submarine main propulsion diesels - chapter 9

19
Calendar: What to Visit: How to Visit: Membership About Us: 9 ENGINE PERFORMANCE AND OPERATION A. COMBUSTION, AND EFFICIENCY 9A1. Combustion. Engine efficiency is a comparison of the amount of power developed by an engine to the energy input as measured by the heating value of the fuel consumed. In order to understand the various factors responsible for differences in engine efficiency, it is necessary to have some knowledge of the combustion process which takes place in the engine. In the diesel engine, ignition of the fuel is accomplished by the heat of compression alone. To support combustion, air is required. Approximately 14 pounds of air are required for the combustion of 1 pound of fuel oil. However, to insure complete combustion of the fuel, an excess amount of air is always supplied to the cylinders. The ratio of the amount of air supplied to the quantity of fuel injected during each power stroke is called the airfuel ratio and is an important factor in the operation of any internal combustion engine. When the engine is operating at light loads there is a, large excess of air present, and even when the engine is overloaded, there is an excess of air over the minimum required for complete combustion. The injected fuel must be divided into small particles, usually by mechanical atomization, as it is sprayed or injected into the combustion chamber. It is imperative that each of the small particles be completely surrounded by sufficient air to effect complete combustion of the fuel. To accomplish 1. The fuel must enter the cylinder at the, proper time. That is, the fuel injection valve must open and close in correct relation to the position of the piston. 2. The fuel must enter the cylinder in a fine mist or fog. 3. The fuel must mix thoroughly with the air that supports its combustion. 4. Sufficient air must be present to assure complete combustion. 5. The temperature of compression must be sufficient to ignite the fuel. Figure 91 is a reproduction of a pressuretime diagram of a mechanical injection engine. The lower curvy part of which is a dotted line, is the curve of compression and expansion when no fuel is injected. At A the injection valve opens, fuel enters the combustion chamber and ignition occurs at B. The pressure from A to B should fall slightly below the compression curve without fuel due to absorption of heat by the fuel from the air. The period from A to B is the ignition delay. From B the pressure rises rapidly until it reaches a maximum at C. This maximum, in some instances, may occur at top dead center. At D the injection valve closes, the fuel is cut off, but burning of the fuel continues to some undetermined point along the expansion stroke. The height of the diagram from B to C is called the firing pressure rise and the

Upload: 666667

Post on 06-Sep-2015

52 views

Category:

Documents


1 download

DESCRIPTION

13,mlkbvjvjv

TRANSCRIPT

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 1/19

    Calendar: WhattoVisit: HowtoVisit: Membership AboutUs:9

    ENGINEPERFORMANCEANDOPERATION

    A.COMBUSTION,ANDEFFICIENCY9A1.Combustion.Engineefficiencyisacomparisonoftheamountofpowerdevelopedbyanenginetotheenergyinputasmeasuredbytheheatingvalueofthefuelconsumed.Inordertounderstandthevariousfactorsresponsiblefordifferencesinengineefficiency,itisnecessarytohavesomeknowledgeofthecombustionprocesswhichtakesplaceintheengine.

    Inthedieselengine,ignitionofthefuelisaccomplishedbytheheatofcompressionalone.Tosupportcombustion,airisrequired.Approximately14poundsofairarerequiredforthecombustionof1poundoffueloil.However,toinsurecompletecombustionofthefuel,anexcessamountofairisalwayssuppliedtothecylinders.Theratiooftheamountofairsuppliedtothequantityoffuelinjectedduringeachpowerstrokeiscalledtheairfuelratioandisanimportantfactorintheoperationofanyinternalcombustionengine.Whentheengineisoperatingatlightloadsthereisa,largeexcessofairpresent,andevenwhentheengineisoverloaded,thereisanexcessofairovertheminimumrequiredforcompletecombustion.

    Theinjectedfuelmustbedividedintosmallparticles,usuallybymechanicalatomization,asitissprayedorinjectedintothecombustionchamber.Itisimperativethateachofthesmallparticlesbecompletelysurroundedbysufficientairtoeffectcompletecombustionofthefuel.Toaccomplish

    1.Thefuelmustenterthecylinderatthe,propertime.Thatis,thefuelinjectionvalvemustopenandcloseincorrectrelationtothepositionofthepiston.

    2.Thefuelmustenterthecylinderinafinemistorfog.

    3.Thefuelmustmixthoroughlywiththeairthatsupportsitscombustion.

    4.Sufficientairmustbepresenttoassurecompletecombustion.

    5.Thetemperatureofcompressionmustbesufficienttoignitethefuel.

