submarine main propulsion diesels - chapter 9

Post on 06-Sep-2015

52 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

13,mlkbvjvjv

TRANSCRIPT

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 1/19

    Calendar: WhattoVisit: HowtoVisit: Membership AboutUs:9

    ENGINEPERFORMANCEANDOPERATION

    A.COMBUSTION,ANDEFFICIENCY9A1.Combustion.Engineefficiencyisacomparisonoftheamountofpowerdevelopedbyanenginetotheenergyinputasmeasuredbytheheatingvalueofthefuelconsumed.Inordertounderstandthevariousfactorsresponsiblefordifferencesinengineefficiency,itisnecessarytohavesomeknowledgeofthecombustionprocesswhichtakesplaceintheengine.

    Inthedieselengine,ignitionofthefuelisaccomplishedbytheheatofcompressionalone.Tosupportcombustion,airisrequired.Approximately14poundsofairarerequiredforthecombustionof1poundoffueloil.However,toinsurecompletecombustionofthefuel,anexcessamountofairisalwayssuppliedtothecylinders.Theratiooftheamountofairsuppliedtothequantityoffuelinjectedduringeachpowerstrokeiscalledtheairfuelratioandisanimportantfactorintheoperationofanyinternalcombustionengine.Whentheengineisoperatingatlightloadsthereisa,largeexcessofairpresent,andevenwhentheengineisoverloaded,thereisanexcessofairovertheminimumrequiredforcompletecombustion.

    Theinjectedfuelmustbedividedintosmallparticles,usuallybymechanicalatomization,asitissprayedorinjectedintothecombustionchamber.Itisimperativethateachofthesmallparticlesbecompletelysurroundedbysufficientairtoeffectcompletecombustionofthefuel.Toaccomplish

    1.Thefuelmustenterthecylinderatthe,propertime.Thatis,thefuelinjectionvalvemustopenandcloseincorrectrelationtothepositionofthepiston.

    2.Thefuelmustenterthecylinderinafinemistorfog.

    3.Thefuelmustmixthoroughlywiththeairthatsupportsitscombustion.

    4.Sufficientairmustbepresenttoassurecompletecombustion.

    5.Thetemperatureofcompressionmustbesufficienttoignitethefuel.

    Figure91isareproductionofapressuretimediagramofamechanicalinjectionengine.Thelowercurvypartofwhichisadottedline,isthecurveofcompressionandexpansionwhennofuelisinjected.AtAtheinjectionvalveopens,fuelentersthecombustionchamberandignitionoccursatB.ThepressurefromAtoBshouldfallslightlybelowthecompressioncurvewithoutfuelduetoabsorptionofheatbythefuelfromtheair.TheperiodfromAtoBistheignitiondelay.FromBthepressurerisesrapidlyuntilitreachesamaximumatC.Thismaximum,insomeinstances,mayoccurattopdeadcenter.AtDtheinjectionvalvecloses,thefueliscutoff,butburningofthefuelcontinuestosomeundeterminedpointalongtheexpansionstroke.

    TheheightofthediagramfromBtoCiscalledthefiringpressureriseandthe

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 2/19

    this,theairinthecylindermustbeinmotionwithgoodfuelatomization,combinedwithpenetrationanddistribution.Inmechanicalinjectionenginesthisisaccomplishedbyforcingscavengingairintothecylinderwithawhirlingmotiontocreatethenecessaryturbulence.Thisisusuallydone,inthe2cycleengine,byshapingtheintakeairports,orbycastingthemsothattheircentersareslightlytangentialtotheaxisofthecylinderbore.

    Beforeproceedingwiththestudyofthecombustionprocess,theconditionsconsideredessentialtogoodcombustionshouldbereviewed:

    slopeofthecurvebetweenthesetwopointsistherateatwhichthefuelisburned.

    Poorcombustionofthefuelisusuallyindicatedbyasmokyexhaust,butsomesmokemaybetheresultofburninglubricatingoilthathaspassedtheringsintothecombustionchamber.Incompletecombustionisindicatedbyblacksmoke,orifthefuelisnotigniting,itmayappearasbluesmoke.Immediatelyafterstartinganengine,whenrunningatlightloadsoratoverloads,orwhenchangingfromoneloadtoanother,smokeislikelytoappear.

    Asmokyexhaustfromtheenginedoesnotindicatewhetheroneorallthecylindersare

    174

    Figure91.Pressuretimediagramofcombustionprocess.causingitAblacksmokingcylinderusuallyshowsahigherexhausttemperaturewhichcanbeobservedfrompyrometersinstalledintheindividualexhaustlinesfromthecylinders.Openingtheindicatorcockoneachcylindertoobservethecoloroftheexhaustisanothercheck.Stillanothermethodiscuttingoffthefuelsupplytoonecylinderatatimetoseewhateffectithasontheengineexhaust.Thislattershouldneverbedonewhentheengineisoperatingatfullloadasoverloadingoftheothercylinderswillresultiftheengineis

    radiationandconvectiontothesurroundingair.

    2.Heatrejectedandlosttotheatmosphereintheexhaust.

    3.Inefficientcombustionorlackofperfectcombustion.

    Alossduetoimperfectorincompletecombustionisanimportantitem,becausesuchlosseshaveaseriouseffectonthepowerthatcanbedevelopedinthecylinderasshownbythepressurevolumediagramorindicatorcard.

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 3/19

    governorcontrolled.

    9A2.Enginelosses.Itisobviousthatnotalloftheheatcontentofafuelcanbetransferredintousefulworkduringthecombustionprocess.Themanydifferentlossesthattakeplaceinthetransformationofheatenergyintoworkmaybedividedintotwoclasses,thermodynamicandmechanical.Thenetusefulworkdeliveredbyanengineistheresultobtainedbydeductingthetotallossesfromtheheatenergyinput.

    Thermodynamiclossesarecausedby:

    1.Losstothecoolingsystemandlossesby

    Completecombustionisnotpossibleintheshorttimepermittedinmodernenginedesign.However,theselossesmaybekepttoaminimumiftheengineiskeptadjustedtotheproperoperatingcondition.Incompletecombustioncanfrequentlybedetectedbywatchingexhausttemperatures,notingtheexhaustcolor,andbeingalertforunusualnoisesintheengine.

    Heatenergylossesfromboththecoolingwatersystemsandlubricatingoilsystemarealwayspresent.Someheatisconductedthroughtheenginepartsandradiatedtotheatmosphereorpickedupbythesurroundingairbyconvection.Theeffectoftheselossesvariesaccordingtothepartofthecycleinwhichtheyoccur.The

    175

    heatappearinginthejacketcoolingwaterisnotatruemeasureofcoolinglossbecausethisheatincludes:

    1.Heatlossestojacketsduringcompression,combustion,andexpansionphasesoftheworkingcycle.

    2.Heatlossesduringtheexhauststroke.

    3.Heatlossesabsorbedbythewallsoftheexhaustpassages.

    4.Heatgeneratedbypistonfrictiononcylinderwalls.

