analytical investigation of bonded glass fibre reinforced ... · ansys, analyzing software, has...

8
International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected] Volume 4, Issue 5, May 2015 ISSN 2319 - 4847 Volume 4, Issue 5, May 2015 Page 105 ABSTRACT The application of G l a s s fiber-reinforced polymers (GFRP) to existing Reinforced Concrete (RC) structural elements as external reinforcement has becom e popular and f r e q u e n t l y applied in recent years. An analytical and experimental study has been carried out to investigate the behavior of concrete beams bonded with strengthened Glass Fiber- Reinforced Polymer (GFRP) sheets on all sides with different thickness of the plate under loading. The finite element program ANSYS has been used to study the Strengthened behavior of a beam. Several investigators carried out experimental and/ or theoretical investigations on concrete beams and columns retrofitted with glass fibre reinforced polymer composites in order to study their effectiveness. The analysis has been carried out for the comparison and the study of effect of GFRP. The beams modeled in ANSYS for the various conditions. Keywords: Analytical Investigation, Glass Fibre Reinforced Polymer Sheets , Reinforced Concrete Beam, Ansys 1 INTRODUCTION Upgrading of reinforced concrete structures may be required for many different reasons. The concrete may have become structurally in adequate for example, due to deterioration of materials, poor initial design and/or construction, lack of maintenance, upgrading of design loads or accident events such as earthquakes. In recent years, the development of GFRP and strong epoxy glue has led to a technique which has great potential in the field of upgrading structures. Basically the technique involves gluing GFRP plates to the surface of the concrete. The plates then act compositely with the concrete and help to carry the loads. The use of GFRP to repair and rehabilitate damaged steel and concrete structures has become increasingly attractive due to the well known good mechanical properties of this material. The advantages are very high strength to density ratio, corrosion resistance, reduced maintenance costs and faster installation time compared to conventional materials. The application of GGFRP as external reinforcement to strengthen concrete beams has received much attention from researchers, but only very few studies have focused on structural members strengthened after preloading. The behavior of structures which have been preloaded until cracking initiates deserves more attention, since this corresponds to the real-life use of GFRP retrofitting. 2. FINITE ELEMENT ANALYSIS Finite element analysis has been performed to model the Strengthened behavior of the beams. The FEM package ANSYS/standard has been used for the analysis [2]. The analysis is done for the various conditions. The conditions are; 1. Plain cement concrete beam 2. Plain cement concrete beam externally bonded with GFRP 3. Reinforced concrete beam 4. Reinforced concrete beam externally bonded with GFRP 2.1 Material properties and constitutive models 2.1.1 Concrete Under uni-axial tension the stress–strain response follows a linear elastic relationship until the value of the failure stress is reached. The failure stress corresponds to the onset of micro- cracking in the concrete material. The elastic parameters required to establish the relation are elastic modulus, Ec, and tensile strength, fct. The compressive strength was in the experimental work measured to be 70 MPa. The density of concrete is taken as 24 kN/m 3 & 25 kN/m 3 for plain cement concrete and reinforced concrete beam respectively. Poisson ratio of 0.18 is used. Material Analytical Investigation Of Bonded Glass Fibre Reinforced Polymer Sheets With Reinforced Concrete Beam Using Ansys 1 T.Subramani , J.Jayalakshmi 2 1 Professor & Dean, Department of Civil Engineering, VMKV Engg. College, Vinayaka Missions University, Salem, India 2 PG Student of Structural Engineering, Department of Civil Engineering, VMKV Engg. College, Vinayaka Missions University, Salem, India

Upload: others

Post on 24-Mar-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analytical Investigation Of Bonded Glass Fibre Reinforced ... · ANSYS, Analyzing Software, has been used in this project. ANSYS Mechanical software is a comprehensive FEA analysis

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 4, Issue 5, May 2015 ISSN 2319 - 4847