    Figure91isareproductionofapressuretimediagramofamechanicalinjectionengine.Thelowercurvypartofwhichisadottedline,isthecurveofcompressionandexpansionwhennofuelisinjected.AtAtheinjectionvalveopens,fuelentersthecombustionchamberandignitionoccursatB.ThepressurefromAtoBshouldfallslightlybelowthecompressioncurvewithoutfuelduetoabsorptionofheatbythefuelfromtheair.TheperiodfromAtoBistheignitiondelay.FromBthepressurerisesrapidlyuntilitreachesamaximumatC.Thismaximum,insomeinstances,mayoccurattopdeadcenter.AtDtheinjectionvalvecloses,thefueliscutoff,butburningofthefuelcontinuestosomeundeterminedpointalongtheexpansionstroke.

    TheheightofthediagramfromBtoCiscalledthefiringpressureriseandthe

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 2/19

    this,theairinthecylindermustbeinmotionwithgoodfuelatomization,combinedwithpenetrationanddistribution.Inmechanicalinjectionenginesthisisaccomplishedbyforcingscavengingairintothecylinderwithawhirlingmotiontocreatethenecessaryturbulence.Thisisusuallydone,inthe2cycleengine,byshapingtheintakeairports,orbycastingthemsothattheircentersareslightlytangentialtotheaxisofthecylinderbore.

    Beforeproceedingwiththestudyofthecombustionprocess,theconditionsconsideredessentialtogoodcombustionshouldbereviewed:

    slopeofthecurvebetweenthesetwopointsistherateatwhichthefuelisburned.

    Poorcombustionofthefuelisusuallyindicatedbyasmokyexhaust,butsomesmokemaybetheresultofburninglubricatingoilthathaspassedtheringsintothecombustionchamber.Incompletecombustionisindicatedbyblacksmoke,orifthefuelisnotigniting,itmayappearasbluesmoke.Immediatelyafterstartinganengine,whenrunningatlightloadsoratoverloads,orwhenchangingfromoneloadtoanother,smokeislikelytoappear.

    Asmokyexhaustfromtheenginedoesnotindicatewhetheroneorallthecylindersare

    174

    Figure91.Pressuretimediagramofcombustionprocess.causingitAblacksmokingcylinderusuallyshowsahigherexhausttemperaturewhichcanbeobservedfrompyrometersinstalledintheindividualexhaustlinesfromthecylinders.Openingtheindicatorcockoneachcylindertoobservethecoloroftheexhaustisanothercheck.Stillanothermethodiscuttingoffthefuelsupplytoonecylinderatatimetoseewhateffectithasontheengineexhaust.Thislattershouldneverbedonewhentheengineisoperatingatfullloadasoverloadingoftheothercylinderswillresultiftheengineis

    radiationandconvectiontothesurroundingair.

    2.Heatrejectedandlosttotheatmosphereintheexhaust.

    3.Inefficientcombustionorlackofperfectcombustion.

    Alossduetoimperfectorincompletecombustionisanimportantitem,becausesuchlosseshaveaseriouseffectonthepowerthatcanbedevelopedinthecylinderasshownbythepressurevolumediagramorindicatorcard.

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 3/19

    governorcontrolled.

    9A2.Enginelosses.Itisobviousthatnotalloftheheatcontentofafuelcanbetransferredintousefulworkduringthecombustionprocess.Themanydifferentlossesthattakeplaceinthetransformationofheatenergyintoworkmaybedividedintotwoclasses,thermodynamicandmechanical.Thenetusefulworkdeliveredbyanengineistheresultobtainedbydeductingthetotallossesfromtheheatenergyinput.

    Thermodynamiclossesarecausedby:

    1.Losstothecoolingsystemandlossesby

    Completecombustionisnotpossibleintheshorttimepermittedinmodernenginedesign.However,theselossesmaybekepttoaminimumiftheengineiskeptadjustedtotheproperoperatingcondition.Incompletecombustioncanfrequentlybedetectedbywatchingexhausttemperatures,notingtheexhaustcolor,andbeingalertforunusualnoisesintheengine.

    Heatenergylossesfromboththecoolingwatersystemsandlubricatingoilsystemarealwayspresent.Someheatisconductedthroughtheenginepartsandradiatedtotheatmosphereorpickedupbythesurroundingairbyconvection.Theeffectoftheselossesvariesaccordingtothepartofthecycleinwhichtheyoccur.The

    175

    heatappearinginthejacketcoolingwaterisnotatruemeasureofcoolinglossbecausethisheatincludes:

    1.Heatlossestojacketsduringcompression,combustion,andexpansionphasesoftheworkingcycle.

    2.Heatlossesduringtheexhauststroke.

    3.Heatlossesabsorbedbythewallsoftheexhaustpassages.

    4.Heatgeneratedbypistonfrictiononcylinderwalls.