    Heatlossestotheatmospherethroughtheexhaustareinevitablebecausetheenginecylindermustbeclearedofthestillhotexhaustgasesbeforeanotherfreshairchargecanbeintroducedandanotherpowerstrokebegun.Theheatlosttotheexhaustisdeterminedbythetemperaturewithinthecylinderwhenexhaustbegins.Itdependsupontheamountoffuelinjectedandtheweightofaircompressedwithinthecylinder.Impropertimingoftheexhaustvalves,whetherearlyorlate,willresultinincreasedheatlosses.Ifearly,thevalvereleasesthepressureinthecylinder

    Figure92.Heatbalanceforadieselengine.

    pumpinglossescausedbyoperationofwaterpumps,lubricatingoilpumps,andscavengingairblowers,powerrequiredtooperatevalves,andsoforth.Frictionlossescannotbeeliminated,buttheycanbekeptataminimumbymaintainingtheengineinitsbestmechanicalcondition.Bearings,pistons,andpistonringsshouldbeproperlyinstalledandfitted,shaftsmustbeinalignment,andlubricatingandcoolingsystemsshouldbeattheirhighestoperatingefficiency.

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 4/19

    beforealltheavailableworkisobtainediflate,thenecessaryamountofairforcompletecombustionofthenextchargecannotberealized,althoughasmallamountofadditionalworkmaybeobtained.Thetimingoftheexhaustvalveisacompromise,thebestpossiblepositionofopeningandclosingbeingdeterminedbytheenginedesigner.Itisessentialthatthevalvebetightandproperlytimedinordertomaintainthelosstotheexhaustataminimum.Thisisalsotrueforairinletvalvesettingon4cycletypeengines.

    Ifanindicatorcardistakenofadieselenginecylinder,itispossibletocalculatethehorsepowerdevelopedwithinthecylinder.Thiscalculationdoesnottakeintoaccountthepowerlossresultingfrommechanicalorfrictionlosses,aswillbediscussedlater,butitreflectstheactualworkproducedwithinthecylinder.

    Mechanicallossesareofseveralkinds,notallofthempresentineveryengine.Thesumtotalofthesemechanicallossesdeductedfromtheindicatedhorsepowerdevelopedinthecylinderswillgivethebrakehorsepowerfinallydeliveredasusefulworkbytheengine.Thesemechanicalorfrictionlossesincludebearingfriction,pistonandpistonringfriction,and

    9A3.Compressionratioandefficiencies.a.Compressionratio.Thetermcompressionratioisusedquiteextensivelyinconnectionwithengineperformanceandvarioustypesofefficiencies.Itmaybedefinedastheratioofthetotalvolumeofacylindertotheclearancevolumeofthecylinder.Itmaybebestexplainedbyreferencetothepressurevolumeindicatorcardofadieselcylinder.InFigure93,thevolumeisreducedfromsquareroot(C)+squareroot(D)tosquareroot(C)duringcompression.Thecompressionratioisthenequalto(squareroot(C)+squareroot(D))/squareroot(C)

    176

    Figure93.Compressionratio.

    Compressionratioinfluencesthe

    thefuelwouldfireordetonatebeforethepistoncouldreachthecorrectfiringposition.

    Thetemperatureentropy(TS)diagramofanyparticularcycleindicatestheamountofheatinputandtheamountofheatrejected.Forexample,inFigure94,theTSdiagramofamodifieddieselcycle,theheatinputisrepresentedbytheareaFBDGandtheheatrejectedtotheexhaustbytheareaFAEG.Theheatrepresentedindoingusefulworkisrepresentedbythedifferencebetweenthesetwo,orareaABDE.Theefficiencyofthecyclecanthenbeexpressedas

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 5/19

    thermalefficiencyofanengine.Theoreticallythethermalefficiencyincreasesasthecompressionratioisincreased.Theminimumvalueofadieselenginecompressionratioisdeterminedbythecompressionrequiredforstarting,which,tolargeextentisdependentonthetypeoffuelused.Themaximumvalueofthecompressionratioisnotlimitedbythefuelusedbutislimitedbythestrengthofthepartsoftheengineandtheallowableenginewgt/bhpoutput.

    b.Cycleefficiency.Theefficiencyofanycycleisequaltotheoutputdividedbytheinput.Thedieselcycleshowsoneofthehighestefficienciesofanyengineyetbuiltbecauseofthehighercompressionratiocarriedandbecauseofthefactthatcombustionstartsatahighertemperature.Inotherwords,theheatinputisatahigheraveragetemperature.Theoretically,thegasolineengineusingtheOttoorconstantvolumecyclewouldbemoreefficientthanthedieselifitcouldusecompressionratiosashighasthelatter.

    ThegasolineengineoperatingontheOttocyclecannotuseacompressionratiocomparabletothedieselengineduetothefactthatthefuelandairaredrawnintogetherandcompressed.Ifhighcompressionratioswereused,

    (H1H2)/H1whereH1istheheatinputalonglinesBCandCD(thelinesrepresentingtheconstantvolumeandconstantpressurecombustion),andH2istheheatrejectedalonglineEA(thelinerepresentingtheconstantvolumeexhaust).Sinceheatandtemperatureareproportionaltoeachother,thecycleefficiencyisactuallycomputedfrommeasurementsmadeofthetemperature.Thespecificheatofthemixtureinthecylinderiseitherknownorassumed,andwhencombinedwiththetemperature,theheatcontentcanbecalculatedatanyinstant.Thus,itisseenthattemperatureisameasureofheat,andthattheheatisproportionaltothetemperatureofthegas.

    c.Volumetricefficiency.Thevolumetricefficiencyofanengineistheratioofthevolumethatwouldbeoccupiedbytheairchargeatatmospherictemperatureandpressuretothecylinderdisplacement(theproductofthe

    Figure94.Temperatureentropydiagramofmodifieddieselcycle.

    177

    areaoftheboretimesthestrokeofthepiston).Thevolumetricefficiencydeterminestheamountofairavailableforcombustionofthefuel,andhenceinfluencesthemaximumpoweroutputoftheengine.

    Volumetricefficiencyisactuallythecompletenessoffillingofthecylinderwithfreshairatatmosphericpressure.Thevolumetricefficiencyofanenginemaybeincreasedbyenlargingtheareasofintakeandexhaustvalvesorports,andbyhavingallvalvesproperlytimed

    calculatedaspreviouslyexplained,theindicatedthermalefficiencycanbecomputed.

    Indicatedthermalefficiency=(IndicatedhpX42.42Btuperminuteperhp)/(RateofheatinputoffuelinBtuperminute)X100percent

    Inlikemannertheoverallthermalefficiencycanbefoundfromthebrakehorsepowerortheactualpoweravailableattheengineshaft.*

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 6/19

    sothatasmuchairaspossiblewillenterthecylinders.Sinceanyburnedgaseswillreducethechargeoffreshair,thesuperchargingeffectgainedbyearlyclosingoftheexhaustvalvesorportswillreducethevolumetricefficiency.Insomeengines,thevolumetricefficiencyisalsoincreasedbyusingspecialapparatustoutilizeairat2to3psiovertheatmosphericpressure.Thisprocedureiscommonlycalledsupercharging.

    d.Thermalefficiency.Thermalefficiencymayberegardedasameasureoftheefficiencyandcompletenessofcombustionoftheinjectedfuel.Thermalefficienciesaregenerallyconsideredasbeingoftwokinds,indicatedthermalefficiencyandoverallthermalefficiency.

