thomas rauschmann ta instruments · ta instruments rpa - mdr new castle usa strain frequency ......

Post on 27-Apr-2020

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Modern methods to characterize rubber polymers

Thomas RauschmannTA Instruments

16th of May 2018

Modern methods to characterize rubber polymers

Thomas RauschmannTA Instruments

of May 2018

TA Instruments

• ≈ 690 employees

– > 50% in customer support

– > 13% in R&D

– > Highly skilled & motivated

work force, with low turnover.work force, with low turnover.

Headquarters in New Castle, Delaware, USA

Manufacturing sites in USA & Germany

Direct sales & service in 23 countries

Headquarters in New Castle, Delaware, USA

Manufacturing sites in USA & Germany

Direct sales & service in 23 countries

TA Instruments

Wide product range of rubber testing: TA InstrumentsWide product range of rubber testing: TA Instruments• DSC (Differential Scanning

Calorimeter)

• TGA (Thermo gravimetric Analyzer)

• DMA (Dynamic Mechanical Analyser)

• Elektroforce High Force DMA

Thermal Conductivity Meters FOX• Thermal Conductivity Meters FOX

• Rheometer (RPA and MDR)

• Viscometer (Mooney)

• Sample preparation

• Density Meter

• Hardness Tester

Wide product range of rubber testing: TA InstrumentsWide product range of rubber testing: TA Instruments• DSC (Differential Scanning

Calorimeter)

• TGA (Thermo gravimetric Analyzer)

• DMA (Dynamic Mechanical Analyser)

• Elektroforce High Force DMA

Thermal Conductivity Meters FOX• Thermal Conductivity Meters FOX

• Rheometer (RPA and MDR)

• Viscometer (Mooney)

• Sample preparation

• Density Meter

• Hardness Tester

Characterisation of Rubber Polymers and CompoundsLIMS LIMS User / Order / Material / Process interface

Characterisation of Rubber Polymers and CompoundsUser / Order / Material / Process interface

Characterisation of Rubber Polymers and CompoundsLIMS LIMS User / Order / Material / Process interface

Characterisation of Rubber Polymers and CompoundsUser / Order / Material / Process interface

Characterisation of Rubber Polymers and CompoundsLIMS LIMS User / Order / Material / Process interface

Characterisation of Rubber Polymers and CompoundsUser / Order / Material / Process interface

Standard Test: MooneyStandard Test: Mooney

Mooney test:

Worldwide standard, well knownMethod and Patent from 1930

Viscosity, Relaxation

Standard Test: MooneySCARABAEUSMooneyprüfung

Entwicklung

1.6 3.2 4.8 6.4 8.0

Zeit [min]

SCARABAEUS GMBH - info@scarabaeus-gmbh.de - Tel.:+49 (0) 6403/9034-0

Torque measurement – ViscosityShear rate 1.6 s-1 (2 rpm)

Standard Test: Mooney

Polymer C1 Polymer C1 Polymer B1 Polymer B1 Polymer A1 Polymer A1

0,1

1

visc

osi

ty

Polymer A1

0,01 0,1 1 10 100

0,01

.shear rate,

visc

osi

ty

ML1+4

Standard Test: MDRTA InstrumentsNew Castle

Test Temp.

Strain

Frequency

180 °C

0,50°

1,67Hz

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

Time [min]

SCARABAEUS GMBH - info@scarabaeus-gmbh.de - Tel.:+49 (0) 6441/56777-0

Standard Test: MDR

6.00

7.00

8.00

9.00

10.00

S" [dNm]

13.0 14.0 15.00.00

1.00

2.00

3.00

4.00

5.00 24

Standard Test: MDR/RPA – LIMS LIMS – Pass/Fail – Statistics

Standard Test: MDRS" [dNm]

TA Instruments Test Temp.