    Heatlossestotheatmospherethroughtheexhaustareinevitablebecausetheenginecylindermustbeclearedofthestillhotexhaustgasesbeforeanotherfreshairchargecanbeintroducedandanotherpowerstrokebegun.Theheatlosttotheexhaustisdeterminedbythetemperaturewithinthecylinderwhenexhaustbegins.Itdependsupontheamountoffuelinjectedandtheweightofaircompressedwithinthecylinder.Impropertimingoftheexhaustvalves,whetherearlyorlate,willresultinincreasedheatlosses.Ifearly,thevalvereleasesthepressureinthecylinder

    Figure92.Heatbalanceforadieselengine.

    pumpinglossescausedbyoperationofwaterpumps,lubricatingoilpumps,andscavengingairblowers,powerrequiredtooperatevalves,andsoforth.Frictionlossescannotbeeliminated,buttheycanbekeptataminimumbymaintainingtheengineinitsbestmechanicalcondition.Bearings,pistons,andpistonringsshouldbeproperlyinstalledandfitted,shaftsmustbeinalignment,andlubricatingandcoolingsystemsshouldbeattheirhighestoperatingefficiency.

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 4/19

    beforealltheavailableworkisobtainediflate,thenecessaryamountofairforcompletecombustionofthenextchargecannotberealized,althoughasmallamountofadditionalworkmaybeobtained.Thetimingoftheexhaustvalveisacompromise,thebestpossiblepositionofopeningandclosingbeingdeterminedbytheenginedesigner.Itisessentialthatthevalvebetightandproperlytimedinordertomaintainthelosstotheexhaustataminimum.Thisisalsotrueforairinletvalvesettingon4cycletypeengines.

    Ifanindicatorcardistakenofadieselenginecylinder,itispossibletocalculatethehorsepowerdevelopedwithinthecylinder.Thiscalculationdoesnottakeintoaccountthepowerlossresultingfrommechanicalorfrictionlosses,aswillbediscussedlater,butitreflectstheactualworkproducedwithinthecylinder.

    Mechanicallossesareofseveralkinds,notallofthempresentineveryengine.Thesumtotalofthesemechanicallossesdeductedfromtheindicatedhorsepowerdevelopedinthecylinderswillgivethebrakehorsepowerfinallydeliveredasusefulworkbytheengine.Thesemechanicalorfrictionlossesincludebearingfriction,pistonandpistonringfriction,and

    9A3.Compressionratioandefficiencies.a.Compressionratio.Thetermcompressionratioisusedquiteextensivelyinconnectionwithengineperformanceandvarioustypesofefficiencies.Itmaybedefinedastheratioofthetotalvolumeofacylindertotheclearancevolumeofthecylinder.Itmaybebestexplainedbyreferencetothepressurevolumeindicatorcardofadieselcylinder.InFigure93,thevolumeisreducedfromsquareroot(C)+squareroot(D)tosquareroot(C)duringcompression.Thecompressionratioisthenequalto(squareroot(C)+squareroot(D))/squareroot(C)

    176

    Figure93.Compressionratio.

    Compressionratioinfluencesthe

    thefuelwouldfireordetonatebeforethepistoncouldreachthecorrectfiringposition.

    Thetemperatureentropy(TS)diagramofanyparticularcycleindicatestheamountofheatinputandtheamountofheatrejected.Forexample,inFigure94,theTSdiagramofamodifieddieselcycle,theheatinputisrepresentedbytheareaFBDGandtheheatrejectedtotheexhaustbytheareaFAEG.Theheatrepresentedindoingusefulworkisrepresentedbythedifferencebetweenthesetwo,orareaABDE.Theefficiencyofthecyclecanthenbeexpressedas

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 5/19

    thermalefficiencyofanengine.Theoreticallythethermalefficiencyincreasesasthecompressionratioisincreased.Theminimumvalueofadieselenginecompressionratioisdeterminedbythecompressionrequiredforstarting,which,tolargeextentisdependentonthetypeoffuelused.Themaximumvalueofthecompressionratioisnotlimitedbythefuelusedbutislimitedbythestrengthofthepartsoftheengineandtheallowableenginewgt/bhpoutput.

    b.Cycleefficiency.Theefficiencyofanycycleisequaltotheoutputdividedbytheinput.Thedieselcycleshowsoneofthehighestefficienciesofanyengineyetbuiltbecauseofthehighercompressionratiocarriedandbecauseofthefactthatcombustionstartsatahighertemperature.Inotherwords,theheatinputisatahigheraveragetemperature.Theoretically,thegasolineengineusingtheOttoorconstantvolumecyclewouldbemoreefficientthanthedieselifitcouldusecompressionratiosashighasthelatter.