    Ifallthepotentialheatinthefuelweredeliveredaswork,thethermalefficiencywouldbe100percent.Thisisnotpossibleinpractice,ofcourse.Todeterminethevaluesoftheaboveefficienciestheamountoffuelinjectedisknown,andfromitsheatingvalue,orBtuperpound,thetotalheatcontentoftheinjectedfuelcanbefound.Fromthemechanicalequivalentofheat(778footpoundsareequalto1Btu),thenumberoffootpoundsofworkcontainedinthefuelcanbecomputed.Iftheamountoffuelinjectedismeasuredoveraperiodoftime,therateatwhichtheheatisputintotheenginecanbeconvertedintopotentialpower.Then,iftheindicatedhorsepowerdevelopedbytheengineis

    Overallthermalefficiency=Brakehorsepower/HeatinputoffuelX100percent

    e.Mechanicalefficiency.Themechanicallossesinanenginedecreasetheefficiencyoftheengineandrepresenttheskillwithwhichtheenginepartsweredesignedaswellastheskillwithwhichtheoperatormaintainstheengine.Aspreviouslystated,thebrakehorsepowerisequaltotheindicatedhorsepowerminusthemechanicallosses.Theratioofbrakehorsepowertoindicatedhorsepower,then,isthemechanicalefficiencyoftheenginewhichincreasesasthemechanicallossesdecrease.

    Mechanicalefficiency=Brakehorsepower/IndicatedhorsepowerX100percent

    *Thispowerreferredtoasshafthorsepower,istheamountavailableforusefulwork.Itisthepoweravailableatthepropeller.Thereisafurtherlossofpowerbetweenthemainpropulsionengine(measuredasbrakehorsepower)andshafthorsepowerduetothefrictioninthereductiongears,hydraulicorelectrictypecouplings,lineshaftbearings,stuffingboxes,sterntubebearings,andstrutbearings.Theselossesinsomecasesareconsiderableandthetotallossmaybeashighas7or8percent.Therefore,theyshouldnotbeneglectedinmakingcomputations.

    178

    B.ENGINEPERFORMANCE

    9B1.Engineperformance.a.General.Manyfactorsaffecttheengineperformanceofanengine.Someofthesefactorsareinherentintheenginedesignotherscanbecontrolledbytheoperator.Thefollowinglistofvariableconditionsaffectingtheperformanceof

    whichtheenginewilloperatewithasmokyexhaust.

    f.Injectionrate.Therateofinjectionisimportantbecauseitdeterminestherateofcombustionandinfluencesengineefficiency.Injectionshouldstartslowly

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 7/19

    adieselengineisnotcomplete,butcontainsalltheimportantfactorsthatshouldbefamiliartooperatingpersonnel.

    b.Fuelcharacteristics.Thecetanenumberofthefuelhasanimportanteffectonengineperformance.Fuelswithlowcetaneratinghavehighignitionlag.Aconsiderableamountoffuelcollectsinthecombustionspacebeforeignitionoccurs,withtheresultthathighmaximumpressuresarereached,andthereisatendencytowardknocking.Thistendstoincreasewearoftheengineandreduceitsefficiency.Fuelswithhighcetaneratingshavelowautoignitiontemperaturesandhenceareeasierstartingthanfuelswithlowcetaneratings.Therefore,dieselengineperformanceisimprovedbytheuseofhighcetanenumberfueloils.

    c.Airtemperature.Thetemperatureoftheairinthecylinderdirectlyaffectsthefinalcompressiontemperature.Ahighintaketemperatureresultsindecreasedignitionlagandfacilitateseasystarting,butisgenerallyundesirablebecauseitdecreasesthevolumetricefficiencyoftheengine.

    d.Quantityoffuelinjectedperstroke.Thequantityoffuelinjecteddeterminestheamountofenergyavailabletotheengine,andalso(foragivenvolumetricefficiency)theairfuelratio.

    e.Injectiontiming.Theinjectiontiminghasapronouncedeffectonengineperformance.Formanyengines,theoptimumisbetween5degreesto10degreesbeforetopdeadcenter,butitvarieswithenginedesign.Earlyinjectiontendstowardthedevelopmentofhighcylinderpressures,becausethefuelisinjectedduringapartofthecyclewhenthepistonismovingslowlyandcombustionisthereforeatnearlyconstantvolume.Extremeinjectionadvancewillcauseknocking.Lateinjectiontends"todecreasethemeanindicatedpressure(mip)oftheengineandtolowerthepoweroutput.Extremelylateinjectiontendstoward

    sothatalimitedamountoffuelwillaccumulateinthecylinderduringtheinitialignitionlagbeforecombustionbegins.Itshouldproceedatsucharatethatthemaximumriseincylinderpressureismoderate,butitmustintroducethefuelasrapidlyaspermissibleinordertoobtaincompletecombustionandmaximumexpansionofthecombustionproducts.

    g.Atomizationoffuel.Theaveragesizeofthefuelparticlesaffectstheignitionlagandinfluencesthecompletenessofcombustion.Smallsizedparticlesaredesirablebecausetheyburnmorerapidly.Opposedtothisrequirementisthefactthatsmallparticleshavealowpenetration,andthereisthereforeatendencytowardincompletemixingofthefuelandthecombustionair,whichleadstoincompletecombustion.

    h.Combustionchamberdesign.Theamountofturbulencepresentinthecombustionchamberofanengineaffectsthemixingofthefuelandthecombustionair.Highturbulenceisanaidtocompletecombustion.

    9B2.Power.Engineperformanceofaninternalcombustionenginemaybemeasuredintermsoftorque,orpowerdevelopedbytheengine.Thepowerthatanyinternalcombustionengineiscapableofdevelopingislimitedbymeaneffectivepressure,lengthofstroke,cylinderbore,andthespeedoftheengineinrevolutionsperminute(rpm).

    a.Meanindicatedpressure.Theaverageormeanpressureexertedonthepistonduringeachexpansionorpowerstrokeisknownasthemeanindicatedpressure.Meanindicatedpressureisofgreatimportanceinenginedesign.Itcanbeobtainedfromindicatorcardsmathematicallyordirectlyfromtheplanimeter.Excessivemeanpressuresresultinoverloadingtheengineandconsequenthightemperatures.Temperaturesgreaterthanthosecontemplatedintheenginedesignmaycausecrackedcylinderheads,liners,andwarpedvalves.Therearetwokindsofmeaneffectivepressures.One,mip,or

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 8/19

    incompletecombustion,asaresultof mean

    179

    indicatedpressureisthatdevelopedinthecylinderandcanbemeasured.Theotherisbmeporbrakemeaneffectivepressureandiscomputedfromthebhpdeliveredbytheengine.