Strain

Frequency

180 °C

0,50°

1,67Hz

S‘min -> processing behaviorOne shear rate, higher temperature

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

Time [min]

SCARABAEUS GMBH - info@scarabaeus-gmbh.de - Tel.:+49 (0) 6441/56777-0

Standard Test: MDR

4.00

5.00

6.00

7.00

8.00

9.00

10.00

S" [dNm]

24

0,1

1

visc

osi

ty

S* min

15.00.00

1.00

2.00

3.00

4.00

0,01 0,1 1 10 100

0,01

.shear rate,

visc

osi

ty

S* min

RPA/MDR Cure KineticsTA InstrumentsNew Castle

Test Temp.

Strain

Frequency

180 °C

0,50°

1,67Hz

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

Time [min]

SCARABAEUS GMBH - info@scarabaeus-gmbh.de - Tel.:+49 (0) 6441/56777-0

RPA/MDR Cure Kinetics

6.00

7.00

8.00

9.00

10.00

S" [dNm]

13.0 14.0 15.00.00

1.00

2.00

3.00

4.00

5.00 24

RPA/MDR Cure Kinetics

S' [dNm]

TA InstrumentsRPA - MDRNew Castle USA

Strain

Frequency

0,50°

1,67Hz

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Time [min]

www.tainstruments.com

RPA/MDR Cure Kinetics

190°C

35.0 40.0

190°C 180°C 170°C 160°C 150°C

S' [dNm]

TA InstrumentsRPA - MDRNew Castle USA

Strain

Frequency

0,50°

1,67Hz

RPA/MDR Cure Kinetics

Reaction Conversion [%]

TA InstrumentsRPA - MDRNew Castle USA

Strain

Frequency

0,50°

1,67Hz

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Time [min]

www.tainstruments.com

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0.0 5.0 10.0 15.0

Reaction Conversion [%]

Time [min]

www.tainstruments.com

190°C

RPA/MDR Cure Kinetics

35.0 40.0

190°C 180°C 170°C 160°C 150°C

20.0 25.0 30.0 35.0 40.0

Time [min]

190°C 180°C 170°C 160°C 150°C

RPA/MDR Cure Kinetics; order of reaction = 1RPA/MDR Cure Kinetics; order of reaction = 1

RPA/MDR Cure Kinetics; order of reaction = 1

ln (ti) [min]

TA InstrumentsRPA - MDRNew Castle, USA

2.140 2.165 2.190 2.215 2.240 2.265 2.290 2.315 2.340 2.365

1/T *1000 [K]

www.tainstruments.com

RPA/MDR Cure Kinetics; order of reaction = 1

-0.56

-0.08

0.40

ln Uk(n) [1/min]

Ea (ti) [kJ/mol] 90,28

Ea (Uk) [kJ/mol]

a (ti) [min]

a (Uk) [1/min]

b (ti)

b (Uk)

R² (ti)

R² (Uk)

Number of Values

Order of reaction

94,02

-24,13

24,78

10,858

-11,308

0,998

1,000

5

1,00

2.365 2.390-2.00

-1.52

-1.04

RPA/MDR Cure Kinetics; order of reaction = 1

ln (ti) [min]

TA InstrumentsRPA - MDRNew Castle, USA

2.140 2.165 2.190 2.215 2.240 2.265 2.290 2.315 2.340 2.365

1/T *1000 [K]

www.tainstruments.com

RPA/MDR Cure Kinetics; order of reaction = 1

-0.56

-0.08

0.40

ln Uk(n) [1/min]

Ea (ti) [kJ/mol] 90,28

Ea (Uk) [kJ/mol]

a (ti) [min]

a (Uk) [1/min]

b (ti)

b (Uk)

R² (ti)

R² (Uk)

Number of Values

Order of reaction

94,02

-24,13

24,78

10,858

-11,308

0,998

1,000

5

1,00

2.365 2.390-2.00

-1.52

-1.04

RPA/MDR Cure Kinetics; order of reaction = 1

Actual-Temperature [°C]