    ThegasolineengineoperatingontheOttocyclecannotuseacompressionratiocomparabletothedieselengineduetothefactthatthefuelandairaredrawnintogetherandcompressed.Ifhighcompressionratioswereused,

    (H1H2)/H1whereH1istheheatinputalonglinesBCandCD(thelinesrepresentingtheconstantvolumeandconstantpressurecombustion),andH2istheheatrejectedalonglineEA(thelinerepresentingtheconstantvolumeexhaust).Sinceheatandtemperatureareproportionaltoeachother,thecycleefficiencyisactuallycomputedfrommeasurementsmadeofthetemperature.Thespecificheatofthemixtureinthecylinderiseitherknownorassumed,andwhencombinedwiththetemperature,theheatcontentcanbecalculatedatanyinstant.Thus,itisseenthattemperatureisameasureofheat,andthattheheatisproportionaltothetemperatureofthegas.

    c.Volumetricefficiency.Thevolumetricefficiencyofanengineistheratioofthevolumethatwouldbeoccupiedbytheairchargeatatmospherictemperatureandpressuretothecylinderdisplacement(theproductofthe

    Figure94.Temperatureentropydiagramofmodifieddieselcycle.

    177

    areaoftheboretimesthestrokeofthepiston).Thevolumetricefficiencydeterminestheamountofairavailableforcombustionofthefuel,andhenceinfluencesthemaximumpoweroutputoftheengine.

    Volumetricefficiencyisactuallythecompletenessoffillingofthecylinderwithfreshairatatmosphericpressure.Thevolumetricefficiencyofanenginemaybeincreasedbyenlargingtheareasofintakeandexhaustvalvesorports,andbyhavingallvalvesproperlytimed

    calculatedaspreviouslyexplained,theindicatedthermalefficiencycanbecomputed.

    Indicatedthermalefficiency=(IndicatedhpX42.42Btuperminuteperhp)/(RateofheatinputoffuelinBtuperminute)X100percent

    Inlikemannertheoverallthermalefficiencycanbefoundfromthebrakehorsepowerortheactualpoweravailableattheengineshaft.*

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 6/19

    sothatasmuchairaspossiblewillenterthecylinders.Sinceanyburnedgaseswillreducethechargeoffreshair,thesuperchargingeffectgainedbyearlyclosingoftheexhaustvalvesorportswillreducethevolumetricefficiency.Insomeengines,thevolumetricefficiencyisalsoincreasedbyusingspecialapparatustoutilizeairat2to3psiovertheatmosphericpressure.Thisprocedureiscommonlycalledsupercharging.

    d.Thermalefficiency.Thermalefficiencymayberegardedasameasureoftheefficiencyandcompletenessofcombustionoftheinjectedfuel.Thermalefficienciesaregenerallyconsideredasbeingoftwokinds,indicatedthermalefficiencyandoverallthermalefficiency.

    Ifallthepotentialheatinthefuelweredeliveredaswork,thethermalefficiencywouldbe100percent.Thisisnotpossibleinpractice,ofcourse.Todeterminethevaluesoftheaboveefficienciestheamountoffuelinjectedisknown,andfromitsheatingvalue,orBtuperpound,thetotalheatcontentoftheinjectedfuelcanbefound.Fromthemechanicalequivalentofheat(778footpoundsareequalto1Btu),thenumberoffootpoundsofworkcontainedinthefuelcanbecomputed.Iftheamountoffuelinjectedismeasuredoveraperiodoftime,therateatwhichtheheatisputintotheenginecanbeconvertedintopotentialpower.Then,iftheindicatedhorsepowerdevelopedbytheengineis

    Overallthermalefficiency=Brakehorsepower/HeatinputoffuelX100percent

    e.Mechanicalefficiency.Themechanicallossesinanenginedecreasetheefficiencyoftheengineandrepresenttheskillwithwhichtheenginepartsweredesignedaswellastheskillwithwhichtheoperatormaintainstheengine.Aspreviouslystated,thebrakehorsepowerisequaltotheindicatedhorsepowerminusthemechanicallosses.Theratioofbrakehorsepowertoindicatedhorsepower,then,isthemechanicalefficiencyoftheenginewhichincreasesasthemechanicallossesdecrease.

    Mechanicalefficiency=Brakehorsepower/IndicatedhorsepowerX100percent

    *Thispowerreferredtoasshafthorsepower,istheamountavailableforusefulwork.Itisthepoweravailableatthepropeller.Thereisafurtherlossofpowerbetweenthemainpropulsionengine(measuredasbrakehorsepower)andshafthorsepowerduetothefrictioninthereductiongears,hydraulicorelectrictypecouplings,lineshaftbearings,stuffingboxes,sterntubebearings,andstrutbearings.Theselossesinsomecasesareconsiderableandthetotallossmaybeashighas7or8percent.Therefore,theyshouldnotbeneglectedinmakingcomputations.

