minor  modifications)  

 A. Generate  the  following  two-­dimensional  dot-­plots  (X-­axis  versus  Y-­axis)    

1. Common  2-­dimensional  dot-­plots  for  all  tubes    a. Forward   scatter   (FSC)   versus   side   scatter   (SSC)   (to   exclude   dead   cells,  

platelets  and  debris)  b. FSC  versus  CD45  (to  exclude  dead  cells,  platelets  and  debris)  c. FSC–H  versus  FSC-­‐A    (to  exclude  double  events)  d. CD45   versus   SSC   (to   select   the   blast   region,   lymphocytes,   monocytes   and  

granulocytes  and  to  redefine  the  CD34  positive  progenitor  cells  and  the  CD117  positive  /  CD34  negative  precursor  cells)  

e. CD45  versus  CD34  (to  redefine  the  CD34  positive  progenitor  cells)  f. CD117  versus  CD34  (to  evaluate  the  expression  pattern  of   the  CD34  positive  

progenitor  cells  as  well  as  the  CD117  positive  precursor  cells)    g. HLA-­‐DR   versus   CD117   (to   evaluate   the   expression   pattern   of   CD34   positive  

progenitor  cells  and  CD117  positive  /CD34  negative  precursor  cells)    h. CD34  versus  SSC  (to  select  the  CD34+  progenitor  cells)  i. CD117  versus  SSC  (to  select  the  CD117  positive  precursor  cells)  

 2. 2-­dimensional  dot-­plots  for  tube  1  (8-­colour  combination  panel)    

 a. CD11b   versus   CD13   (to   identify   leukemia-­‐associated   phenotypes   on   the  

leukemic   cells-­‐   to   evaluate   the   maturation   pattern   of   granulocytes   and  monocytes)  

b. CD13   versus   CD33   (to   identify   leukemia-­‐associated   phenotypes   on   the  leukemic   cells   -­‐   to   evaluate   the   expression   pattern   of   CD13   versus   CD33   by  granulocytes)  

c. CD56   versus   CD11b   (to   identify   leukemia-­‐associated   phenotypes   on   the  leukemic   cells   and   background   staining   of   CD56   and/or   CD11b   by   CD34  positive  progenitor  cells  and  CD117  positive  /  CD34  negative  precursorcells)  

d. HLA-­‐DR  versus  CD33  (to  select   the  CD33  positive  /  CD34positive  progenitor  cells  and  to  select  the  CD33  bright-­‐positive    /HLA-­‐DR  positive  monocytes  and  CD33  dim-­‐positive  granulocytes)  

Page 23: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  18  

 3. 2-­dimensional  dot-­plots  for  tube  2  (8-­colour  combination  panel)  

 a. CD36   versus   CD64   (to   identify   leukemia-­‐associated   phenotypes   on   the  

leukemic  cells  –  to  evaluate  the  maturation  pattern  of  monocytes)  b. CD36   versus   CD14   (to   identify   leukemia-­‐associated   phenotypes   on   the  

leukemic  cells  –  to  evaluate  the  maturation  pattern  of  monocytes)  c. HLA-­‐DR   versus   CD14   (to   identify   leukemia-­‐associated   phenotypes   on   the  

leukemic  cells  –  to  evaluate  the  maturation  pattern  of  monocytes)  d. HLA-­‐DR  versus  CD33  (to  select   the  CD33  positive  /  CD34positive  progenitor  

cells  and  to  select  the  CD33  bright-­‐positive    /HLA-­‐DR  positive  monocytes  and  CD33  dim-­‐positive  granulocytes)    

4. 2-­dimensional  dot-­plots  for  tube  3    (8-­colour  combination  panel)      

a. CD15   versus   NG2   (to   identify   leukemia-­‐associated   phenotypes   on   the  leukemic  cells)  

b. CD15  versus  CD2  (to  identify  leukemia-­‐associated  phenotypes  on  the  leukemic  cells)  

c. NG2   versus   CD19   (to   identify   leukemia-­‐associated   phenotypes   on   the  leukemic  cells)  

d. HLA-­‐DR  versus  CD19  (to  select  CD19  positive  B-­‐cells)    

5. 2-­dimensional  dot-­plots  for  tube  4  (8-­colour  combination  panel)    

a. CD123   versus   CD7   (to   identify   leukemia-­‐associated   phenotypes   on   the  leukemic  cells  –to  select  T  and  /or  NK-­‐cells)  

b. CD38  versus  CD96  (to  select  the  CD96  positive  /CD34  positive  progenitor  cells  and  to  select  CD38  negative  /CD34  positive  progenitor  cells)  

c. CD96  versus  CD7  (to  identify  leukemia-­‐associated  phenotypes  on  the  leukemic  cells)  

d. CD123   versus   CD38   (to   identify   leukemia-­‐associated   phenotypes   on   the  leukemic  cells  and  to  select  CD123  bright-­‐positive  dendritic  cells)  

e. HLA-­‐DR  versus  CD123  (to  select  dendritic  cells-­‐basophils)    

6. 2-­dimensional  dot-­plots  for  tube  5  (8-­colour  combination  panel)    

a. CD4   versus   CD11a   (to   identify   leukemia-­‐associated   phenotypes   on   the  leukemic  cells)  

b. CD99   versus   CD11a   (to   identify   leukemia-­‐associated   phenotypes   on   the  leukemic  cells)  

c. CD99   versus   CD133   (to   identify   leukemia-­‐associated   phenotypes   on   the  leukemic  cells)  

Page 24: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  19  

d. CD99  versus  CD4  (to  identify  leukemia-­‐associated  phenotypes  on  the  leukemic  cells)  

   

B. Generate  the  following  standard  table  of  cell  populations  (example  is  given  for  the  Infinicyt  software)        

   

   

C.  Data  analysis    1. Analysis   of   the  diagnostic   sample.  The   following  analysis   is   performed   for   all  

antibody  combinations    a. Use  the  FSC-­‐A  versus  FSC-­‐H  dot-­‐plot  to  exclude  the  double  events  

Page 25: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  20  

b. Use   the   FSC   versus   SSC   dot-­‐plot   and   FSC   or   SSC   versus   CD45   dot-­‐plot   to  exclude   dead   cells,   platelets   and   debris   and   annotate   these   gated   events   as  ‘viable  cells’  

c. Use   the   SSC   versus   CD45   dot-­‐plot   to   select   the   leukemic   events:   3   possible  regions  may  be  selected:  

i. CD45  negative-­‐low/intermediate  SSC    ii. CD45  positive  –low/intermediate  SSC    iii. CD45  bright  positive  –  low/intermediate  SSC    

 d. Redefine  the  gated  blast  population  in  a  FSC  versus  SSC  dot-­‐plot  as  a  clustered  population  of  cells  and  annotate  these  events  as  the  leukemic  cell  population    

e. Determine  the  percentage  of   the   leukemic  cell  population   identified   from  the  total  cell  population  excluding  dead  cells,  platelets,  debris,  and  double  events  

f. Determine  the  expression  of  the  backbone  markers  CD34,  CD117  and  HLA-­‐DR  on   the   leukemic   cell   populations.   The   following   conditions   may   be  encountered:    

i. The   progenitor   cell   markers   CD34   and/or   CD117   in   combination  with  CD45  identify  the  leukemic  cells.  