Volume 4, Issue 5, May 2015 Page 105

ABSTRACT The application of G l a s s fiber-reinforced polymers (GFRP) to existing Reinforced Concrete (RC) structural elements as external reinforcement has becom e popular and f r e q u e n t l y applied in recent years. An analytical and experimental study has been carried out to investigate the behavior of concrete beams bonded with strengthened Glass Fiber-Reinforced Polymer (GFRP) sheets on all sides with different thickness of the plate under loading. The finite element program ANSYS has been used to study the Strengthened behavior of a beam. Several investigators carried out experimental and/ or theoretical investigations on concrete beams and columns retrofitted with glass fibre reinforced polymer composites in order to study their effectiveness. The analysis has been carried out for the comparison and the study of effect of GFRP. The beams modeled in ANSYS for the various conditions. Keywords: Analytical Investigation, Glass Fibre Reinforced Polymer Sheets , Reinforced Concrete Beam, Ansys 1 INTRODUCTION Upgrading of reinforced concrete structures may be required for many different reasons. The concrete may have become structurally in adequate for example, due to deterioration of materials, poor initial design and/or construction, lack of maintenance, upgrading of design loads or accident events such as earthquakes. In recent years, the development of GFRP and strong epoxy glue has led to a technique which has great potential in the field of upgrading structures. Basically the technique involves gluing GFRP plates to the surface of the concrete. The plates then act compositely with the concrete and help to carry the loads. The use of GFRP to repair and rehabilitate damaged steel and concrete structures has become increasingly attractive due to the well known good mechanical properties of this material. The advantages are very high strength to density ratio, corrosion resistance, reduced maintenance costs and faster installation time compared to conventional materials. The application of GGFRP as external reinforcement to strengthen concrete beams has received much attention from researchers, but only very few studies have focused on structural members strengthened after preloading. The behavior of structures which have be e n p r e l oa d e d u n t i l c r a c k i n g i n i t i a t es d e s e r ve s m o r e attention, since this corresponds to the real-life use of GFRP retrofitting.

2. FINITE ELEMENT ANALYSIS Finite element analysis has been performed to model the Strengthened behavior of the beams. The FEM package ANSYS/standard has been used for the analysis [2]. The analysis is done for the various conditions. The conditions are;

1. Plain cement concrete beam 2. Plain cement concrete beam externally bonded with GFRP 3. Reinforced concrete beam 4. Reinforced concrete beam externally bonded with GFRP 2.1 Material properties and constitutive models 2.1.1 C on c r e t e Under uni-axial tension the stress–strain response follows a linear elastic relationship until the value of the failure stress is reached. The failure stress corresponds to the onset of micro- cracking in the concrete material. The elastic parameters required to establish the relation are elastic modulus, Ec, and tensile strength, fct. The compressive strength was in the experimental work measured to be 70 MPa. The density of concrete is taken as 24 kN/m3 & 25 kN/m3 for plain cement concrete and reinforced concrete beam respectively. Poisson ratio of 0.18 is used. Material

Analytical Investigation Of Bonded Glass Fibre Reinforced Polymer Sheets With Reinforced

Concrete Beam Using Ansys

1T.Subramani , J.Jayalakshmi2

1Professor & Dean, Department of Civil Engineering, VMKV Engg. College, Vinayaka Missions University, Salem, India

2PG Student of Structural Engineering, Department of Civil Engineering, VMKV Engg. College, Vinayaka Missions University, Salem, India

Page 2: Analytical Investigation Of Bonded Glass Fibre Reinforced ... · ANSYS, Analyzing Software, has been used in this project. ANSYS Mechanical software is a comprehensive FEA analysis

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 4, Issue 5, May 2015 ISSN 2319 - 4847

Volume 4, Issue 5, May 2015 Page 106

Properties For Concrete given in Table.2.1. Table.2.1: Material Properties For Concrete

S.No NAME VALUE 1 Young’s Modulus 30e11N/m2

2 Poisson Ratio 0.2

3 Density 2400Kg/m3

2.1.2 S t e e l reinforcement The steel is Strengthened up to yield point as shown in fig.6. The elastic modulus of 210 GPa and Poisson’s ratio of 0.3 was used for the steel reinforcement. The density of steel used as 78.5 kN/m3. The steel reinforcement is embedded in concrete. Material Properties For Steel given in Table 2.2

Table 2.2: Material Properties For Steel S.No NAME VALUE

1 Young’s Modulus 2E11N/m2

2 Poisson Ratio 0.3

3 Density 7850Kg/m3

2.1.3 G F R P The GFRP material was considered as Strengthened elastic isotropic until failure. The elastic modulus in the fibre direction of the unidirectional GFRP material used in the experimental study has been specified by the manufacturer as 165 GPa.This value for E and m = 0.3 has been used for the isotropic model. Material Properties For GFRP given in Table 2.3

Table.2.3: Material Properties For GFRP S.No NAME VALUE 1 Young’s Modulus 26e11N/m2

2 Poisson Ratio 0.28

3 Density 1.8e-6Kg/m3

2.1.4 G F R P –concrete interface In the model the interface was modelled cohesive zone model. Tie constraints are used for attaching the GFRP plate to the concrete beam. For the cohesive model the coupled stiffness coefficients are; Knn=9.285, Kss=11.0714, Ktt = 11.0714, Kns=6.785, Knt=6.785, Kst =6.785. 2.2 Model ing of beams The Strengthened analysis has been done for the above mentioned four conditions. The analysis has been carried out for the comparison and the study of effect of GGFRP. The beams modelled in ANSYS for the various application of loading boundary conditions are shown in from Figure.2.1 to Figure 2.26.