    178

    B.ENGINEPERFORMANCE

    9B1.Engineperformance.a.General.Manyfactorsaffecttheengineperformanceofanengine.Someofthesefactorsareinherentintheenginedesignotherscanbecontrolledbytheoperator.Thefollowinglistofvariableconditionsaffectingtheperformanceof

    whichtheenginewilloperatewithasmokyexhaust.

    f.Injectionrate.Therateofinjectionisimportantbecauseitdeterminestherateofcombustionandinfluencesengineefficiency.Injectionshouldstartslowly

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 7/19

    adieselengineisnotcomplete,butcontainsalltheimportantfactorsthatshouldbefamiliartooperatingpersonnel.

    b.Fuelcharacteristics.Thecetanenumberofthefuelhasanimportanteffectonengineperformance.Fuelswithlowcetaneratinghavehighignitionlag.Aconsiderableamountoffuelcollectsinthecombustionspacebeforeignitionoccurs,withtheresultthathighmaximumpressuresarereached,andthereisatendencytowardknocking.Thistendstoincreasewearoftheengineandreduceitsefficiency.Fuelswithhighcetaneratingshavelowautoignitiontemperaturesandhenceareeasierstartingthanfuelswithlowcetaneratings.Therefore,dieselengineperformanceisimprovedbytheuseofhighcetanenumberfueloils.

    c.Airtemperature.Thetemperatureoftheairinthecylinderdirectlyaffectsthefinalcompressiontemperature.Ahighintaketemperatureresultsindecreasedignitionlagandfacilitateseasystarting,butisgenerallyundesirablebecauseitdecreasesthevolumetricefficiencyoftheengine.

    d.Quantityoffuelinjectedperstroke.Thequantityoffuelinjecteddeterminestheamountofenergyavailabletotheengine,andalso(foragivenvolumetricefficiency)theairfuelratio.

    e.Injectiontiming.Theinjectiontiminghasapronouncedeffectonengineperformance.Formanyengines,theoptimumisbetween5degreesto10degreesbeforetopdeadcenter,butitvarieswithenginedesign.Earlyinjectiontendstowardthedevelopmentofhighcylinderpressures,becausethefuelisinjectedduringapartofthecyclewhenthepistonismovingslowlyandcombustionisthereforeatnearlyconstantvolume.Extremeinjectionadvancewillcauseknocking.Lateinjectiontends"todecreasethemeanindicatedpressure(mip)oftheengineandtolowerthepoweroutput.Extremelylateinjectiontendstoward

    sothatalimitedamountoffuelwillaccumulateinthecylinderduringtheinitialignitionlagbeforecombustionbegins.Itshouldproceedatsucharatethatthemaximumriseincylinderpressureismoderate,butitmustintroducethefuelasrapidlyaspermissibleinordertoobtaincompletecombustionandmaximumexpansionofthecombustionproducts.

    g.Atomizationoffuel.Theaveragesizeofthefuelparticlesaffectstheignitionlagandinfluencesthecompletenessofcombustion.Smallsizedparticlesaredesirablebecausetheyburnmorerapidly.Opposedtothisrequirementisthefactthatsmallparticleshavealowpenetration,andthereisthereforeatendencytowardincompletemixingofthefuelandthecombustionair,whichleadstoincompletecombustion.

    h.Combustionchamberdesign.Theamountofturbulencepresentinthecombustionchamberofanengineaffectsthemixingofthefuelandthecombustionair.Highturbulenceisanaidtocompletecombustion.

    9B2.Power.Engineperformanceofaninternalcombustionenginemaybemeasuredintermsoftorque,orpowerdevelopedbytheengine.Thepowerthatanyinternalcombustionengineiscapableofdevelopingislimitedbymeaneffectivepressure,lengthofstroke,cylinderbore,andthespeedoftheengineinrevolutionsperminute(rpm).

    a.Meanindicatedpressure.Theaverageormeanpressureexertedonthepistonduringeachexpansionorpowerstrokeisknownasthemeanindicatedpressure.Meanindicatedpressureisofgreatimportanceinenginedesign.Itcanbeobtainedfromindicatorcardsmathematicallyordirectlyfromtheplanimeter.Excessivemeanpressuresresultinoverloadingtheengineandconsequenthightemperatures.Temperaturesgreaterthanthosecontemplatedintheenginedesignmaycausecrackedcylinderheads,liners,andwarpedvalves.Therearetwokindsofmeaneffectivepressures.One,mip,or

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 8/19

    incompletecombustion,asaresultof mean

    179

    indicatedpressureisthatdevelopedinthecylinderandcanbemeasured.Theotherisbmeporbrakemeaneffectivepressureandiscomputedfromthebhpdeliveredbytheengine.