    NOTE.Maximumpressuredevelopedhasnobearingonmep.

    b.Lengthofstroke.Thedistancethepistontravelsfromonedeadcentertoitsoppositedeadcenterisknownasthelengthofstroke.Thisdistanceisoneofthefactorsthatdeterminesthepistonspeedwhichislimitedbythefrictionalheatgeneratedandtheinertiaofthemovingparts.Inmodernengines,pistonspeedreachesapproximately1600feetperminute.Ifthelengthofstrokeistooshort,excessivesidethrustwillbeexertedonatrunktypepiston.Thelengthofstroke,however,cannotbetoogreatbecauseofthelackofoverheadspaceavailableonsubmarinetypeengines.

    c.Cylinderbore.Thecylinderboreisitsdiameter,andfromthisthecrosssectionalareaofthepistonisdetermined.Itisuponthisareathatthegaspressureactstocreatethedrivingforce.Thispressureisthemeanindicatedpressurereferredtoabove,expressedandcalculatedforanareaof1squareinch.Theratiooflengthofstroketocylinderboreissomewhatfixedinenginedesign.Thereareafewinstancesinwhichthestrokehasbeenlessthanthebore,butinalmosteverycasethestrokeislongerthanthebore.Thisratioinamoderntrunkpistontypeengineisabout1.25,whileinacrossheadtypeengineinusetodayitisabout1.50.

    d.Revolutionsperminute.Thisisthespeedatwhichthecrankshaftrotates,andsincethepistonisconnectedtotheshaft,itdetermines,withthelengthofstroke,thepistonspeed.Sincethepistonmovesupanddowneach

    singleacting,2strokecycleengine,thereisapowerstrokeforeachrevolution.

    Havingdefinedthefactorsinfluencingthepowercapableofbeingdeveloped,thegeneralformulaforcalculatinghorsepowerisasfollows:

    IHP=(PXLXAXN)/33,000

    P=Meanindicatedpressure,inpsiL=Lengthofstroke,infeetA=EffectiveareaofthepistoninsquareinchesN=Numberofpowerstrokesperminute

    Thehorsepowerdevelopedwithinthecylinderasaresultofcombustionofthefuelcanbecalculatedbymeasuringthemeanindicatedpressureandenginespeed.Thenwiththeboreandstrokeknown,thehorsepowercanbecomputedforthetypeofenginebeingused.Thispoweriscalledindicatedhorsepowerbecauseitisobtainedfromthepressuremeasuredfromanengineindicatorcard.Itdoesnottakeintoaccountthepowerlossduetofriction,aswillbediscussedlater.Example:

    Givena12cylinder,2cycle,singleactingenginehavingaboreof8inchesandastrokeof10inches.Itsratedspeedis720rpm.Whenrunningatfullloadandspeed,themeanindicatedpressureismeasuredandisfoundtobe105psi.Whatistheindicatedhorsepowerdevelopedbytheengine?

    Solution:

    Fromtheformula

    IHP=(PXLXAXN)/33,000

    P=105L=10/12A=3.1416(8/2)2N=720

    IHP=(105X(10/12)X3.1416(8/2)2)

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 9/19

    revolution,thepistonspeedisequaltotwicethestroketimestherevolutionsperminute(rpm),andisusuallyexpressedinfeetperminute.Ifthestrokeis10inches,andthespeedofrotationis750rpm,thepistonspeedis

    750X2X(12/10)=1,250feetperminute.

    Thepowerdevelopedbytheenginedependsupontheengine'sspeedandthetypeofengine.Ifitisasingleacting,4strokecycleenginetherewillbeonepowerstrokeforeverytworevolutionsofthecrankshaft.Ifitisa

    X720

    IHP=96.96

    Sincethisisjustthehorsepowerdevelopedinonecylinder,iftheloadisperfectlybalancedamongallcylinders,thetotalindicatedhorsepoweroftheengineis

    IHP=12X96.96=1163.5

    180

    e.Brakehorsepower.Asstatedabove,brakehorsepoweristhepowerdeliveredbytheengineindoingusefulwork.Numerically,itisequaltotheindicatedhorsepowerminusthemechanicallosses.

    BHP=IHPminusthemechanicallosses.

    Fromtheexampleabove,theIHPwasfoundtobe1163.5.Ifthebrakehorsepowerofthisenginewas900asdeterminedinatestlaboratory,thenthemechanicallosseswouldbe

    1163.5900=263.5horsepower

    or

    (263.5/1163.5)X100=22.6percentoftheindicatedhorsepowerdevelopedinthecylinders

    or90/1163.5=77.4percentmechanicalefficiency.

    Enginepowerisfrequentlylimitedbythemaximummeanpressureallowed.Tofindthebmepoftheaboveengine,firstobtainthepowerdevelopedinonecylinder.Thus,

    900/12=75.0bhp

    Fromthegeneralformulafor

    bedeterminedfromtheindicatedhorsepowerundervaryingconditionsofoperation.Itshouldbenotedthatasarule,indicatorcardstakenonengineshavingaspeedover450rpmarenotreliableandthereforenoindicatormotionsareprovided.

    9B3.Engineperformancelimitations.Thepowerthatcanbedevelopedbyagivensizecylinderwhosepistonstrokeisfixedislimitedonlybythepistonspeedandthemeaneffectivepressure.Thepistonspeedislimitedbytheinertiaforcessetupbythemovingpartsandtheproblemoflubricationduetofrictionalheat.

    Themeanindicatedpressureislimitedby:

    1.Heatlossesandefficiencyofcombustion.

    2.Volumetricefficiencyortheamountofairchargedintothecylinderandthedegreeofscavenging.

    3.Completemixingofthefuelandairwhichrequiresfineatomization,sufficientpenetration,andaproperlydesignedcombustionchamber.

    Thelimitingmeaneffectivepressures,bothbrakeandindicated,areprescribed

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 10/19

    horsepower,

    HP=(PXLXAXN)/33,000

    75=PX(10/12)X3.1416X(8/2)2720/33,000

    P=(75X33,000)/(10/12X3.1416X(8/2)2X720)

    P=82.1psi

    Hence,fortheaboveengineundertheconditionsstatedthebmepis82.1whilethemipis105psi.

    Thebrakehorsepoweristhepoweravailableattheengineshaftforusefulwork.Brakehorsepowercannotusuallybemeasuredafteranengineisinstalledinservice,unlesstheenginedrivesanelectricgenerator.Thebrakehorsepowerisdeterminedbyactualtestsintheshopsofthemanufacturerbeforedeliveryoftheengine.Frictionallossesarequiteindependentoftheloadontheengine.Hence,unlessthebrakehorsepowerhasbeenmeasuredatvariousloadsandspeeds,themechanicallossescannot

    bythemanufacturerortheBureauofShipsandshouldneverbeexceeded.Inadirectdriveship,themeaneffectivepressuresdevelopedaredeterminedbytherpmoftheshaft.Inelectricdriveships,thehorsepowerandmepcanbedeterminedreadilyfromtheelectricalreadings,takingintoaccountgeneratorefficiency.

    Thedieseloperatorshouldrememberthatthetermoverloadingmeansexceedingthelimitingmeaneffectivepressure.

