an analysis of convex relaxations for map estimation

1
An Analysis of Convex Relaxations for MAP Estimation M. Pawan Kumar Vladimir Kolmogorov Philip M. Pawan Kumar Vladimir Kolmogorov Philip H.S. Torr H.S. Torr http://cms.brookes.ac.uk/research/visiongroup http://www.adastral.ucl.ac.uk/~vladkolm Aim: To analyze Maximum a Posteriori (MAP) estimation methods based on convex relaxations P Estimation - Integer Programming Formulation V a Label Vector x [ -1, 1 ; 1, -1] Unary Vector u [ 5, 2 ; 2, 4] Random Field Example Pairwise Matrix P - - 0 3 - - 1 0 0 1 - - 3 0 - - MAP x* inear Programming (LP) Relaxation #variables n = 2 #labels h = 2 arg min x T (4u + 2P1) + P X, subject to i x a;i = 2 - h x {-1,1} nh X = x x T 5 2 1 3 Comparing Relaxations LP-S vs. SOCP Relaxations over Trees and Cycles A B = A ij B ij Schlesinger, 1976 cond Order Cone Programming (SOCP) Relaxations Kim and Kojima, 2000 Domination 2 4 Non-convex Constraint Convex Relaxation x {-1,1} nh x [-1,1] nh X = x x T j X ab;ij = (2-h) x a;i LP-S Non-convex Constraint X = x x T Convex Relaxation ||U T x|| 2 C X C = U U T 1+x a;i +x b;j +X ab;ij ≥ 0 A B dominates A B > strictly dominates For all (u,P) For at least one (u,P) Equivalent relaxations: A dominates B, B dominates A. V b V a V b V d V c a b d c a b d c Random Field C Matrix 2 1 1 0 1 2 1 1 1 1 2 1 0 1 1 2 V (Constrained Variables) E (Constrained Pairs) G = (V,E) Tree (SOCP-T) Even Cycle (SOCP-E) Odd Cycle (SOCP-O) •LP-S dominates SOCP-T P ab;ij ≥ 0 SOCP-Q All cycle inequalitie a b c d a b c Clique ‘G’ Dominates linear cycle inequalities Future Work 50 random fields 4 neighbourhood 8 neighbourhood Two New SOCP Relaxations Open Questions SOCP-C All LP-S constraint a b c d Dominated by linear cycle inequalities a b c Cycle ‘G’ •Special Case: Edge •SOCP-MS/ QP-RL P ab;ij ≤ 0 •LP-S dominates SOCP-E P ab;ij ≥ 0 for one (a,b) P ab;ij ≤ 0 for one/all (a,b) •LP-S dominates SOCP-O Comparing Existing SOCP and QP Relaxations SOCP-MS x a;i x b;j X ab;ij (x a;i + x b;j ) 2 2 + 2X ab;ij (x a;i - x b;j ) 2 2 - 2X ab;ij Muramatsu and Suzuki, 2003 P ab;ij ≥ 0 X ab;ij = infimum P ab;ij < 0 X ab;ij = supremum SOCP-MS is QP-RL Ravikumar and Lafferty, 2006 min P X • Cycle inequalities vs. SOCP/QP? • Best ‘C’ for special cases? • Efficient solutions for SOCP? a b b c c a Unary Cost = 0LP-S = 0SOCP-C = 0.75 = 0 = 1 a b b c c d = -1/3 = 1/3 d a a c b d x a;0 = -1/3 x a;1 = -1/3 0 0

Upload: ian-reeves

Post on 31-Dec-2015

18 views

Category:

Documents


1 download

DESCRIPTION

An Analysis of Convex Relaxations for MAP Estimation. Aim: To analyze Maximum a Posteriori (MAP) estimation methods based on convex relaxations. Comparing Relaxations. Two New SOCP Relaxations. Domination. For all ( u , P ). For at least one ( u , P ). All LP-S constraints. SOCP-C. a. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: An Analysis of Convex Relaxations for MAP Estimation

An Analysis of Convex Relaxations for MAP EstimationM. Pawan Kumar Vladimir Kolmogorov Philip H.S. TorrM. Pawan Kumar Vladimir Kolmogorov Philip H.S. Torr

http://cms.brookes.ac.uk/research/visiongroup http://www.adastral.ucl.ac.uk/~vladkolm

Aim: To analyze Maximum a Posteriori (MAP) estimation methods based on convex relaxations

MAP Estimation - Integer Programming Formulation

Va

Label Vector x [ -1, 1 ; 1, -1]

Unary Vector u [ 5, 2 ; 2, 4]

Random Field ExamplePairwise Matrix P - - 0 3- - 1 00 1 - -3 0 - -

MAP x*

Linear Programming (LP) Relaxation

#variables n = 2#labels h = 2

arg min xT (4u + 2P1) + P X, subject to ∑i xa;i = 2 - h

x {-1,1}nh

X = x xT

5

21 3

Comparing Relaxations

LP-S vs. SOCP Relaxations over Trees and Cycles

A B = ∑ Aij Bij

Schlesinger, 1976

Second Order Cone Programming (SOCP) RelaxationsKim and Kojima, 2000

Domination

2

4

Non-convexConstraint

ConvexRelaxation

x {-1,1}nh

x [-1,1]nh

X = x xT

j Xab;ij = (2-h) xa;i

LP-S

Non-convexConstraint

X = x xT ConvexRelaxation

||UTx||2≤ C X

C = U UT

1+xa;i+xb;j+Xab;ij ≥ 0

A B

dominates A B

>strictly

dominates

For all (u,P) For at least one (u,P)

Equivalent relaxations: A dominates B, B dominates A.Vb

Va Vb

Vd Vc

a b

d c

a b

d c

Random Field C Matrix

2 1 1 01 2 1 11 1 2 10 1 1 2

V(Constrained Variables)

E(Constrained Pairs)

G = (V,E)

Tree (SOCP-T) Even Cycle (SOCP-E) Odd Cycle (SOCP-O)

•LP-S dominates SOCP-T •Pab;ij ≥ 0

SOCP-Q All cycle inequalities

a b

c d

a b

c Clique ‘G’

Dominates linear cycle inequalities

Future Work 50 random fields4 neighbourhood 8 neighbourhood

Two New SOCP Relaxations

Open Questions

SOCP-C All LP-S constraints

a b

c d

Dominated by linear cycle inequalities?

a b

c Cycle ‘G’

•Special Case: Edge

•SOCP-MS/QP-RL

•Pab;ij ≤ 0

•LP-S dominates SOCP-E

•Pab;ij ≥ 0 for one (a,b)

•Pab;ij ≤ 0 for one/all (a,b)

•LP-S dominates SOCP-O

Comparing Existing SOCP and QP Relaxations

SOCP-MS

xa;i xb;jXab;ij

(xa;i+ xb;j)2 ≤ 2 + 2Xab;ij

(xa;i- xb;j)2 ≤ 2 - 2Xab;ij

Muramatsu and Suzuki, 2003

• Pab;ij ≥ 0 Xab;ij = infimum

• Pab;ij < 0 Xab;ij = supremum

SOCP-MS is QP-RLRavikumar and Lafferty, 2006

min P X

• Cycle inequalities vs. SOCP/QP?

• Best ‘C’ for special cases?

• Efficient solutions for SOCP?

a b b c c a

Unary Cost = 0 LP-S = 0 SOCP-C = 0.75

= 0

= 1

a b b c c d= -1/3

= 1/3d a a c b d

xa;0 = -1/3 xa;1 = -1/3

0

0