a. The  leukemic  cells  are  positive  for  CD34  and  CD117  b. The  leukemic  cells  are  only  positive  for  CD34  c. The  leukemic  cells  are  only  positive  for  CD117    

ii. HLA-­‐DR   in   combination  with   CD45   identify   the   leukemic   cells   (in  case  of  monocytic  leukemia)  

     g. Determine  whether  the  leukemic  cell  population  can  be  further  characterized  by   the   expression   of   additional   myeloid   markers   in   case   it   is   negative   for  CD117    

h. Determine  the  expression  of  the  tube-­‐specific  markers  for  each  of  the  leukemic  subpopulations   and   identify   the   leukemia-­‐associated   immunophenotypes  (LAIP)  

i. Define  all  leukemic  subpopulations  identified  by  either  the  backbone  or  tube-­‐specific  markers  exceeding  >  10  %  of  total  leukemic  cell  population  

j. Identify   the   antibody   tubes   showing   LAIP   of   the   leukemic   cell   population  (hereafter  called  MRD  tube)  and  determine  the  two-­‐dimensional  dot-­‐plots  for  each  of  the  chosen  tubes  that  clearly  discriminate  the  leukemic  cells  from  the  normal   counterparts.   If   more   informative,   other   two-­‐dimensional   dot-­‐plots  than   the   default   dot-­‐plots   described   above   or   three-­‐dimensional   dot-­‐plots  must  be  evaluated  and  added.  F.e  Two-­‐dimensional  dot-­‐plots   combining   two  aberrant   markers   better   discriminate   residual   leukemic   cells   from   normal  counterparts  

k. Save  the  reference  image  of  the  leukemic  cell  populations  l. Save  the  analyzed  file    

Page 26: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  21  

   

2. Analysis  of  follow-­  up  samples:  analysis  of  residual  leukemic  cells    

a. Use  the  FSC-­‐A  versus  FSC-­‐H  dot-­‐plot  to  exclude  the  double  events  b. Use   the   FSC   versus   SSC   dot-­‐plot   and   FSC   or   SSC   versus   CD45   dot-­‐plot   to  exclude  dead  cells,  platelets  and  debris  and  annotate  the  remaining  events  as  ‘viable  cells’  

c. Use  the  SSC  versus  CD45  dot-­‐plot  to  select  the  blast  region  of  interest  (see  1.3)  d. Select  the  events  positive  for  the  backbone  marker  (s)  as  well  as  the  myeloid  marker  identified  on  the  leukemic  cell  population  in  the  diagnostic  sample.    

e. Fine  tune  the  gated  blast  population  in  a  FSC  versus  SSC  dot-­‐plot  as  a  clustered  population  of  events      

f. Determine  whether  the  LAIP  are  present  on  the  selected  blast  population  and  compare   with   the   reference   image   and   normal   reference   background.   Note  that  the  immunophenotype  may  have  changed  

 3. Analysis   of   follow-­up   samples:   analysis   of   normal   CD34   positive   progenitor  

cells,  CD117  positive  /CD34  negative  precursor  cells  and  other  leukocytes  or  erytroblasts.  This  analysis  is  performed  if  of  interest  for  the  reporting.      

a. CD34   positive  myeloid   progenitor   cells   identified   as   CD34   positive   /  CD33  positive  (tubes  1  and  2)  i. Use  the  FSC-­‐A  versus  FSC-­‐H  dot-­‐plot  to  exclude  the  double  events  ii. Use   the  FSC  versus  SSC  dot-­‐plot   and  FSC  or  SSC  versus  CD45  dot-­‐

plot   to   exclude   dead   cells,   platelets   and   debris   and   annotate   the  remaining  events  as  ‘viable  cells’  

iii. Select  the  CD34  positive  events  in  a  CD34  versus  SSC  dot-­‐plot  iv. Fine   tune   the  gated  events  on   the  CD45  versus  SSC  dot-­‐plot  being  

identified  as  a  population  with  dim  expression  of  CD45  and  low  to  intermediate  side  scatter  bordering  mature  granulocytes  as  well  as  on  the  the  FSC  versus  SSC  dot-­‐plot  being  a  homogenous  population  and  annotate  these  events  as  CD34  positive  progenitor  cells  

v. Determine   the   percentage   of   the   CD34   positive   progenitor   cells  from  the  total  cells  

vi. Select   the   CD33   positive   events   on   the   HLA-­‐DR   versus   CD33   dot-­‐plot  and  determine  the  percentage  of  CD33  positive  /CD34  positive  myeloid   progenitor   cells   from   the   total   cells   as   well   as   from   the  CD34   positive   progenitor   cells.     The   remaining   CD33   negative  /CD117   negative   /   CD34   positive   events   correspond   to   the   B-­‐cell  precursor  cells.      

vii. Compare   the   patterns   of   expression   of   CD117   versus   HLA-­‐DR   as  well   as   those   from   the   tube-­‐specific   markers   of   the   myeloid  

Page 27: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  22  

progenitor   cells   with   their   patterns   in   normal   /   regenerating  marrows.      

b.  CD34   positive   ’myeloid’   precursors   (leukemia   stem   cell  tube)(optional-­  if  chosen  as  MRD  tube  or  to  determine  leukemic  stem  cells).  This   is   a   stepwise   gating   to   identify   the   normal   CD7+   /CD34+  myeloid  subpopulations  i. Use  the  FSC-­‐A  versus  FSC-­‐H  dot-­‐plot  to  exclude  the  double  events  ii. Use   the  FSC  versus  SSC  dot-­‐plot   and  FSC  or  SSC  versus  CD45  dot-­‐

plot   to   exclude   dead   cells,   platelets   and   debris   and   annotate   the  remaining  events  as  ‘viable  cells’  

iii. Select   the   CD123   bright   positive   /HLA-­‐DR   positive   events   on   the  HLA-­‐DR  versus  CD123  dot-­‐plot  

iv. Redefine   the   gated   CD123   positive   dendritic   cells   on   the   CD45  versus   SSC   dot-­‐plot   as   well   as   on   the   FSC   and   SSC   dot-­‐plot   as   a  homogenous   cell   population.   Note   that   a   subpopulation   of   the  dendritic  cells   is  dim  positive   for  CD34  as  well  as   for  CD7.  A  small  population   of   the   CD34   positive   /CD123   positive   population   is  positive  for  CD7    