Figure.2.1 Meshing of Plain cement concrete beam Figure.2.2 Deflection of Plain cement concrete beam

Page 3: Analytical Investigation Of Bonded Glass Fibre Reinforced ... · ANSYS, Analyzing Software, has been used in this project. ANSYS Mechanical software is a comprehensive FEA analysis

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 4, Issue 5, May 2015 ISSN 2319 - 4847

Volume 4, Issue 5, May 2015 Page 107

Figure2.3. Von Misses Stress of Plain cement concrete beam Figure.2.4. Meshing of Plain cement concrete beam

with GFRP for 2mm

Figure.2.5. Deflection of Plain cement concrete beam Figure.2.6 Von Misess Stress of Plain cement concrete

with GFRP for 2mm beam with GFRP for 2mm

Figure.2.9. Meshing of Plain cement concrete beam Figure.2.10. Deflection of Plain cement concrete beam

with GFRP for 3mm with GFRP for 3mm

Page 4: Analytical Investigation Of Bonded Glass Fibre Reinforced ... · ANSYS, Analyzing Software, has been used in this project. ANSYS Mechanical software is a comprehensive FEA analysis

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 4, Issue 5, May 2015 ISSN 2319 - 4847

Volume 4, Issue 5, May 2015 Page 108

Figure.2.11. Von Misess Stress of Plain cement concrete Figure. 2.12 Plain cement concrete beam with beam with GFRP for 3mm GFRP for 4mm

Figure.2.13. Deflection of Plain cement concrete Figure.2.14. Von Misess Stress of Plain cement concrete

beam with GFRP for 4mm beam with GFRP for 4mm

Figure.2.15 Meshing of Reinforced concrete Figure.2.16 Deflection of Reinforced concrete

beam without GFRP beam without GFRP

Page 5: Analytical Investigation Of Bonded Glass Fibre Reinforced ... · ANSYS, Analyzing Software, has been used in this project. ANSYS Mechanical software is a comprehensive FEA analysis

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 4, Issue 5, May 2015 ISSN 2319 - 4847

Volume 4, Issue 5, May 2015 Page 109

Figure.2.17 Von Misess Stress of Reinforced concrete Figure.2.18. Meshing of Reinforced concrete

beam without GFRP beam with GFRP for 2mm

Figure.2.19. Deflection of Reinforced concrete Figure.2.20. Von Misess stress of Reinforced concrete

beam with GFRP for 2mm beam with GFRP

Figure.2.21. Meshing of Reinforced concrete beam with Figure.2.22. Deflection of Reinforced concrete beam with

GFRP for 3 mm GFRP for 3 mm

Page 6: Analytical Investigation Of Bonded Glass Fibre Reinforced ... · ANSYS, Analyzing Software, has been used in this project. ANSYS Mechanical software is a comprehensive FEA analysis

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 4, Issue 5, May 2015 ISSN 2319 - 4847

Volume 4, Issue 5, May 2015 Page 110

Figure.2.23.Von Misesess Stress of Reinforced concrete Figure..2.24.Meshing of Reinforced concrete

beam with GFRP for 3 mm beam with GFRP for 4 mm

Figure.2.25. Deflection of Reinforced concrete Figure.2.26 Von Misess Stress of Reinforced concrete

beam with GFRP for 4 mm beam with GFRP for 4mm 2.3 Anal y t i c a l results The analytical results of the beams for the various conditions are shown in Table.2.4.

Table 2.4 The analytical results of the beams for the various conditions

Sl. NO

MATERIAL PROPERTIES DEFLECTION

YOUNGS MODULUS

POISONS RATIO DENSITY SMX

N/m2 DMX In (m)