    9B4.Operation.Allsubmarinetypedieselenginesareratedatagivenhorsepowerandagivenspeedbythemanufacturer.Thesefactorsshouldordinarilyneverbeexceededintheoperationoftheengine.Usingtheratedspeedandbhp,itispossibletodeterminearatedbmepwhicheachindividualcylindershouldneverexceed,otherwisethatcylinderwillbecomeoverloaded.Theratedbmepholdsonlyforratedspeed.Ifthespeedoftheenginedropsdownbelowratedspeed,thenthecylinderbmepwhichshouldnotbeexceededgenerallydropsdowntoalowervalueduetopropellercharacteristics.Thebmepshouldneverexceedthenormalmepatlowerenginespeed.Usuallyit

    181

    shouldbesomewhatloweriftheenginespeedisdecreased.

    Navytypeenginesaregenerallyratedhigherforemergencyusethanwouldnormallybethecasewithcommercialengines.TheeconomicalspeedformostNavytypedieselenginesisfoundtobeabout90percentofratedspeed.Forthisspeedtheoptimumloadconditionshavebeenfoundtobefrom70percentto80percentoftheratedloadoroutput.Thus,wespeakofrunningtheenginesatan8090combinationwhichwillgivetheenginepartsalongerlifeandwillkeeptheengineitselfmuchcleanerandinbetteroperatingcondition.The8090means

    Dieselenginesdonotoperatewellatexceedinglylowbmepsuchasthatoccurringatidlingspeed.Thistypeofenginerunningtendstogumuppistons,rings,valves,andexhaustports.Ifanengineisrunatidlingspeedforlongperiodsoftime,itwillrequirecleaningandoverhaulmuchsoonerthanifithadbeenrunat50percentto100percentofload.

    Someenginemanufacturersdesigntheirenginefuelsystemssothatitisimpassibletoexceedtheratedbmeptoanygreatextent.Thisisdonebylimitingthemaximumthrottleorfuelcontrolsettingbymeansofapositivestop.Thisregulatesthemaximumamountoffuel

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 11/19

    thatwearerunningtheenginewith80percentofratedloadat90percentofratedspeed.

    thatcanenterthecylinderandthereforethemaximumloadofthecylinder.

    C.LOADBALANCE

    9C1.Indications.Loadbalancemeanstheadjustmentoftheenginesothattheloadwillbeevenlydistributedamongallthecylindersoftheengine.Eachcylindermustproduceitsshareofthetotalworkdonebytheengineinordertohaveabalancedload.Iftheengineisdevelopingitsratedfullload,ornearlyso,andonecylinderormoreisproducinglessthanitsshareoftheload,theremainderofthecylindersobviouslymustbedoingmorethantheirshareofthetotalworkandhenceareoverloaded.

    Anoverloadedconditionofanengine,orofoneormoreofitscylinders,maybeindicatedby:

    1.Blacksmokeintheexhaust.

    2.Highexhausttemperature.

    3.Highlubricatingoilandcoolingwatertemperature.

    4.Hotbearingsandhightemperaturesofotherengineparts(ingeneral,ahotrunningengine).

    5.Excessivevibrationoftheengine.

    6.Unusualsoundoftheengine.

    Whenblacksmokeisobservedintheexhaustfromthemufflers,itisnotpossibletodetermineimmediatelywhethertheentireengineorjustoneofthecylindersisoverloaded.However,byopeningtheindicatorcocksontheindividualcylinders,thecoloroftheirexhaustscanbedetermined.

    Hightemperaturesoftheexhaustgases

    fromindividualcylindersindicateanoverloadedconditionofthesecylinders.Ahighcommonexhausttemperatureintheexhaustheaderindicatesaprobableoverloadingofthewholeengine.Theseconditionsareindicatedbypyrometersinstalledinallmodernengines.Aconstantcheckonthepyrometerreadingswillindicateaccuratelywhenanycylinderisfiringproperlyandcarryingitscorrectshareoftheload.Anysuddenchangeinthereadingoftheexhausttemperatureofanycylindershouldbeinvestigatedimmediately.Thedifferenceinexhausttemperaturesbetweenanytwocylindersshouldnotexceed25degreesFforawellbalancedengine.Howeveracertaintoleranceisallowedusually50degreesto75degreesispermissible.

    Thermometersareprovidedinthelubricatingoilandcoolingwatersystems.Moderndieselengineshavethermometersinstalledinthecoolingsystemsofindividualcylinders.Anabnormalriseinanyofthesetemperaturesmayindicateanoverloadedconditionandshouldbeinvestigatedasquicklyaspossible.

    Ingeneral,excessiveheatinanypartoftheenginemayindicateoverloading.Anoverheatedbearingmaybetheresultofoverloadingacylinder.Anabnormallyhotcrankcasecouldresultfromoverloadingtheengineasawhole.Excessivetemperaturesofsomeenginepartscanbecheckedbytouch.

    Ifallcylindersarenotdoinganequal

    182

    amountofwork,theforceexertedby outshouldbewithin10to20psiofeach

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 12/19

    individualpistonswillbeunequal.Inthisevent,theunequalforcesmaycauseanuneventurningmomenttobeexertedonthecrankshaftandvibrationswillbesetup.Theskilledoperatorcantellbythefeelandthesoundofanenginewhenapoordistributionofloadexists.This,ofcourse,comesfromlongexperience,butitisimportantthatthebeginneravailhimselfofeveryopportunitytoobserveenginesrunningunderallconditionsofloadingandperformance.

    9C2.Causesofunbalance.Intheprecedingsectionsomeofthegeneralcausesofunequalloaddistributionwerediscussed.Topreventunbalanceinanengine,theforemostconsiderationisthattheenginemustbeinexcellentmechanicalcondition.Aleakyvalveorfuelinjector,leakycompressionrings,oranyothersuchmechanicaldifficultieswillmakeitimpossiblefortheoperatortobalancetheloadunlesshesecurestheengineanddismantlesatleastapartofit.Therefore,theenginemustbeplacedinpropermechanicalconditionbeforetheloadcanbebalanced.

    Sincetheheatofcompressionisreliedupontoignitethefuelinjectedinthedieselengine,theamountofthiscompressionmustbemaintainedwithinfixedlimits.Inordertohavethesametypeofcombustionineachcylinder,thedegreeofcompressioninallcylindersshouldbeapproximatelythesame.Forexample,lowcompressionpressureinonecylindermaypreventallthefuelfromburning,ormayevenpreventignitionofthefuelinthatcylinder.Thiswouldresultinareducedamountofworkornoworkbeingdonebythiscylinder.Thecommoncausesoflowcompressionare:

    1.Stickingcompressionrings.

    2.Excessiveringorcylinderwear.

    3.Leakycylinderheadgasketorcrackedcylinderhead.

    4.Leakyvalveincylinderhead.

    otherinallcylindersofaproperlyadjustedengine.

    Inordertohavetheloadequallydistributed,eachcylindermustreceivethesameamountoffuel.Itisherethattheeffectofanimproperlyadjustedfuelpumpisevident.Acylinderreceivingmorefuelthannecessaryforagivenloadwilldevelopmorepowerthanrequired.