v. Make  the  dendritic  cells  invisible  vi. Select  the  CD34  positive  events  in  a  CD34  versus  SSC  dot-­‐plot  vii. Fine   tune   the  gated  events  on   the  CD45  versus  SSC  dot-­‐plot  being  

identified  as  a  population  with  dim  expression  of  CD45  and  low  to  intermediate  side  scatter  bordering  mature  granulocytes  as  well  as  on  the  FSC  versus  SSC  dot-­‐plot  being  a  homogenous  population  and  annotate  these  events  as  CD34  positive  progenitor  cells  

viii. Select   the   CD38   bright   positive   /CD96   dim   positive   events   on   the  CD38  versus  CD96  dot-­‐plot.  The  CD96  positive  /CD34  positive  cell  population   comprises   a   very   small   population   in   normal   bone  marrows,  whereas   it   is  somewhat   larger   in  regenerating  marrows.  It  is  dim  positive  for  CD117.  It  might  also  be  partly  dim  positive  for  CD7  (see  presentation)    

ix. Make  the  CD96  positive  /CD34  positive  progenitor  cells  invisible.  x. Select   the  CD117+  /CD34+  positive  events  on   the  remaining  CD34  

positive   cells   on   the   CD117   versus   SSC   dot-­‐plot,   these   cells  represent   the   remaining   myeloid   precursors   and   are   largely   CD7  negative  and  show  a  heterogeneous  expression  of  CD123    

xi. Leukemic  stem  cells  are  identified  as  CD38  negative  /  CD34  positive  events.  They  are  CD96,  CD123  and  CD7  negative.  

 c. CD34  positive  /CD19  positive  precursors  (tube  3)  

i. Use  the  FSC-­‐A  versus  FSC-­‐H  dot-­‐plot  to  exclude  the  double  events  

Page 28: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  23  

ii. Use   the  FSC  versus  SSC  dot-­‐plot   and  FSC  or  SSC  versus  CD45  dot-­‐plot   to   exclude   dead   cells,   platelets   and   debris   and   annotate   the  remaining  events  as  ‘viable  cells’  

iii. Select  the  HLA-­‐DR  and  CD19  positive  events  on  the  HLA-­‐DR  versus  CD19  dot-­‐plot  

iv. Redefine   CD19/HAL-­‐DR   double   positive   B-­‐cells   on   the   FSC   versus  SSC  dot-­‐plot  as  a  homogeneous  cell  population  and  annotate  these  events  as  B-­‐cells  

v. Select  CD34  positive  /CD19  positive  event  on  the  CD45  versus  CD34  dot-­‐plot   and   determine   its   percentage   of   the   CD34   positive  progenitor  cells  as  well  as  of  total  cells    

d. CD117   positive/CD34   negative   precursors   (if   of   interest   to   evaluate  their  normal  expression  patterns-­  determined  of  viable  cells  excluding  the  CD34+  precursor)  i. Use  the  FSC-­‐A  versus  FSC-­‐H  dot-­‐plot  to  exclude  the  double  events  ii. Use   the  FSC  versus  SSC  dot-­‐plot   and  FSC  or  SSC  versus  CD45  dot-­‐

plot   to   exclude   dead   cells,   platelets   and   debris   and   annotate   the  remaining  events  as  ‘viable  cells’  

iii. Use   the   above   described   gating   for   CD34  positive   progenitor   cells  and  make  this  population  invisible  (see  3a)  

iv. Select  the  CD117  positive  events  on  the  CD117  versus  SSC  dot-­‐plot  (exclude  the  CD117  bright  positive  events  which  are  mast  cells)    

v. Select  the  CD34  negative  events  on  the  CD34  versus  CD45  dot-­‐plot  vi. Select   the   CD45   dim   positive   events   on   the   CD45   versus   SSC   dot-­‐

plot.   2   groups   of   clustered   events   can   be   discriminated:   CD117  positive   erytroblasts   and   CD117   positive   neutrophilic   and  monocytic  precursor  cells  

vii. Compare  the  patterns  of  expression  of  the  tube-­‐specific  markers  for  the   CD117   positive   neutrophilic   /monocytic   precursor   cells   with  their  patterns  in  normal  /regenerating  marrows)  

   

e. Monocytes    (tubes  with  CD33  antibody)  i. Use  the  FSC-­‐A  versus  FSC-­‐H  dot-­‐plot  to  exclude  the  double  events  ii. Use   the  FSC  versus  SSC  dot-­‐plot   and  FSC  or  SSC  versus  CD45  dot-­‐

plot   to   exclude   dead   cells,   platelets   and   debris   and   annotate   the  remaining  events  as  ‘viable  cells  

iii. Select   the   CD33   bright   positive   /HLA-­‐DR   positive   events   on   the  HLA-­‐DR  versus  SSC  dot-­‐plot    

iv. Select  the  CD34  negative  events  on  the  CD45  versus  CD34  dot-­‐plot  

Page 29: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  24  

v. Fine  tune  by  gating  on  the  mature  monocyte  gate   identified  as   the  CD45  bright   and   intermediate   SSC   region  on   the  CD45  versus   SSC  dot-­‐plot  and  annotate  as  monocytes  

vi. Compare   the   patterns   of   expression   of   the   tube-­‐specific   markers  with  their  pattern  in  normal  /  regenerating  marrows  (optional-­‐  it  is  of  importance  in  case  of  follow  up  of  monocytic  leukemia)  

 f. Granulocytes  (tubes  with  CD33  antibody)  

i. Use  the  FSC-­‐A  versus  FSC-­‐H  dot-­‐plot  to  exclude  the  double  events  ii. Use   the  FSC  versus  SSC  dot-­‐plot   and  FSC  or  SSC  versus  CD45  dot-­‐

plot   to   exclude   dead   cells,   platelets   and   debris   and   annotate   the  remaining  events  as  ‘viable  cells’  

iii. Select  the  CD33  dim  positive  /HLA-­‐DR  negative  events  on  the  HLA-­‐DR  versus  SSC  dot-­‐plot  

iv. Fine  tune  the  clustered  events  in  the  granulocyte  gate  identified  as  CD45  dim  positive  and  high  SSC  region  on  the  CD45  versus  SSC  dot-­‐plot  and  annotate  these  events  as  granulocytes  

v. Compare   the   patterns   of   expression   of   the   tube-­‐specific   specific  markers   of   interest   with   their   pattern   in   normal/regenerating  marrows  (optional-­‐  if  of  interest)  