1. RCC-W/O GFRP GFRP-26e11N/m2

STEEL-2E6N/m2

CONCRETE-30E11N/m2

GFRP-0.28 STEEL-0.3 CONCRETE-0.2

GFRP-1.8e-6 Kg/m3

STEEL-7850Kg/m3

CONCRETE-30E11Kg/m3

446.69 .103e-6 2. RCC-2MM GFRP 3707 .235E-09 3. RCC-3MM GFRP 3787 .231E-09 4. RCC-4MM GFRP 428.393 .985E-07 5. PLAIN

CONCRETE W/O GFRP

314.688 .168E-06

6. CONCRETE WITH GFRP 2mm

662.707 .251e-9

7. CONCRETE 645.639 .244e-9

Page 7: Analytical Investigation Of Bonded Glass Fibre Reinforced ... · ANSYS, Analyzing Software, has been used in this project. ANSYS Mechanical software is a comprehensive FEA analysis

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 4, Issue 5, May 2015 ISSN 2319 - 4847

Volume 4, Issue 5, May 2015 Page 111

WITH GFRP 3mm

8. CONCRETE WITH GFRP 4mm

571.19 .131e-6

3. SCOPE AND FUTURE ENHANCEMENT In future analytical result has been compared with experimental setup of the beam with above said combination of the analysis done in the load-deflection ca se . The com pa r i son includes the load- deflection of RCC and RCC beam are carried out for future conclusion of construction in civil engineering as part of commercial work. For both the cases the experimental results and analytical results are coinciding for the linear case which subject to maximum loading in structure.

4. INTRODUCTION TO ANSYS The ANSYS program has many finite element analysis capabilities, ranging from a simple, linear, static analysis to a complex non – linear, transient dynamic analysis. A typical ANSYS analysis has three distinct steps: Building the model Applying loads and obtains the solution Review the results.

BUILDING THE MODEL: Building a finite element model requires a more of an ANSYS user’s time than any other part of the analysis. First you specify the job name and analysis title. Then, define the element types, real constants, and material properties, and the model geometry. 4.1 ANSYS

ANSYS, Analyzing Software, has been used in this project. ANSYS Mechanical software is a comprehensive FEA analysis (finite element) tool for structural analysis, including linear, nonlinear and dynamic studies. The engineering simulation product provides a complete set of elements behavior, material models and equation solvers for a wide range of mechanical design problems. In addition, ANSYS Mechanical offers thermal analysis and coupled-physics capabilities involving acoustic, piezoelectric, thermal–structural and thermo-electric analysis. The ANSYS Mechanical software suite is trusted by organizations around the world to rapidly solve complex structural problems with ease. Structural mechanics solutions from ANSYS provide the ability to simulate every structural aspect of a product, including nonlinear static analysis that provides stresses & deformations, modal analysis that determines vibration

5. CONCLUSION Rehabilitation by GFRP has proven itself to be a better feasible option than other methods. So the future prospects for the utilization of GGFRP in Civil engineering infrastructure are good. Researchers around the world are now looking at the new and innovative ways of utilization of the same. The behavior of concrete beams strengthened with GGFRP unidirectional composite laminates have been studied. GFRP pasted beams behaves better than the RCC beam. Deflections in the beams retrofitted with GFRP are less than RCC beam. Failure has occurred in the rehabilitated beam due to the delaminating of GGFRP plate. The delaminating is occurred due to the stress concentration at the ends of the plate. From the finite element analysis the RCC with GFRP has the higher stiffness than all other cases. For the same load the RCC beam with GFRP have the less stresses and strains. In the comparison cases both experimental and analytical results are coinciding. Therefore the FEA software ANSYS can use effectively for the beam analysis.

REFERENCES [1]. Alexander, J.G.S. “Shear strengthening of small scale concrete beams with carbon fibre reinforced plastics sheets,”

Proceedings of Annual Conference of Canadian Society for Civil Engineering, Vol. 2, No. A, pp. 167-178, 1996. [2]. Al-Sulaimani, G.J., Sharif, A.M. Basunbul, I.A., Buluch, M.H and Ghaleb, B.N. “Shear repair for reinforced

concrete by fiberglass plate bonding,” ACI Structural Journal, Vol. 91, No. 3, pp. 458-464, 1994. [3]. Arduini, M. and Nanni, A. “Behavior of precracked RC beams strengthened with carbon FRP sheets,” Journal of

Composites for Construction, ASCE, Vol. 1, No. 2, pp. 63-70, 1997. [4]. Banthia, N., Yan, C. and Nandakumar, N. “Sprayed FRPs for repair of concrete structures,'' Proc., 2nd

International Conference on Advanced Composite Materials, ACMBS 2, Canadian Society for Civil Engineering, Montreal, pp. 537-546, 1996.