TA InstrumentsRPA - MDRNew Castle USA

Strain

Frequency

0,50°

1,67Hz

0.0 10.0 20.0 30.0 40.0

Time [min]

www.tainstruments.com

RPA/MDR Cure Kinetics; order of reaction = 1

50.0 60.0

5K,80-190° 3K,80-190° 2K,80-190°

RPA/MDR Cure Kinetics; order of reaction = 1

S' [dNm]

TA InstrumentsRPA - MDRNew Castle USA

Strain

Frequency

0,50°

1,67Hz

0.0 10.0 20.0 30.0 40.0

Time [min]

www.tainstruments.com

RPA/MDR Cure Kinetics; order of reaction = 1

180.0

190.0

Actual-Temperature [°C]

TA InstrumentsRPA - MDRNew Castle USA

Strain

Frequency

0,50°

1,67Hz

50.0 60.0

5K,80-190° 3K,80-190° 2K,80-190°

70.0

80.0

90.0

100.0

110.0

120.0

130.0

140.0

150.0

160.0

170.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0

Time [min]

www.tainstruments.com

RPA/MDR Cure Kinetics; order of reaction = 1

ln (dx/dt)

TA InstrumentsNew CastleDelaware

2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.40 2.41

1/T *1000 [K]

www.tainstruments.com

RPA/MDR Cure Kinetics; order of reaction = 1

Ea(TC 2) = 92,00 kJ/mol

Ea(TC 5) = 90,12 kJ/mol

Ea(TC 10) = 93,84 kJ/mol

Ea(TC 20) = 100,03 kJ/mol

Ea(TC 30) = 99,52 kJ/mol

Ea(TC 40) = 100,58 kJ/mol

Ea(TC 50) = 101,84 kJ/mol

Ea(TC 60) = 100,78 kJ/mol

Ea(TC 70) = 102,08 kJ/mol

Ea(TC 80) = 102,58 kJ/mol

Ea(TC 90) = 104,38 kJ/mol

Ea(TC 95) = 104,41 kJ/mol

Ea(mean) = 99,35 kJ/mol

2.42 2.43 2.44

RPA/MDR Cure Kinetics; order of reaction

S' [dNm]

TA InstrumentsRPA - MDRNew Castle USA

Strain

Frequency

0,50°

1,67Hz

0.0 10.0 20.0 30.0 40.0 50.0

Time [min]

www.tainstruments.com

RPA/MDR Cure Kinetics; order of reaction ≠ 1

60.0 70.0

5K 3K 2K

RPA/MDR Cure Kinetics; order of reaction

ln (dx/dt)

TA InstrumentsNew CastleDelaware

2.23 2.33

1/T *1000 [K]

www.tainstruments.com

RPA/MDR Cure Kinetics; order of reaction ≠ 1

Ea(TC 2) = 182,76 kJ/mol

Ea(TC 5) = 202,57 kJ/mol

Ea(TC 10) = 190,77 kJ/mol

Ea(TC 20) = 197,93 kJ/mol

Ea(TC 30) = 188,18 kJ/mol

Ea(TC 40) = 164,18 kJ/mol

Ea(TC 50) = 155,05 kJ/mol

Ea(TC 60) = 161,17 kJ/mol

Ea(TC 70) = 171,24 kJ/mol

Ea(TC 80) = 170,25 kJ/mol

Ea(TC 90) = 161,22 kJ/mol

Ea(TC 95) = 155,37 kJ/mol

Ea(mean) = 175,06 kJ/mol

RPA/MDR Cure KineticsKinetic analysis is a very useful tool to characterize, describe and optimize rubber compounds regarding their curing behavior.

Different curing systems will generate different crosslinking. Which has a big influence on the properties of the cured material.