   

g. Lymphocytes  i. Use  the  FSC-­‐A  versus  FSC-­‐H  dot-­‐plot  to  exclude  the  double  events  ii. Use   the  FSC  versus  SSC  dot-­‐plot   and  FSC  or  SSC  versus  CD45  dot-­‐

plot   to   exclude   dead   cells,   platelets   and   debris   and   annotate   the  remaining  events  as  ‘viable  cells’  

iii. Select  the  CD45  bright  positive  /  low  SCC  events  on  the  CD45  versus  SSC  dot-­‐plot  

iv. Redefine  the  selected  lymphocytes  as  a  homogenous  population  on  the  FSC  versus  SSC  

 h. Erythroblasts    

If  the  tube  with  CD36  is  analysed:  i. Use  the  FSC-­‐A  versus  FSC-­‐H  dot-­‐plot  to  exclude  the  double  events  ii. Use   the  FSC  versus  SSC  dot-­‐plot   and  FSC  or  SSC  versus  CD45  dot-­‐

plot   to   exclude   dead   cells,   platelets   and   debris   and   annotate   the  remaining  events  as  ‘viable  cells’  

iii. Select  CD36  positive  and  CD45  negative/dim  positive  events  on  the  CD45  versus  CD36  dot-­‐plot    

iv. Redefine  the  CD36  positive  erytoblasts  as  a  homogenous  population  on  the  CD45  versus  SSC  dot-­‐plot  being  CD45  negative/dim  positive  and  low  SSC  and  annotate  these  events  as  erytroblasts  

Page 30: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  4  NOPHO-­‐DBH  AML  2012  2012-­‐11-­‐21  

  25  

If  tubes  without  CD36  are  analyzed:    v. Use  the  FSC-­‐A  versus  FSC-­‐H  dot-­‐plot  to  exclude  the  double  events  vi. Use   the  FSC  versus  SSC  dot-­‐plot   and  FSC  or  SSC  versus  CD45  dot-­‐

plot   to   exclude   dead   cells,   platelets   and   debris   and   annotate   the  remaining  events  as  ‘viable  cells’  

vii. Select   the  CD45  negative  /dim  positive  and   low  SSC  events  on   the  CD45  versus  SSC  dot-­‐plot  

   

   

 

Page 31: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix 5. Guidelines for PCR quantification. 2012-09-30

Analysis of mRNA transcripts for quantification of gene fusion transcripts Determination of MRD Variation in reagent choice, protocols and laboratory platforms will lead to slightly different values when monitoring Minimal Residual Disease (MRD) by the detection of fusion transcripts by real time quantitative polymerase chain reaction (qPCR). Therefore, the same laboratory should analyse both initial and follow-up samples from the same patient for an accurate determination of MRD. Sample collection Two samples with at least 5 ml of peripheral blood (PB) and/or 1 ml of bone marrow (BM) aspirate is recommended for MRD analysis. However, the analysis is based on the occurrence of nucleated cells rather than the volume. Therefore, a larger quantity may be needed if the leukocyte count is low in order to achieve adequate sensitivity. EDTA should be used as an anticoagulant. The samples are sent uncentrifuged to the laboratory. Since it is important to reduce degradation of mRNA transcripts before analysis, the sample should ideally reach the laboratory within 24 hours. Alternatively; PAX gene tubes (PreAnalytiX) which conserves the RNA at the sampling procedure may be used. Pre-purification Whole blood/bone marrow (buffy coat) or isolation of mononuclear cells (MNC) can be used for RNA purification. Erythrocytes need to be removed before extraction of RNA. Various techniques can be used to separate MNC, the most commonly used is separation with ficoll (Ficoll, Lymphoprep, Histopaque), a technique used by most molecular biology labs. Purification of RNA The buffy coat or isolated MNC should be lysed in RLT or RLT+ buffer (Qiagen), TRIzol (Invitrogen) or other equivalents and purification of RNA should be performed according to protocols corresponding to each lysis buffer. RNA from blood collected in PAX gene tubes is extracted using a specific protocol with reagents from PreAnalytix/Qiagen. In all cases, great care should be taken in order to avoid RNA degradation. Preparation of cDNA Following RNA extraction, complementary DNA (cDNA) is synthesised, preferably using random hexamer primers. This may a critical step and an optimized protocol should be used [2,4] qPCR assay For quantitative measurements, real-time quantitative PCR (qPCR) is used. For increased specificity, labelled hydrolysis probes, which are designed to hybridize to a region between the PCR-primers, is recommended. Alternatively, double strand DNA intercalating dyes, e.g. SYBR Green, could be used. According to the EAC-program, the following primer and probe sets have been recommended for detection of CBFb-MYH11 in cases with inv(16)(p13q22) or t(16;16)(p13;q22) and RUNX1-RUNX1T1 in cases with t(8;21)(q22;q22)[1, 2]:

Page 32: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix 5. Guidelines for PCR quantification. 2012-09-30

CBFb-MYH11 ENF803 (forward primer) 5´- CATTAGCACAACAGGCCTTTGA -3´ ENPr843 (probe) 5´- Fam-TCGCGTGTCCTTCTCCGAGCCT-Tamra -3´ ENR862 (reverse primer A) 5´- AGGGCCCGCTTGGACTT -3´ ENR863 (reverse primer D) 5´- CCTCGTTAAGCATCCCTGTGA -3´ ENR865 (reverse primer E) 5´- CTCTTTCTCCAGCGTCTGCTTAT -3´ RUNX1-RUNX1T1 ENF701 (forward primer) 5´-CACCTACCACAGAGCCATCAAA -3´ ENP747 (probe) 5´-Fam-AACCTCGAAATCGTACTGAGAAGCACTCCA-Tamra -3´ ENR761 (reverse primer) 5´-ATCCACAGGTGAGTCTGGCATT -3´ For detection of MLL-MLLT3 (MLL-AF9) in cases with t(9;11)(p22;q23) the following primer and probe sets have been recommended [3]: MLL-MLLT3 MLL-F1 exon 8 (forward primer) 5´-CGCCTCAGCCACCTACTACAG-3´ MLL-F2 exon 9 (forward primer) 5´-AGGAGAATGCAGGCACTTTGA-3´ MLLT3-R1 exon 9 (reverse primer) 5´- TCACGATCGCTGCAGAATGT-3´ MLLT3-R2 exon 5 (reverse primer) 5´- TGGCAGGACTGGGTTGTTC-3´ MLLT3-R3 exon 4 (reverse primer) 5´- GCTGCTGCTGCTGGTATGAAT-3´ MLL-T1 (probe) 5´-Fam-CGCCAAGAAAAGAAGTTCCCAAAACCACT-Tamra-3´ MLL-T2 (probe) 5´-Fam-CATCCTCAGCACTCTCTCCAATGGCAATA-Tamra-3´ Specific protocols for the qPCR assay may vary depending on the platform used. In all cases, strict precautions should be undertaken in order to avoid contamination. Moreover, positive and negative controls should be included in all experiments. For quantification, standards which span the dynamic range of the assay should be used. To certify linearity of the assay, the correlation coefficient of a standard curve should be at least 0.98. In addition to the genes of interest, the samples should also be assayed for at least one internal reference gene. The transcript value obtained from these(is) gene is used to normalize the expression of fusion gene analyzed. As reference gene(s) c-abl oncogene 1 (ABL1) or glucuronidase beta (GUSB) are recommended. The following primers and probe have been recommended [4]: ABL1 ENF1003(forward primer) 5´-TGGAGATAACACTCTAAGCATAACTAAAGGT -3´ ENPr1043 (probe) 5´-Fam-CCATTTTTGGTTTGGGCTTCACACCATT-Tamra-3´ ENR1063 reverse primer) 5´- GATGTAGTTGCTTGGGACCCA-3´ GUSB ENF1102 (forward primer) 5´-GAAAATATGTGGTTGGAGAGCTCATT-3´ ENPr1142 (probe) 5´-Fam-CCAGCACTCTCGTCGGTGACTGTTCA-Tamra-3´ ENR1162 (reverse primer) 5´-CCGAGTGAAGATCCCCTTTTTA-3´ Calculations The obtained copy number of fusion transcripts are divided by the copy number of the internal reference gene. The resulting ratio is multiplied by 100 to be expressed as percentage. MRD is