    NOTE.Maximumpressuredevelopedhasnobearingonmep.

    b.Lengthofstroke.Thedistancethepistontravelsfromonedeadcentertoitsoppositedeadcenterisknownasthelengthofstroke.Thisdistanceisoneofthefactorsthatdeterminesthepistonspeedwhichislimitedbythefrictionalheatgeneratedandtheinertiaofthemovingparts.Inmodernengines,pistonspeedreachesapproximately1600feetperminute.Ifthelengthofstrokeistooshort,excessivesidethrustwillbeexertedonatrunktypepiston.Thelengthofstroke,however,cannotbetoogreatbecauseofthelackofoverheadspaceavailableonsubmarinetypeengines.

    c.Cylinderbore.Thecylinderboreisitsdiameter,andfromthisthecrosssectionalareaofthepistonisdetermined.Itisuponthisareathatthegaspressureactstocreatethedrivingforce.Thispressureisthemeanindicatedpressurereferredtoabove,expressedandcalculatedforanareaof1squareinch.Theratiooflengthofstroketocylinderboreissomewhatfixedinenginedesign.Thereareafewinstancesinwhichthestrokehasbeenlessthanthebore,butinalmosteverycasethestrokeislongerthanthebore.Thisratioinamoderntrunkpistontypeengineisabout1.25,whileinacrossheadtypeengineinusetodayitisabout1.50.

    d.Revolutionsperminute.Thisisthespeedatwhichthecrankshaftrotates,andsincethepistonisconnectedtotheshaft,itdetermines,withthelengthofstroke,thepistonspeed.Sincethepistonmovesupanddowneach

    singleacting,2strokecycleengine,thereisapowerstrokeforeachrevolution.

    Havingdefinedthefactorsinfluencingthepowercapableofbeingdeveloped,thegeneralformulaforcalculatinghorsepowerisasfollows:

    IHP=(PXLXAXN)/33,000

    P=Meanindicatedpressure,inpsiL=Lengthofstroke,infeetA=EffectiveareaofthepistoninsquareinchesN=Numberofpowerstrokesperminute

    Thehorsepowerdevelopedwithinthecylinderasaresultofcombustionofthefuelcanbecalculatedbymeasuringthemeanindicatedpressureandenginespeed.Thenwiththeboreandstrokeknown,thehorsepowercanbecomputedforthetypeofenginebeingused.Thispoweriscalledindicatedhorsepowerbecauseitisobtainedfromthepressuremeasuredfromanengineindicatorcard.Itdoesnottakeintoaccountthepowerlossduetofriction,aswillbediscussedlater.Example:

    Givena12cylinder,2cycle,singleactingenginehavingaboreof8inchesandastrokeof10inches.Itsratedspeedis720rpm.Whenrunningatfullloadandspeed,themeanindicatedpressureismeasuredandisfoundtobe105psi.Whatistheindicatedhorsepowerdevelopedbytheengine?

    Solution:

    Fromtheformula

    IHP=(PXLXAXN)/33,000

    P=105L=10/12A=3.1416(8/2)2N=720

    IHP=(105X(10/12)X3.1416(8/2)2)

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 9/19

    revolution,thepistonspeedisequaltotwicethestroketimestherevolutionsperminute(rpm),andisusuallyexpressedinfeetperminute.Ifthestrokeis10inches,andthespeedofrotationis750rpm,thepistonspeedis

    750X2X(12/10)=1,250feetperminute.

    Thepowerdevelopedbytheenginedependsupontheengine'sspeedandthetypeofengine.Ifitisasingleacting,4strokecycleenginetherewillbeonepowerstrokeforeverytworevolutionsofthecrankshaft.Ifitisa

    X720

    IHP=96.96

    Sincethisisjustthehorsepowerdevelopedinonecylinder,iftheloadisperfectlybalancedamongallcylinders,thetotalindicatedhorsepoweroftheengineis

    IHP=12X96.96=1163.5

    180

    e.Brakehorsepower.Asstatedabove,brakehorsepoweristhepowerdeliveredbytheengineindoingusefulwork.Numerically,itisequaltotheindicatedhorsepowerminusthemechanicallosses.

    BHP=IHPminusthemechanicallosses.

    Fromtheexampleabove,theIHPwasfoundtobe1163.5.Ifthebrakehorsepowerofthisenginewas900asdeterminedinatestlaboratory,thenthemechanicallosseswouldbe

    1163.5900=263.5horsepower

    or

    (263.5/1163.5)X100=22.6percentoftheindicatedhorsepowerdevelopedinthecylinders

    or90/1163.5=77.4percentmechanicalefficiency.

    Enginepowerisfrequentlylimitedbythemaximummeanpressureallowed.Tofindthebmepoftheaboveengine,firstobtainthepowerdevelopedinonecylinder.Thus,

    900/12=75.0bhp

    Fromthegeneralformulafor

    bedeterminedfromtheindicatedhorsepowerundervaryingconditionsofoperation.Itshouldbenotedthatasarule,indicatorcardstakenonengineshavingaspeedover450rpmarenotreliableandthereforenoindicatormotionsareprovided.

    9B3.Engineperformancelimitations.Thepowerthatcanbedevelopedbyagivensizecylinderwhosepistonstrokeisfixedislimitedonlybythepistonspeedandthemeaneffectivepressure.Thepistonspeedislimitedbytheinertiaforcessetupbythemovingpartsandtheproblemoflubricationduetofrictionalheat.