Page 8: Analytical Investigation Of Bonded Glass Fibre Reinforced ... · ANSYS, Analyzing Software, has been used in this project. ANSYS Mechanical software is a comprehensive FEA analysis

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 4, Issue 5, May 2015 ISSN 2319 - 4847

Volume 4, Issue 5, May 2015 Page 112

[5]. Subramani,T and Athulya Sugathan, “Finite Element Analysis of Thin Walled- Shell Structures by ANSYS and LS-DYNA”, International Journal of Modern Engineering Research,Vol.2, No.4, pp 1576-1587,2012.

[6]. Subramani.T , Kumaresan.A, “ Advanced Cable Stayed Bridge Construction Process Analysis with ANSYS”, International Journal of Modern Engineering Research, Volume. 4, Issue.6 (Version 1), pp 28-33, 2014,

[7]. Subramani.T , Senthil Kumar.R, “Modelling and Analysis of Hybrid Composite Joint Using Fem in ANSYS”, International Journal of Modern Engineering Research, Volume 4, Issue 6 (Version 1), pp 41- 46, 2014.

[8]. Subramani.T, Arul.A "Design And Analysis Of Hybrid Composite Lap Joint Using Fem" International Journal of Engineering Research and Applications, Volume. 4, Issue. 6 (Version 5), pp 289- 295, 2014

[9]. Subramani.T, Manivannan.R, Kavitha.M, "Crack Identification In Reinforced Concrete Beams Using Ansys Software" ,International Journal of Engineering Research and Applications, Volume. 4, Issue. 6 (Version 6), pp 133 - 141, 2014.

[10]. Subramani.T, Subramani.M, Prasath.K,"Analysis Of Three Dimensional Horizontal Reinforced Concrete Curved Beam Using Ansys" International Journal of Engineering Research and Applications, Volume. 4, Issue. 6 (Version 6), pp 156 - 161, 2014.

[11]. Subramani.T, Bharathi Devi.K, Saravanan.M.S , Suboth Thomas4, Analysis Of RC Structures Subject To Vibration By Using Ansys,” International Journal of Engineering Research and Applications Vol. 4, Issue 12(Version 5), pp.45-54, 2014.

[12]. Subramani.T, Krishnan.T, Saravanan.M.S , Suboth Thomas, “Finite Element Modeling On Behaviour Of Reinforced Concrete Beam Column Joints Retrofitted With CFRP Sheets Using Ansys” International Journal of Engineering Research and Applications Vol. 4, Issue 12(Version 5), pp.69 -76, 2014

[13]. Subramani.T, Krishnan.S, Saravanan.M.S, Suboth Thomas “Analysis Of Retrofitting Non-Linear Finite Element Of RCC Beam And Column Using Ansys” International Journal of Engineering Research and Applications ,Vol. 4, Issue 12(Version 5), pp.77-87, 2014.

[14]. Subramani.T, Reni Kuruvilla, Jayalakshmi.J, “Nonlinear Analysis Of Reinforced Concrete Column With Fiber Reinforced Polymer Bars" International Journal of Engineering Research and Applications Volume. 4, Issue. 6 (Version 5), pp 306- 316, 2014.

[15]. Subramani.T, Sakthi Kumar.D, Badrinarayanan.S "Fem Modelling And Analysis Of Reinforced Concrete Section With Light Weight Blocks Infill " International Journal of Engineering Research and Applications, Volume. 4, Issue. 6 (Version 6), pp 142 - 149, 2014.

AUTHOR

Prof. Dr.T.Subramani Working as a Professor and Dean of Civil Engineering in VMKV Engg. College, Vinayaka Missions University, Salem, Tamilnadu, India. Having more than 25 years of Teaching experience in Various Engineering Colleges. He is a Chartered Civil Engineer and Approved Valuer for many banks. Chairman and Member in Board of Studies of Civil Engineering branch. Question paper setter and Valuer for UG and PG Courses of Civil Engineering in number of Universities. Life Fellow in Institution of Engineers (India) and

Institution of Valuers. Life member in number of Technical Societies and Educational bodies. Guided more than 400 students in UG projects and 150 students in PG projects. He is a reviewer for number of International Journals and published 102 International Journal Publications and presented more than 25 papers in International Conferences.

J.Jayalakshmi Completed her Diploma in Civil Engineering in Periyar Maniyammai Girls Polytechnic College. Vallam, Thanjvur. She completed her BE Degree in branch of Civil Engineering in VMKV Engineering College, Salem. She was worked as a Lecturer about 5 years in Dhanalakshmi Srinivasan Ploytechnic College, Perambalur. She published 8 International Journal Publications. Currently she is doing M.E in the branch of Structural Engineering in the division of Civil engineering in VMKV Engineering College, Salem.