Page 33: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix 5. Guidelines for PCR quantification. 2012-09-30

calculated by dividing the present value with the value obtained at diagnosis and presented as the fraction of remaining transcripts. References 1. van Dongen, J.J., et al., Standardized RT-PCR analysis of fusion gene transcripts from

chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia, 1999. 13(12): p. 1901-28.

2. Gabert, J., et al., Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia, 2003. 17(12): p. 2318-57.

3. Jansen, M.W., V.H. van der Velden, and J.J. van Dongen, Efficient and easy detection of MLL-AF4, MLL-AF9 and MLL-ENL fusion gene transcripts by multiplex real-time quantitative RT-PCR in TaqMan and LightCycler. Leukemia, 2005. 19(11): p. 2016-8.

4. Beillard, E., et al., Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe against cancer program. Leukemia, 2003. 17(12): p. 2474-86.

Page 34: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  6.  Instruction  for  CRF  DNX  study  AML2012  2012-­‐09-­‐30  

 

Instruction  for  Case  Report  Form  DNX  study    

The  CRF  for  the  DNX  study  will  have  five  main  parts  all  of  which  will  be  reported  online.    

The  toxicity  reports  after  course  one  and  two  (see  app  2)    Bone  marrow  outcome  data    D22  BM  after  ECM/ECDx   Cellularity  (aplasia/hypoplasia/normal)           BM  blast  count  D22  MRD  flow  data  as  reported  by  the  clinician  and  the  laboratory  MRD  flow  category  (clinician)   (<0.1/0.1-­‐4.9/5-­‐14.9/≥15%/no  sensitive  LAIP)  MRD  flow  (lab)     LAIP  description           LAIP  sensitivity  (yes,  sensitivity  ≤  0.1%/yes,  sensitivity  ≤  5%/no)           Fraction  of  leukaemic  cells  if  LAIP  sensitivity  at  least  5%  

Compliance  control  and  result  of  last  BM  prior  to  course  2  In  patients  with  ≥5%  leukaemic  cells  (LAIP)  or  ≥  5%  blast  cells  on  d22  (no  sensitive  LAIP)     Was  course  2  started  immediately  (within  three  days)  yes/no     If  no  give  reason  (patient  severely  ill/other)     If  other  specify  In  patients  with  <  5%  leukaemic  cells  (LAIP)  or  <  5%  blast  cells  on  d22(no  sensitive  LAIP)     Was  repeat  BM  done  (yes/no)     If  no  specify  reason     Result  of  the  last  BM  prior  to  course  2     MRD  flow  category  (clinician)   (<0.1/0.1-­‐4.9/5-­‐14.9/≥15%/no  LAIP)  MRD  flow  (lab)     LAIP  description           LAIP  sensitivity  (yes,  sensitivity  ≤  0.1%/yes,  sensitivity  ≤  5%/no)           Fraction  of  leukaemic  cells  if  LAIP  sensitivity  at  least  5%    All  above  should  be  registered  no  later  than  two  weeks  from  start  of  course  2  

Overall  outcome  measures  • CR  obtained  (yes/no  ;  after  which  course  ;  date)  • Event  registration  (resistant  disease/relapse/early  death/death  in  CR/SMN)  

Events  should  be  registered  immediately.  • Followup  status.  This  should  be  updated  after  each  course  and  subsequently  at  least  twice  

yearly  until  five  years  from  diagnosis    

Cardiac  toxicity  Clinical  evaluation  and  UCG  is  performed  at  six  time  points  (at  diagnosis,  before  course  2,  before  course  3  and  one,  five  and  ten  years  from  diagnosis).  Results  are  documented  as  clinical  signs  of  cardiac  dysfunction  and  fractional  shortening  or  ejection  fraction.    

Page 35: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  7.  Instruction  for  CRF  FLADx  study  AML2012  2012-­‐09-­‐30  

Instruction  for  Case  Report  Form  FLADx  study    The  CRF  for  the  FLADx  study  will  have  five  main  parts  all  of  which  will  be  reported  online.    

The  toxicity  report  after  course  two  (see  app  2)    Bone  marrow  outcome  data    In  patients  with  <5%  leukaemic  cells  (LAIP)  or  <  5%  blast  cells  (no  sensitive  LAIP)  after  course  1  Result  of  the  BM  prior  to  consolidation  or  start  of  salvage  therapy     MRD  flow  category  (clinician)   (<0.1/0.1-­‐4.9/≥5%/no  LAIP)  

MRD  flow  (lab)   LAIP  description           LAIP  sensitivity  (yes,  sensitivity  ≤  0.1%/yes,  sensitivity  ≤  5%/no)           Fraction  of  leukaemic  cells  if  LAIP  sensitivity  at  least  5%  In  patients  with  ≥5%  leukaemic  cells  (LAIP)  or  ≥  5%  blast  cells  (no  sensitive  LAIP)  after  course  1.  D22    BM  after  ADxE/FLADx  Cellularity  (aplasia/hypoplasia/normal)           BM  blast  count  (percent)  D22  MRD  flow  data  as  reported  by  the  clinician  and  the  laboratory  MRD  flow  category  (clinician)   (<0.1/0.1-­‐4.9/≥5%/no  sensitive  LAIP)  MRD  flow  (lab)   LAIP  description         LAIP  sensitivity  (yes,  sensitivity  ≤  0.1%/yes,  sensitivity  ≤  5%/no)         Fraction  of  leukaemic  cells  if  LAIP  sensitivity  at  least  5%  