    Themeanindicatedpressureislimitedby:

    1.Heatlossesandefficiencyofcombustion.

    2.Volumetricefficiencyortheamountofairchargedintothecylinderandthedegreeofscavenging.

    3.Completemixingofthefuelandairwhichrequiresfineatomization,sufficientpenetration,andaproperlydesignedcombustionchamber.

    Thelimitingmeaneffectivepressures,bothbrakeandindicated,areprescribed

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 10/19

    horsepower,

    HP=(PXLXAXN)/33,000

    75=PX(10/12)X3.1416X(8/2)2720/33,000

    P=(75X33,000)/(10/12X3.1416X(8/2)2X720)

    P=82.1psi

    Hence,fortheaboveengineundertheconditionsstatedthebmepis82.1whilethemipis105psi.

    Thebrakehorsepoweristhepoweravailableattheengineshaftforusefulwork.Brakehorsepowercannotusuallybemeasuredafteranengineisinstalledinservice,unlesstheenginedrivesanelectricgenerator.Thebrakehorsepowerisdeterminedbyactualtestsintheshopsofthemanufacturerbeforedeliveryoftheengine.Frictionallossesarequiteindependentoftheloadontheengine.Hence,unlessthebrakehorsepowerhasbeenmeasuredatvariousloadsandspeeds,themechanicallossescannot

    bythemanufacturerortheBureauofShipsandshouldneverbeexceeded.Inadirectdriveship,themeaneffectivepressuresdevelopedaredeterminedbytherpmoftheshaft.Inelectricdriveships,thehorsepowerandmepcanbedeterminedreadilyfromtheelectricalreadings,takingintoaccountgeneratorefficiency.

    Thedieseloperatorshouldrememberthatthetermoverloadingmeansexceedingthelimitingmeaneffectivepressure.

    9B4.Operation.Allsubmarinetypedieselenginesareratedatagivenhorsepowerandagivenspeedbythemanufacturer.Thesefactorsshouldordinarilyneverbeexceededintheoperationoftheengine.Usingtheratedspeedandbhp,itispossibletodeterminearatedbmepwhicheachindividualcylindershouldneverexceed,otherwisethatcylinderwillbecomeoverloaded.Theratedbmepholdsonlyforratedspeed.Ifthespeedoftheenginedropsdownbelowratedspeed,thenthecylinderbmepwhichshouldnotbeexceededgenerallydropsdowntoalowervalueduetopropellercharacteristics.Thebmepshouldneverexceedthenormalmepatlowerenginespeed.Usuallyit

    181

    shouldbesomewhatloweriftheenginespeedisdecreased.

    Navytypeenginesaregenerallyratedhigherforemergencyusethanwouldnormallybethecasewithcommercialengines.TheeconomicalspeedformostNavytypedieselenginesisfoundtobeabout90percentofratedspeed.Forthisspeedtheoptimumloadconditionshavebeenfoundtobefrom70percentto80percentoftheratedloadoroutput.Thus,wespeakofrunningtheenginesatan8090combinationwhichwillgivetheenginepartsalongerlifeandwillkeeptheengineitselfmuchcleanerandinbetteroperatingcondition.The8090means

    Dieselenginesdonotoperatewellatexceedinglylowbmepsuchasthatoccurringatidlingspeed.Thistypeofenginerunningtendstogumuppistons,rings,valves,andexhaustports.Ifanengineisrunatidlingspeedforlongperiodsoftime,itwillrequirecleaningandoverhaulmuchsoonerthanifithadbeenrunat50percentto100percentofload.

    Someenginemanufacturersdesigntheirenginefuelsystemssothatitisimpassibletoexceedtheratedbmeptoanygreatextent.Thisisdonebylimitingthemaximumthrottleorfuelcontrolsettingbymeansofapositivestop.Thisregulatesthemaximumamountoffuel

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 11/19

    thatwearerunningtheenginewith80percentofratedloadat90percentofratedspeed.

    thatcanenterthecylinderandthereforethemaximumloadofthecylinder.

    C.LOADBALANCE

    9C1.Indications.Loadbalancemeanstheadjustmentoftheenginesothattheloadwillbeevenlydistributedamongallthecylindersoftheengine.Eachcylindermustproduceitsshareofthetotalworkdonebytheengineinordertohaveabalancedload.Iftheengineisdevelopingitsratedfullload,ornearlyso,andonecylinderormoreisproducinglessthanitsshareoftheload,theremainderofthecylindersobviouslymustbedoingmorethantheirshareofthetotalworkandhenceareoverloaded.

    Anoverloadedconditionofanengine,orofoneormoreofitscylinders,maybeindicatedby:

    1.Blacksmokeintheexhaust.

    2.Highexhausttemperature.

    3.Highlubricatingoilandcoolingwatertemperature.

    4.Hotbearingsandhightemperaturesofotherengineparts(ingeneral,ahotrunningengine).