The isothermal kinetics is already well known as a helpful tool. But the non isothermal kinetics gives really additional information over the temperature range which is typical in rubber processing

RPA/MDR Cure KineticsKinetic analysis is a very useful tool to characterize, describe and optimize rubber compounds regarding their curing behavior.

Different curing systems will generate different crosslinking. Which has a big influence on the properties of the cured material.

The isothermal kinetics is already well known as a helpful tool. But the non isothermal kinetics gives really additional information over the temperature range which is typical in rubber processing

Characterisation of Rubber Polymers and Compounds

0,1

1

visc

osi

ty

ML1+4

0,01 0,1 1 10 100

0,01

.shear rate,

visc

osi

ty

Limitation of standard tests like Mooney and MDRNo information about polymer structure and processing behavior

Characterisation of Rubber Polymers and Compounds

0,1

1

visc

osi

ty

S‘ min

0,01 0,1 1 10 100

0,01

.shear rate,

S‘ min

Limitation of standard tests like Mooney and MDRNo information about polymer structure and processing behavior

Characterisation of Rubber Polymers and Compounds

Variable strain and frequency

Characterisation of Rubber Polymers and Compounds

Variable strain and frequency

RPAelite/flex Frequency Sweep

Mo

du

le G

‘, G

“100000

1000000

0

Mw +

Mo

du

le G

‘, G

1000

10000

0.01 0.1

Mw +

RPAelite/flex Frequency Sweep

Vis

cosi

ty

10000

100000

1000000

> <

Mw -

Vis

cosi

ty

100

1000

10000

1 10 100

< >

Mw -

Frequency

NR application: Mastication of NR

Mastication: 2 min, 6 min und 10 min

NR application: Mastication of NR

Cross over point moves to higher frequency with longer mastication time -> lower molecular weight!

Mechanical mastication with internal mixermixer

NR application: Mastication of NR

Mastication 2min Mediaplast 60 Dispergum 36 Struktol A 82 Reancit 11

NR application: Mastication of NR

Cross over point moves to higher frequency and to lower module with longer mastication time and mastication chemicals -> lower molecular weight and broader molecular weight distribution!

Mechanical AND chemical mastication with internal mixer

RPAelite/flex Frequency SweepRPAelite/flex Frequency Sweep

Test temperature 130°C

RPAelite/flex Frequency Sweep

Low Frequency

RPAelite/flex Frequency Sweep

Test temperature 130°C

Mooney

RPAelite/flex Strain Sweep

40

50

60

70

Shear Modulus G' [kPa]

TA InstrumentsRPAelite

Test Temp.

Frequency

100 °C

0,200Hz

Linear viscoelasticity

0

10

20

30

1 10

www.tainstruments.com

RPAelite/flex Strain Sweep

10 100 1000

Strain [%]

LAOS

Non linear viscoelasticity

RPAelite/flex Strain Sweep

40

50

60

70

Shear Modulus G' [kPa]

TA InstrumentsRPAelite

Test Temp.

Frequency

100 °C

0,200Hz

0

10

20

30

1 10

www.tainstruments.com

RPAelite/flex Strain Sweep

10 100 1000

Strain [%]

RPAelite/flex - physical description of Polymers

0

2000

4000

6000

8000

0

200

400

600

800

1000

1200

[P

a]

[%

]

[P

a]

0 .0 0.5 1.0 1.5 2.0

-8000

-6000

-4000

-2000

0

-1200

-1000

-800

-600

-400

-200

0

PIB, =0.1 H z, =1000% , T=140°C

[P

a]

t[Pa]

[%

]

[P

a]

physical description of Polymers - LAOS

2 00 0

4 00 0

6 00 0

8 00 0

10 00 0

-12 00 -60 0 0 60 0 12 00-10 00 0

-8 00 0

-6 00 0

-4 00 0

-2 00 0

0

P IB , =0 .1 H z, =1 00 0% , T =14 0 °C

[% ]