Compliance  control  in  patients  with  ≥  5%  LC  after  course  one  and  result  of  last  BM  prior  to  consolidation  or  salvage  In  patients  who  on  d22  after  course  2  have  ≥5%  leukaemic  cells  (LAIP)  or  ≥  5%  blast  cells  (no  sensitive  LAIP)     Was  salvage  therapy  given  immediately  (within  three  days)  yes/no     If  no  give  reason  (patient  severely  ill/severe  aplasia  discussed  with  PI/other)     If  other  specify    In  patients  who  on  d22  after  course  2  have  <5%  leukaemic  cells  (LAIP)  or  <  5%  blast  cells  (no  sensitive  LAIP)     Was  repeat  BM  done  (yes/no)     If  no  specify  reason  Result  of  the  last  BM  prior  to  consolidation  or  start  of  salvage  therapy     MRD  flow  category  (clinician)   (<0.1/0.1-­‐4.9/≥5%/no  LAIP)  

MRD  flow  (lab)   LAIP  description           LAIP  sensitivity  (yes,  sensitivity  ≤  0.1%/yes,  sensitivity  ≤  5%/no)           Fraction  of  leukaemic  cells  if  LAIP  sensitivity  at  least  5%    

Page 36: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  7.  Instruction  for  CRF  FLADx  study  AML2012  2012-­‐09-­‐30  

All  above  should  be  registered  no  later  than  two  weeks  from  start  of  consolidation  or  salvage  therapy.  

Overall  outcome  measures  • CR  obtained  (yes/no  ;  after  which  course  ;  date)  • Event  registration  (resistant  disease/relapse/early  death/death  in  CR/SMN)  

Events  should  be  registered  immediately.  • Followup  status.  This  should  be  updated  after  each  course  and  subsequently  at  

least  twice  yearly  until  five  years  from  diagnosis    

Cardiac  toxicity  Clinical  evaluation  and  UCG  is  performed  at  six  time  points  (at  diagnosis,  before  course  2,  before  course  3  and  one,  five  and  ten  years  from  diagnosis).  Results  are  documented  as  clinical  signs  of  cardiac  dysfunction  and  fractional  shortening  or  ejection  fraction.    

Page 37: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix 8 AML 2012 Biobank 2012-09-30

1

NOPHO BIOBANKING INSTRUCTIONS The LLC and NOPHO board decided 2006 to build a common biobank for future collaborative NOPHO-studies of childhood ALL and AML. The biobank is located in Uppsala, Sweden. The biobank consists of bone marrow and blood samples frozen as cell pellets and vital frozen cells from children with leukaemia. Samples should be collected: • At diagnosis (all patients) • At relapse(s) (all patients) Sampling Bone marrow: 2-5 ml in 2 heparinized tube containing 2 ml 0,9% NaCl Blood: 7 ml in 1 heparinized test tube, if LPK < 50 2 tubes Referral form is to be filled in and sent with the samples. For further details se “Referral form” and “Samples and Transport instructions”. Responsible persons: Britt-Marie Frost Postal address: Akademiska barnsjukhuset, SE-75185 Uppsala tel 0046 (0)18 611 00 00 (vx), alt 611 58 83 fax 0046 (0)18 50 09 49 [email protected] Josefine Palle Address, tel, fax: see above [email protected] Maria Lindström Uppsala Biobank, Klinisk patologi och cytologi Rudbecklaboratoriet C5 75185 Uppsala tel 0046 (0)18 6113746 [email protected] 20121004

Page 38: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix 8 AML 2012 Biobank 2012-09-30

2

Sampling and Transport instructions for NOPHO Biobanking

Sampling of all patients at diagnosis and relapse: Bone marrow: 2-5 ml in 2 heparinized test tube containing 2 ml 0.9 % saline Blood: 7 ml in 1 (if LPK<50 2 tubes) heparinized test tube Referral form is to be filled in and sent with the samples. Preliminary notification Preliminary notification that a sample is being sent must be made to the laboratory by:

Fax 0046(0)18553354 or E-mail [email protected] or Phone 0046(0)186113746 (always on fridays)

 

 

Transportation     Transportation has to be arranged and paid by each unit. The sample must be kept at room temperature. Make sure that the sample is delivered to the lab in Uppsala on the following day, preferably before noon. For samples sent on Fridays, make the preliminary notification by telephone AND make sure that the courier will deliver it on Saturday, this might require special arrangements. Address Samples can be sent all days of the week

Klinisk kemi och farmakologi Ingång 61, provinlämningen, 2 trappor Akademiska Sjukhuset SE-751 85 Uppsala Sweden

121004

Page 39: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix 8 AML 2012 Biobank 2012-09-30

3

Referral form for NOPHO BIOBANKING

Send samples to: + Klinisk kemi och farmakologi Ingång 61, provinlämningen, 2 trappor Akademiska Sjukhuset SE - 751 85 Uppsala

Sweden Keep at room temperature.

The sample should reach the laboratory the next day. Address of sender (unit, hospital, phone no.) Name of patient and date of birth

Always notify when a sample is going to be sent to: Fax: 0046 (0)18 55 33 54 or E-mail: [email protected] or phone: 0046 (0) 18 611 37 46 (always telephone on Fridays ) From: Physician: .............................................. Date and time for sampling: .................................... White blood cells (WBC)109/l: ................................ Material for biobanking ¨ Bone marrow tubes…...... ¨ Blood tubes.................... INSTRUCTIONS Bone marrow: 2-5 ml in 2 heparinized tubes containing 2 ml 0.9 % saline Blood: 7 ml in heparinized tube, if LPK < 50 send 2 tubes Arrival date, time:........................ If problems: contact Britt-Marie Frost, Josefine Palle or Maria Lindström (operator) +46 (0)18 611 00 00. 121004

Page 40: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  9  Guidelines  for  Patient  information  2012-­‐09-­‐30  

Guidelines  for  patient  information    This  appendix  contains  a  template  for  information  to  guardians  and  a  consent  form.  These  documents  need  to  be  adapted  to  national  requirements.  In  particular  page  1  of  the  information  to  guardians  is  adapted  to  Swedish  requirements.  Both  documents  should  be  signed  by  the  national  coordinator  of  each  country  and  no  signature  from  the  study  chair  is  required.      