    Anyadjustmentofthefuelpumpmustbeundertakenonlybyapersonthoroughlyfamiliarwiththetypeofpumpbeingused.Heshouldfirstdeterminebeyondalldoubtthattheengineisinpropermechanicalcondition.Agreatmanyfactorsmaycausethecylindertofireunevenly.Someofthesecausesareacloggedorimproperlytimedfuelinjectionvalve,improperlytimedairintakeorexhaustvalve,airorwaterinthefuelsystem,improperrockerarmvalveclearance,dirtorotherforeignmatterinthefueloilwhichmaybepluggingupthestrainersandfilters,andanyotherfactorthatcontributestopoorcombustion.Ifacylinderisfiringincorrectly,alwayschecktheaboveconditionsbeforemakinganyadjustmentstothefuelpump.

    Changingtheamountoffuelbeingdeliveredbyadjustingthepumpshouldbedoneonlywhenitiscertainthatthecauseofthetroubleisinthepump.Thispointcannotbeemphasizedtoostrongly.Forinstance,ifthefailureofacylindertofirecorrectlywasduetoacloggedfuelinjectionvalvetipandtheoperatorincreasedthefuelsupplytothecylinderwiththeintentionofincreasingthepowerdevelopedbythatparticularcylinder,theincreaseinfuelmightwashthevalvecleanandcausethecylindertobecomebadlyoverloadedfromtheexcessfuelsupplied.Thecorrectprocedurewouldhavebeentoreplacethecloggedinjectionvalvewithaspareandtocleantheonethatwasremoved.Thedecreaseinpowerdeliveredbyacylindermayalsobeduetosomeforeignmatterunderavalveorpistonring,andoncecleared,thecylinderwouldbecomeoverloadedifthefuelsupplyhad,inthemeantime,been

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 13/19

    5.Crackedcylinderliner.

    6.Excessiveclearancevolume.

    Incorrectingthese,itisgenerallynecessarytoreplacethedefectivepart.However,insomecasessuchasastickingringorvalve,itisnecessaryonlytocleanthepartandreplaceit.Thesecoldcompressionpressureswithfuelcut

    increased.

    Theoperatorwhoalwaysmaintainshisplantingoodmechanicalconditionwillberequiredtomakefew,ifany,adjustmentstothe

    183

    fuelsystemwhileitisrunning.Thefuelsupplytoanindividualcylindershouldnotbeadjusteduntilafteranexhaustivesearchhasrevealedthateveryotherconditionisnormalinallrespects.

    Afteranoverhaulinwhichpistonringsofcylinderlinershavebeenrenewed,considerableadjustmentoftheenginemaybenecessary.Lubricatingoilwillleakbytheringsintothecombustionspaceuntilaftertheringshaveproperlyseated.Thecompressionwillalsoincreaseasthesealbetweentheringsandthelinerbecomesmoreeffective.Thelubricatingoilwillburninthecylinder,givinganincorrectindicationoffueloilcombustion,andifthepumphasbeenproperlysetwhentheenginewasstarted,theenginewillbeoverloaded,oratleastunbalanced.Asthecompressionrisestonormalpressure,thepowerdevelopedwillincreaseasalsowilltheconditionsofpressureandtemperatureunderwhichthecombustiontakesplace.Hence,whenanoverhaulhasbeencompleted,theenginemustbecarefullywatcheduntiltheringsareseated,andthecompressionsettothelevelspecifiedintheinstructionsforthattypeofengine.Thisadjustmentwillbefacilitatedbytheuseoffrequentcompressiontests.Iftheengineisnotfittedsothatthecompressioncanbereadilyvaried,theengineshouldberununderlightloaduntilitiscertainthattheringshaveseated.

    9C3.Effectofunbalance.Ingeneral,

    developedwithinacylinderisdirectlyproportionaltothepowerproducedbythatcylinder,anyincreaseinonewillcauseacorrespondingincreaseintheother.Hence,ifthepowerisnotevenlydistributedthroughoutthecylinders,themeanindicatedpressuresintheindividualcylinderswillvary.Temperaturevariesdirectlyasthepressure,sothatadecreaseinpressurewillresultinacorrespondingdecreaseintemperature,Thequalityofcombustionobtaineddependsupontheheat,andheatuponthetemperature,sothatwithadecreaseinpressure,combustionwillnotbesogoodasbefore.Thispoorcombustionwilllowerthethermalefficiency,andtheoutputoftheenginewillbereduced.

    Ifanengineisdeveloping600bhp,anditsmechanicalefficiencyis80percent,theindicatedhorsepowerbeingdevelopedis750.Iftheenginehas10workingcylinders,eachcylindershouldbeproducing75indicatedhorsepower.Whenthisisnotthecasetheengineisunbalanced.Theeffectherewouldbetoincreasethemeanindicatedpressureofthosecylindersdoinglessthantheirshareofthework,andtodecreasethatofthosecylindersproducingmorethan75indicatedhorsepower.

    Theturningmomentactingonthecrankshaftisproportionaltotheforceactingonthepiston.Thisforce,inturn,istheresultofthemeanindicatedpressuredevelopedinthecylinder.Iftheseforcesfromdifferentcylindersarenotequal,

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 14/19

    theeffectofunbalanceisanoverheatedengine.Clearancesareestablishedbytheenginedesignertoallowforsufficientexpansionofmovingpartswhenoperatingatthedesignedtemperatures.Consequently,anengineoperatingattemperaturesinexcessofthoseforwhichitwasdesignedmaysuffermanycasualties.Excessiveexpansionofthemovingpartswillcauseseizuresandaburningupoftheengine.Ifthetemperaturesriseabovetheflashpointofthelubricatingoilvaporsinthecrankcase,anexplosionmayresult.Thehightemperaturesmaydestroythelubricatingoilfilmbetweenadjacentsurfacesofthemovingpartsandresultinfurtherincreasedtemperaturesduetotheincreasedfriction.Infact,theeffectisthesameasforoverheatingfromanycause.

    Sincethemeanindicatedpressure

    thereisanuneventurningmomentactingalongthelengthofthecrankshaft,andvibrationsresult.Thesevibrations,ifsufficientlysevere,mayshaketheenginelooseinitsfoundation,cracktheenginehousing,framework,andbedplate,destroythebearings,andevenbreakthecrankshaft.Itisobviousthatabadlyvibratingenginecanresultinseriousdamageandshouldbestoppedimmediately.

    Toavoidalltheharmfuleffectsofoverloadingandunbalancingofload,theloadonadieselengineshouldbeequallydistributedamongtheworkingcylindersandnocylinder,ortheengineitself,shouldeverbeoverloaded.Inconclusion,thecorrectproceduretofollowinbalancinganengineis:

    1.Maintaintheengineinpropermechanicalcondition.

    184

    2.Adjustthefuelsysteminaccordancewiththemanufacturer'sinstructions.

    3.Operatetheenginewithinthetemperaturelimitsspecifiedintheinstructions.

    4.Keepthecylindertemperaturesandpressuresasevenlydistributedaspossible.

    5.Trainyourselftodetectabadconditionbythesensesoftouchandhearing.