RPAelite/flex - physical description of Polymers

100000

200000

300000

Sh

ea

r s

tre

ss

(P

a)

-300000

-200000

-100000

0

-8 -6 -4 -2 0 2

Sh

ea

r s

tre

ss

(P

a)

Strain rate (s-1)

physical description of Polymers - LAOS

4 6 8

Branched

Linear

5% Branched in Linear

RPAelite/flex – empirical number LCBempirical number LCB- LAOS

Henri Burhin, Polymer Process Consult, Wetzlar, 2012

RPAelite/flex – empirical number LCBempirical number LCB- LAOS

Keltan and Nordel same Mooney viscosity

Keltan branchedNordel linear

Test temperature: 130°CTest temperature: 130°C

RPAelite/flex – empirical number LCBempirical number LCB- LAOS

Keltan and Nordel same Mooney viscosity

Keltan branchedNordel linear

Test temperature: 130°CTest temperature: 130°C

RPAelite/flex PolymercharacterisationRPAelite/flex Polymercharacterisation

RPAelite/flex application Polymer characterisation

Crossover Point at different Frequencies=> Different Molecular Weight / Distribution

RPAelite/flex application Polymer characterisation

2 types of Butyl polymersSame specification/datasheetDifferences in oil incorporation

Frequencies=> Different Molecular Weight / Distribution

RPAelite/flex application Polymer characterisationRPAelite/flex application Polymer characterisation

2 types of Butyl polymerssame specification/datasheetDifferences in oil incorporation

RPAelite/flex application Polymer characterisationRPAelite/flex application Polymer characterisation

2 types of Butyl polymerssame specification/datasheetDifferences in oil incorporation

RPAelite/flex application Polymer characterisationRPAelite/flex application Polymer characterisation

2 types of Butyl polymerssame specification/datasheetDifferences in oil incorporation

RPAelite/flex application Polymer characterisation

Differences in long chain branching

RPAelite/flex application Polymer characterisation

Differences in long chain branching

Polymer aging under temperature and shear (BR)Polymer aging under temperature and shear (BR)

Polymer aging under temperature and shear (BR)Polymer aging under temperature and shear (BR)

Typical specification for BR:

Mooney viscosity and cis 1,4 content

Polymer aging under temperature and shear (BR)Polymer aging under temperature and shear (BR)

Polymer aging under temperature and shear (BR)Polymer aging under temperature and shear (BR)

Polymer aging under temperature and shear (BR)Polymer aging under temperature and shear (BR)

Requirements on RPA‘s to provide information about molecular weight / molecular weight disribution and long chain branching

Excellent repeatability, reproducibility and absolute accuracy of data like Module G’- G’’ and TanDelta at low frequency and high strain

Requirements on RPA‘s to provide information about molecular weight / molecular weight disribution and long chain branching

Excellent repeatability, reproducibility and absolute accuracy at low frequency

Requirements on RPA‘s to provide information about molecular weight / molecular weight disribution and long chain branching

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

Tan

gen

t d

(-)

0.0010

0.0100

0.1000

1.0000

S* (

dN

m)

For potential RPA users, it is therefore essential to proceed to a very careful and thorough evaluation of the claimed performance of commercially available RPA before final acquisition. This can easily be achieved by testing known (elastomer or thermoplastic) reference materials in key area of the instrument testing scope.

-0.5000

0.0000

0.5000

0.1 1 10 100 1000

Strain (%)

0.0001

0.0010

Requirements on RPA‘s to provide information about molecular weight / molecular weight disribution and long chain branching

0.0010

0.0100

0.1000

1.0000

For potential RPA users, it is therefore essential to proceed to a very careful and thorough evaluation of the claimed performance of commercially available RPA before final acquisition. This can easily be achieved by testing known (elastomer or thermoplastic) reference materials in key area of the instrument testing scope.

0.0001

0.0010

0.01 0.1 1 10 100

Strain (%)

top related