Page 41: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  9  Guidelines  for  Patient  information  2012-­‐09-­‐30  

Information  to  guardians  

 NOPHO-­DBH  AML  2012  

Research  study  for  treatment  of  children  and  adolescents  with  acute  myeloid  leukemia  

 We  would  like  to  ask  if  you  accept  that  your  child  participates  in  a  scientific  research  study.  You  can  read  about  the  purpose  and  how  the  study  is  performed  on  the  next  page.  It  is  entirely  voluntary  to  participate  and  even  if  you  at  one  time  have  given  consent  you  are  at  any  time  free  to  change  your  mind  and  withdraw  the  child  from  the  study  without  having  to  specify  any  reason.  This  applies  even  if  you  have  signed  the  written  consent  form.  

If  you  accept  participation  it  is  required  that  the  guardians  (usually  both  parents)  sign  the  written  consent  form.  

This  consent  also  means  that  you  accept  the  collection  of  data  regarding  your  child  and  the  child’s  disease  as  well  as  the  result  of  laboratory  analyses  in  a  research  database  which  we  then  use  for  evaluation  of  the  study  results.  Blood  and  bone  marrow  samples  that  are  taken  within  the  study  are  kept  in  a  biobank  prior  to  analysis.  You  can  at  any  time  demand  that  these  samples  are  disposed  of.  The  information  concerning  your  child  is  kept  so  that  no  unauthorized  access  can  occur.  All  persons  who  in  any  way  handle  the  data  obey  professional  secrecy  and  only  a  restricted  few  people  involved  in  the  study  have  access  to  the  database.  

In  Gothenburg,  Sahlgrenska  University  Hospital,  under  regulation  of  the  Privacy  protection  Law  (SFS  1998;204),  is  responsible  for  handling  of  personal  data.  You  can  contact  the  Personal  Data  Compliance  Officer  at  the  hospital  if  you  wish  to  have  an  extract  over  registered  data  and,  if  warranted,  help  with  corrections.  

The  consent  also  signifies  that  you  allow  the  Swedish  Medical  Product  Agency,  Regional  ethics  committee  in  Göteborg  and  the  external  monitor  of  the  study  to  access  your  child’s  medical  records.  These  monitors  are  also  under  professional  secrecy.  

In  case  an  injury  should  occur  due  to  participation  in  the  study  your  child  is  covered  by  The  Patient  Injury  Act.  

If  You  have  additional  questions  please  feel  free  to  contact  me  or  your  treating  physician.  

With  kind  regards  

 

 

National  coordinator  

Page 42: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  9  Guidelines  for  Patient  information  2012-­‐09-­‐30  

NOPHO-­DBH  AML  2012  

Research  study  for  treatment  of  children  and  adolescents  with  acute  myeloid  leukemia  

 

This  study  concerns  children  and  adolescents  with  acute  myeloid  leukemia  who  are  treated  in  The  Netherlands,  Belgium,  Hong  Kong,  Estonia  or  the  Nordic  countries.  The  main  purpose  of  the  study  is  to  investigate  if  the  risk  of  relapse  can  be  reduced  by  improving  the  first  two  courses  of  chemotherapy  (see  figure).  

 Background  

Prognosis  in  acute  myeloid  leukemia  in  children  has  improved  but  still  approximately  1/3  of  the  patients  suffer  from  relapse.  It  has  been  shown  that  the  number  of  leukemic  cells  (LC)  that  remain  after  the  first  two  treatment  courses  is  the  most  important  factor  to  predict  the  risk  of  relapse.  Today,  for  the  majority  of  children,  we  have  sensitive  methods  that  allow  us  to  detect  very  low  numbers  of  LC  and  we  use  these  to  measure  the  number  of  LC  in  the  bone  marrow  both  after  the  first  and  second  course.  It  is  very  important  to  detect  a  poor  response  to  treatment  since  even  these  children  have  a  good  chance  of  cure  if  the  treatment  is  intensified  with  stem  cell  transplantation  (SCT).  

Since  the  side  effects  of  SCT  are  more  severe  than  those  of  conventional  therapy  it  is  important  to  design  the  first  two  courses  so  that  as  many  children  as  possible  have  a  good  treatment  response.  

AML  2012  is  built  on  the  collective  world  experience  of  research  and  treatment  of  AML.  We  know  that  the  treatment  is  effective  but  now  wish  to  investigate  if  we  can  improve  both  the  first  and  second  treatment  course.    

 DaunoXome  study  course  1.  Drugs  from  the  so  called  anthracycline  group  are  among  the  most  effective  in  AML  but  have  a  downside  that  they  at  high  cumulative  doses  can  affect  heart  function.  In  AML  2012,  mitoxantrone  is  used  as  the  standard  anthracycline  in  the  first  course.  We  now  want  to  test  if  the  drug  DaunoXome  has  a  better  effect  with  less  cardiac  side  effects.  Both  drugs  have  been  used  extensively  in  childhood  AML  with  good  results  but  no  study  has  directly  compared  the  two  drugs  and  therefore  we  do  not  know  if  either  of  the  drugs  is  better.    

 FLADx  study  course  2.  AML  2012  uses  a  three-­‐drug  combination  named  ADxE  as  standard  therapy  in  the  second  arm.  Another  three-­‐drug  combination,  FLADx  has  been  proven  to  be  very  effective  in  treatment  of  relapsed  AML.  Since  relapses  in  general  are  more  resistant  to  therapy  we  want  to  test  if  FLADx  is  more  effective  than  ADxE  in  treatment  of  newly  diagnosed  AML.  Both  combinations  are  thoroughly  tested  in  children  and,  although  no  direct  comparative  study  has  been  performed,  we  have  no  reason  to  believe  that  either  combination  has  the  risk  of  more  side  effects.    

Page 43: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  9  Guidelines  for  Patient  information  2012-­‐09-­‐30  

How  is  the  study  performed?  

Thus  we  want  to  investigate  two  major  things.  In  the  first  course  we  test  if  DaunoXome  is  more  effective  than  mitoxantrone  and  in  the  second  course  we  test  if  FLADx  is  more  effective  than  ADxE.  In  order  to  obtain  reliable  results  neither  doctor  nor  guardian  or  patient  can  choose  which  treatment  to  give.  Instead  a  randomization  procedure  is  used  for  both  studies.  Randomization  means  that  a  computer,  uninfluenced  by  any  person,  randomly  assigns  each  patient  to  which  treatment  to  give.  If  you  do  not  wish  to  participate  in  any  of  the  two  studies  the  standard  treatment  arm  will  be  given  with  mitoxantrone  in  the  first  course  and  ADxE  as  second  course.  

The  administration  of  the  different  treatment  arms  do  not  differ  much.  In  the  first  course  mitoxantrone  is  given  as  a  30  minute  infusion  on  day  6-­‐10  whereas  DaunoXome  is  given  as  a  one  hour  infusion  on  day  6,  8  and  10.  The  second  course  differs  a  bit  more  in  that  ADxE  is  eight  days  long  whereas  FLADx  is  six  days.  We  do  not  expect  that  any  of  the  treatment  arms  has  more  side  effects  either  during  or  after  treatment.    