    D.ENGINEDYNAMICSANDVIBRATIONS

    9D1.Balancing.Itisnotpossibletobalanceoutalltheforcesproducingvibrationinanengine.However,theprimaryorprincipalforcesmaybealmostentirelybalancedbytheadditionofweightstothecrankshaftorconnectingrodsattheproperplaces.Balancingbytheadditionofweightssoastocreateforcesequalandoppositetothoseofinertiaisknownascounterbalancing.Usually,aftercounterbalancing,therearestillsomesmallforcesremainingthathavenotbeencompletelybalancedout.Theseremainingforcesareproducedbythereciprocatingparts,sinceitispossibletocompletelycounterbalanceallprimaryrotatingforces.

    excessivevibrationinservice.Thisisduetothelowspeedsusedwiththebalancingmachines.Dieselenginesintheservicemustoperateoverawidespeedrangeusually,andforthisreasontheyarenotaccepteduntilaftertheyhavebeentriedatallspeedsatwhichtheymustoperatewheninstalledinservice.

    Inanyevent,allrotatingpartsoftheengineshouldbeasaccuratelybalancedaspossible.

    9D2.Flywheels.Aflywheelstoresupenergy,theamountofwhichdependsupontherotatingspeed,theweight,andthediameterofthewheel.Inmostmarineenginesheavyflywheelsarenot

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 15/19

    Allrotatingpartsaresubjectedtotwokindsofunbalance.Theyarecalledstaticunbalanceanddynamicunbalance.Theunbalancedconditioninbothcasescanbereadilydeterminedandcorrectedbycounterbalancing.

    Astaticbalancingtestisconductedbyplacingthetwoendsoftherotatingpartonperfectlysmooth,horizontal,andparallelrails.Ifstaticallyunbalanced,thepartwillrollontherailsuntilitscenterofgravityreachesitslowestpositionandthenitwillcometorest.If,however,itscenterofgravityliesalongitsaxisitwillremainatrestwhenplacedinanyposition,anditistheninstaticbalance.

    Itfrequentlyoccursthatthecenterofgravityofabodyliesinitsaxisofrotationbutthatitsirregularshapeorcompositiongeneratesadisturbingforcewhenthebodyisrotated.Inthiscasethebodywouldbeinstaticbalanceandindynamicunbalance.Ingeneral,beforebalancing,mostrotatingpartsareinbothstaticanddynamicunbalance.

    Inallcases,completebalancingcanbeobtainedbyattachingweightstotherotatingbody,ifthepositionanddegreeofunbalancingareknown.Fordeterminingthisunbalanceallnavalshipyardsareequippedwithbalancingmachines.Experiencewithlargeandhighspeedmachineryhasshownthatbalancingmachinesshowgoodresultsbutdonotinsureagainst

    necessary,astheotherrotatingmassesontheshaftservethesamepurpose.Thesemassesaretheclutchandgenerator,andwithalargenumberofcylindersfiring,thepowerstrokeissmoother,andthereislessneedforaflywheel.

    Theflywheelservesthreepurposes,namely:

    1.Topreventtheenginefromstallingwhenrunningatidlingspeed.

    2.Toreducethevariationsinspeedatallloads.

    3.Tohelpcarrytheengineovercenterswhenstarting.

    Whenthespeedoftheshafttendstoincrease,theflywheelabsorbsenergy.Whenittendstodecrease,theflywheelgivesupitsenergytotheshaftinanefforttokeepitrotatingatauniformspeed.

    9D3.Torsionalvibrations.Thetwistinganduntwistingoftheshaftsystemresultintorsionalvibrations.Allshaftshavesomeflexibilityandwithweightsattachedtothem,suchaspistons,gearsandcamshaftsindieselengines,theyhavewhatisknownasanaturalfixedfrequency.Whenthefrequencyofthepowerstrokeimpulsescoincideswiththenaturalfrequencyoftheentireshaftsystem,atorsionalvibrationisproduced,andtheshaftisthensaidtobe

    185

    rotatingatacriticalspeed.Thiscriticalspeedisdependentonthedimensionsofthecrankshaft,thenumberofcylinders,allrotatingmassesoftheengine,othershaftingandmassesincludingthepropeller,thenumberofpowerstrokesperminute,thearrangementofthecylinders(whethertheyareinlineorinaV),andthecylinderfiringorder.

    bedplate,crankcase,orsimilarmembers,resultsinflexuralvibrations.Thecauseofflexuralvibrationliesinthefaultybalanceoftherotatingandreciprocatingmassesoftheengineandthepresenceofthesocalledfreeforcesorrockingcouples.Itmaybemanifestinthehorizontalorverticalplanesandmayinturnbethecauseofvibrationofsurroundingstructures,suchastheship's

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 16/19

    Withoutgoingintofurtherdetail,itissufficienttosaythattorsionalcriticalspeedsdependuponthenumberofpowerimpulsesperrevolutionandthenaturalrateofvibrationofthecombinedshaftsystem.Specialinstrumentsareavailablefordeterminingthedegreeoftorsionalvibrationandthenaturalfrequencyofanyparticularshaftsystem.

    Tochangetherangeorpointofmaximumvibrationofthecriticalspeedsforagiveninstallationitisnecessarytomakeachangeinthemassesontheelasticshaftsystem.Itisevidentthereforethatinenginesoperatingataconstantspeed,itismuchsimplertochangethenaturalfrequencyinordertoavoiddangerouscriticalspeedsthanitisinamarineenginerequiringawiderangeofoperatingspeeds.

    Criticalspeedsandmodeofvibrationsaredeterminedwiththeaidofaninstrumentrecordingtorsionalvibrations.Theenginebuilderscalculatethecriticalspeedsandfurnishaguaranteethat,withtheenginecoupledtotheloadforwhichitisdesigned,nodangerouscriticalspeedswilloccurwithintheoperatingspeeds.

    Torsionalvibrationsneednotnecessarilyshaketheframingoftheengineandmaynotevenbenoticeabletotheoperator.Thisfacthasbeenborneoutinseveralcasualtiesinwhichthecrankshaftbrokewithoutwarning.Excessivewearofgearsorofattachedauxiliariesandrepeatedbreakageofshaftingorotherpartsattachedtoitcanverywellbecausedbytorsionalvibrations.Mostinstallationsinnavalvesselshavebeencheckedandtestedtodeterminetheexactlocationoftorsionalvibrations,theiramplitudes,andfrequencies.

    9D4.Flexuralvibrations.Thebendingofthepartsoftheengineframingsuchasthe

    hullinmarineinstallations.Thistypeofvibrationdoesnotdependonthewaytheengineiscoupledtoitsload,andifanenginedoesnotvibrateontest,novibrationswilldevelopafteritisplacedinservice.

    9D5.Torsionalvibrationdampening.Therearecertainforcesactinginresistancetotorsionalvibrations.Theseforcesareduetothefrictionofthebearingsthatcarrytheshaftingandtheworkabsorbedinthemetaloftheshaftinresistingthetwistingcalledhysteresis.Propellersinthewaterarethemostinfluentialfactor.Alloftheseforcesmaybesaidtobetheresultofnaturalcauses,andtheyacttodampenout,orreducetheamplitudeofthetorsionalvibrations.Inadditiontothesenaturalforces,thereareothermethodsemployedtoreduceoreliminatetheseverityofthevibrations.Thismaybeaccomplishedbychangingthefiringorderofthecylindersintheengine,orbychangingtherotatingweights,ortheflexibilityoftheshaftings.