The  effect  of  the  treatment  is  evaluated  by  measuring  the  number  of  remaining  LC  in  the  bone  marrow  three  weeks  after  start  of  the  first  course  and  immediately  before  starting  the  third  treatment  course.  It  is  common  and  normal  that  additional  bone  marrow  investigations  need  to  be  done  particularly  after  the  first  course.  These  investigations  need  to  be  performed  in  all  children,  regardless  if  they  are  in  the  study  or  not,  so  that  we  can  steer  the  treatment  correctly.  Therefore,  participation  in  the  study  does  not  include  any  extra  investigations.  We  would  however  wish  to  take  an  additional  sample  of  2  ml  of  bone  marrow.  This  is  used  for  research  purposes  to  develop  even  more  sensitive  methods  to  measure  the  number  of  leukemic  cells.  

Are  there  any  risks  involved  in  the  study?  

Treatment  for  AML  needs  to  be  very  intensive  so  all  children  are  expected  to  have  fairly  severe  side  effects.  Virtually  all  children  have  infections  and  many  also  injuries  of  the  mucosal  membranes  after  each  of  the  two  first  courses.  The  drugs  we  are  testing  in  both  courses  are  all  well  studied  in  treatment  of  childhood  AML.  From  these  experiences  we  do  not  expect  that  children  receiving  DaunoXome  in  the  first  course  or  FLADx  in  the  second  will  have  more  side  effects.  We  will  however  document  side  effects  carefully  in  order  to  determine  if  there  is  any  difference  between  the  treatment  arms.  

We  also  know  that  all  the  treatment  alternatives  are  very  effective.  What  we  don’t  know  is  if  either  of  the  arms  are  better  and  the  aim  of  the  study  is  to  find  this  out.  

Are  there  any  advantages  of  participating  in  the  study?  

AML  2012  is  a  modern  and  effective  treatment  protocol  for  AML.  We  hope  and  believe  that  the  protocol  strategy  will  improve  prognosis  for  all  children  regardless  if  they  participate  in  the  study  or  not.  It  may  be  that  the  study  arms  (DaunoXome  in  course  1  or  FLADx  in  course  2)  are  even  more  effective  and  that  children  treated  with  these  may  benefit.  However,  I  want  to  emphasize  again  that  we  do  not  know  if  any  arm  is  more  effective  and  it  could  be  that  the  standard  treatment  is  better.  In  all  circumstances  the  study  will  answer  important  questions  and  lead  to  benefit  for  future  patients  with  AML  

Page 44: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  9  Guidelines  for  Patient  information  2012-­‐09-­‐30  

The  results  of  the  study  will  be  published  in  international  scientific  journals.    

Finally  I  would  once  again  want  to  point  out  that  participation  is  voluntary.  If  you  do  not  wish  to  participate  your  child  will  receive  the  standard  arms  of  the  protocol.  If  you  have  additional  questions  feel  free  to  contact  me  or  your  treating  physician.  

 

 

 

City  2012-­‐10-­‐05  

 

 

 

National  coordinator  

   

Page 45: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  9  Guidelines  for  Patient  information  2012-­‐09-­‐30  

 

Overview  of  induction  therapy      

       

The  first  randomization  is  done  at  the  latest  on  day  5  in  the  first  course.  It  assigns  the  patients  to  either  receive  mitoxantrone  (standard  arm  –  MEC)  or  DaunoXome  (study  arm  –DxEC)  from  day  6  in  the  first  course.  The  second  randomization  is  performed  as  soon  as  the  results  from  the  day  22  bone  marrow  are  at  hand.  It  assigns  patients  to  either  receive    the  three-­‐drug  combination  ADxE  (standard  arm)  or  the  three-­‐drug  combination  FLADx  (study  arm)  

     

Page 46: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  9  Guidelines  for  Patient  information  2012-­‐09-­‐30  

 

Course  1    

Overview  of  the  two  treatment  arms  in  the  first  randomization  (DaunoXome  study)  

 

         

       

   

Page 47: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  9  Guidelines  for  Patient  information  2012-­‐09-­‐30  

Course  2    

Overview  of  the  two  treatment  arms  in  the  second  randomization  (FLADx  study)  

   

   

Page 48: Appendix(list(NOPHO0DBH(AML(2012(vs(2.0(2012009030( … · 2015-08-10 · Appendix(4(NOPHO.DBH(AML(2012(2012.11.21(( 1((Guidelines)for)the)detection)of)minimal)residual)disease) using)multiparameter)flow)cytometry)!

Appendix  9  Guidelines  for  Patient  information  2012-­‐09-­‐30  

Declaration  of  consent  for  participation  in  the  study  NOPHO-­‐DBH  AML  2012.  A  research  study  for  treatment  of  children  and  adolescents  with  

acute  myeloid  leukemia   Name of child: ________________ Date of birth:___________  I  hereby  declare  that  I,  having  received  both  oral  and  written  information,  agree  to  participate  or  let  my  child  participate  in  all  or  parts  of  the  study  NOPHO-­‐DBH  AML  2012  as  signed  in  the  three  boxes  below.  I  accept  that  information  regarding  my/my  child’s  disease  and  treatment  is  registered  in  the  research  database  and  that  the  competent  authority  of  .....  and  an  external  monitor  can  take  part  of  my  /  my  child’s  medical  records.  I  also  accept  that  some  blood  and/or  bone  marrow  samples  are  collected  in  a  biobank.  I  have  received  information  that  I  at  any  time  can  request  that  these  samples  are  disposed  of.  I  am  also  aware  that  it  is  entirely  voluntary  to  participate  in  the  study  and  that  I  at  any  time  can  withdraw  from  future  participation  in  the  study.   I hereby give my consent to participating in the randomization for course 1 (DaunoXome study) Date: _______ Signature: __________________

The child Date: _______ Signature ___________________ Date:______ Signature:____________

Guardian Guardian Date: _______ Signature ___________________

Physician I hereby give my consent to participating in the randomization for course 2 (FLADx study)   Date: _______ Signature: __________________

The child Date: _______ Signature ___________________ Date:______ Signature:____________

Guardian Guardian Date: _______ Signature ___________________

Physician  I hereby give my consent to, at the time of bone marrow punctures necessary for treatment, the collection of a small extra amount of bone marrow for research on characterization and identification of leukemic cells   Date: _______ Signature: __________________

The child Date: _______ Signature ___________________ Date:______ Signature:____________

Guardian Guardian Date: _______ Signature ___________________

Physician