    Inadditiontotheabovedampeningfactorsandmethodstherearevarioustypesofcommercialtorsionalvibrationdampeners,suchasthatusedontheFM38D81/810cylinderengine.Eachsuchdampenermustbedesignedforaspecificshaftsystemoperatingwithaparticulartypeengine.Vibrationdampenersareusuallylocatedatornearapointofmaximumtorsionalvibrationamplitudealongtheshaft,generallyattheforwardendofanengine.

    Thereareseveraldifferenttypesofdampeners.All,however,accomplishthesamepurpose.Theytendtoreducetheswingingmotionoftheshaft.Thisisaccomplishedbyhavingafreelyrotatingdiskordisksactingagainstafixeddiskwhichcreatesfrictionandtherebyactsasabrake.Thispreventstheshaft,fromtwistinganduntwistingwhilerotatingonitsaxis.

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 17/19

    186

    E.ENGINEPRESSUREINDICATOR

    9E1.General.Efficientuninterruptedperformanceoftheenginedependsuponthemaintenanceofequalcorrectcompressionwithoutfuel,andfiringpressureswithfuelamongthevariouscylinders.Poorenginecompressioncauseslossofpower,pooracceleration,smokyexhaust,andstartingdifficulties.Anabnormallyhighfiringpressureinoneormorecylindersmaycauseenginewear,unevenrunning,andoverheating.Thesecompressionpressuresmaybemeasuredbyinstrumentsknownaspressureindicators.Compressionreadingswithoutfuelaretakenaftertheengineiswarmedupandthefuelcutoffonthatparticularcylinder.Firingpressurereadingsaretakenwiththeenginewarmedupandoperatingunderastatedloadatastatedspeed.

    9E2.Typesofengineindicators.Therearetwogeneralclassesofenginepressurerecordingindicators.Inthefirst,theinstrumentmeasuresgraphicallythecylinderpressureandatthesametimeindicatesthepositionofthepistonatanypointofitsstrokeorcycle.Inotherwords,theindicatordrawsadiagramofthepressureinthecylinderwithrespecttothemovementofthepiston.Sincethemovementofthepistonisameasureofthevolumedisplaced,thediagramisdrawntotheordinatesofpressureandvolume.Inthesecondgeneralclass,theindicatorrecordsthemaximumpressuresonly.

    Figure95showsthefundamentalprincipleoftheoperationofanengineindicatorinwhichthemovementofthepistonisrecorded.Theindicatorequipmentincludesasmallcylinderthatcanbeattachedtothemainworkingcylinderoftheengine,apistonandrodthatworkinthissmallcylinder,withapencilontheendoftherod.Thepencilpointbearsonthepapertackedtothedrumwhichismovedbyhook

    horizontaldistancewillrepresentpistonmovement.Asanexample,inatwostrokecycleengine,onecompleterevolutionorcyclewouldproduceadiagramliketheoneshownintheillustration.Thisdiagramiscalledanindicatorcard.Iftheindicatorspringiscalibratedsothatthenumberofpoundsofpressurerequiredtoraisethepencil1inchisknown,thentoreadthepressureatanypointonthecardallthatisnecessaryistomeasurethedistanceininchesfromtheatmosphericlineXYonthediagramtothepointatwhichtheamountofpressureisdesired,andmultiplythisbythecalibrationnumberofthespring.Thetotallengthofthediagramrepresentsthestrokeofthepiston.Thishorizontalscalethencanbelaidoffininches,feet,pistonstroke,orvolumeofpistondisplacement.

    Thistypeofindicatorislittleusedbyoperatingpersonnelonfleettypesubmarinestoday,mainlybecausethereisnoprovisionmadeonmodernenginesfortheattachmentoftheequipmentnecessarytotaketheindicatorcard,andalsobecausetherearenomeansofcompressionadjustmentotherthancompleteoverhauloftheengine.

    Theothertypeofindicator(indicatingmaximumpressuresonly)isusedtosomeextentfortakingmaximumcylinderpressures,tocheckagainstmanufacturer'stestdataandpreviousshipboardpressuretests.ThetwomostcommonlyusedindicatorsofthistypearethePremaxindicatorandtheKieneindicator.

    Themethodnormallyusedtochecktheequaldistributionofpoweramongthevariouscylindersistocomparetheexhaustgastemperaturesofthecylindersbymeansofthermocouplesplacedintheexhaustelbowsofeachcylinder.Pyrometerreadingshaveprovedtobeagoodcheckonthegeneralrunningconditionsofanengine,andtherecords

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 18/19

    andstringoverapulley.Anypressureintheworkingcylinderenterstheindicatorcylinderandforcesthesmallindicatorpistonandpencilinaverticaldirectionatthesametimethemainpistonmovesthecardinahorizontaldirectionbymeansofthestringandpulley.

    Itisreadilyseenthatanyverticaldistanceonthediagramwillrepresentpressure,andthe

    ofexhaustgastemperaturesareofgreatvalueinconjunctionwithindicatorreadingsasaidsingettingthebestresultsfromadieselengine.However,eventhoughtheexhausttemperaturesarenormal,theengineattimesmaynotdevelopitsratedhorsepower.

    9E3.Premaxindicator.ThePremaxindicatorisaninstrumentfordeterminingcylinder

    187

    Figure95.Principleofengineindicator.

    Figure96.Premaxpressureindicator.

    Figure97.Kienepressureindicator.

    188

    compressionandfiringpressures.The 9E4.Kieneindicator.TheKienediesel

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 19/19

    indicatorconsistsessentiallyofapistonsubjecttocylinderpressure,aspringagainstwhichthepistonactsandthetensionofwhichisadjustablebymeansofanindexsleeve,acontrolswitch,andaneonlightcircuitthatshowsifthepistonismoving.Itisattachedtothecylinderindicatorcockinthesamewayasanyotherindicator.Thepressureactingononesideofthepistonintheindicatorisgraduallyincreasedbyincreasingthespringtensionwiththeindexsleeveuntilthisspringpressureisequaltothemaximumcylinderpressurewhichactsontheoppositesideofthepiston.Whenthetwopressuresareequal,thepistonstopsmoving,asshownbystoppingoftheneonlightflashes.Thepressurereadingisthenreadonthescalesleeve.

    indicatorisapressureindicatorgageformeasuringthecompressionandfiringpressureofanenginewhileitisrunning.Thecompleteunitconsistsofapressuregageandanaircooledpressurechamberwhichisattachedtothecylinderindicatorcock.

    Thecylinderdischargepassesthroughtheindicatorplugupthroughthefiller,screen,andseatpiece.Thisraisesthevalve,allowingthegastopassthroughthedrilledholesintheguidepieceintothepressurechamberandontothegage.Theactionofthegasinthecurvedtubeofthegagetendstostraightenthetube,therebymovingthegageneedleandrecordingthepressureonacalibratedscale.

    189

    PreviousChapter

    SubDieselHomePage

    Nextchapter

    Copyright2013,MaritimeParkAssociationAllRightsReservedLegalNoticesandPrivacyPolicyVersion1.10,22Oct04

top related