    5.Excessivevibrationoftheengine.

    6.Unusualsoundoftheengine.

    Whenblacksmokeisobservedintheexhaustfromthemufflers,itisnotpossibletodetermineimmediatelywhethertheentireengineorjustoneofthecylindersisoverloaded.However,byopeningtheindicatorcocksontheindividualcylinders,thecoloroftheirexhaustscanbedetermined.

    Hightemperaturesoftheexhaustgases

    fromindividualcylindersindicateanoverloadedconditionofthesecylinders.Ahighcommonexhausttemperatureintheexhaustheaderindicatesaprobableoverloadingofthewholeengine.Theseconditionsareindicatedbypyrometersinstalledinallmodernengines.Aconstantcheckonthepyrometerreadingswillindicateaccuratelywhenanycylinderisfiringproperlyandcarryingitscorrectshareoftheload.Anysuddenchangeinthereadingoftheexhausttemperatureofanycylindershouldbeinvestigatedimmediately.Thedifferenceinexhausttemperaturesbetweenanytwocylindersshouldnotexceed25degreesFforawellbalancedengine.Howeveracertaintoleranceisallowedusually50degreesto75degreesispermissible.

    Thermometersareprovidedinthelubricatingoilandcoolingwatersystems.Moderndieselengineshavethermometersinstalledinthecoolingsystemsofindividualcylinders.Anabnormalriseinanyofthesetemperaturesmayindicateanoverloadedconditionandshouldbeinvestigatedasquicklyaspossible.

    Ingeneral,excessiveheatinanypartoftheenginemayindicateoverloading.Anoverheatedbearingmaybetheresultofoverloadingacylinder.Anabnormallyhotcrankcasecouldresultfromoverloadingtheengineasawhole.Excessivetemperaturesofsomeenginepartscanbecheckedbytouch.

    Ifallcylindersarenotdoinganequal

    182

    amountofwork,theforceexertedby outshouldbewithin10to20psiofeach

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 12/19

    individualpistonswillbeunequal.Inthisevent,theunequalforcesmaycauseanuneventurningmomenttobeexertedonthecrankshaftandvibrationswillbesetup.Theskilledoperatorcantellbythefeelandthesoundofanenginewhenapoordistributionofloadexists.This,ofcourse,comesfromlongexperience,butitisimportantthatthebeginneravailhimselfofeveryopportunitytoobserveenginesrunningunderallconditionsofloadingandperformance.

    9C2.Causesofunbalance.Intheprecedingsectionsomeofthegeneralcausesofunequalloaddistributionwerediscussed.Topreventunbalanceinanengine,theforemostconsiderationisthattheenginemustbeinexcellentmechanicalcondition.Aleakyvalveorfuelinjector,leakycompressionrings,oranyothersuchmechanicaldifficultieswillmakeitimpossiblefortheoperatortobalancetheloadunlesshesecurestheengineanddismantlesatleastapartofit.Therefore,theenginemustbeplacedinpropermechanicalconditionbeforetheloadcanbebalanced.

    Sincetheheatofcompressionisreliedupontoignitethefuelinjectedinthedieselengine,theamountofthiscompressionmustbemaintainedwithinfixedlimits.Inordertohavethesametypeofcombustionineachcylinder,thedegreeofcompressioninallcylindersshouldbeapproximatelythesame.Forexample,lowcompressionpressureinonecylindermaypreventallthefuelfromburning,ormayevenpreventignitionofthefuelinthatcylinder.Thiswouldresultinareducedamountofworkornoworkbeingdonebythiscylinder.Thecommoncausesoflowcompressionare:

    1.Stickingcompressionrings.

    2.Excessiveringorcylinderwear.

    3.Leakycylinderheadgasketorcrackedcylinderhead.

    4.Leakyvalveincylinderhead.

    otherinallcylindersofaproperlyadjustedengine.

    Inordertohavetheloadequallydistributed,eachcylindermustreceivethesameamountoffuel.Itisherethattheeffectofanimproperlyadjustedfuelpumpisevident.Acylinderreceivingmorefuelthannecessaryforagivenloadwilldevelopmorepowerthanrequired.

    Anyadjustmentofthefuelpumpmustbeundertakenonlybyapersonthoroughlyfamiliarwiththetypeofpumpbeingused.Heshouldfirstdeterminebeyondalldoubtthattheengineisinpropermechanicalcondition.Agreatmanyfactorsmaycausethecylindertofireunevenly.Someofthesecausesareacloggedorimproperlytimedfuelinjectionvalve,improperlytimedairintakeorexhaustvalve,airorwaterinthefuelsystem,improperrockerarmvalveclearance,dirtorotherforeignmatterinthefueloilwhichmaybepluggingupthestrainersandfilters,andanyotherfactorthatcontributestopoorcombustion.Ifacylinderisfiringincorrectly,alwayschecktheaboveconditionsbeforemakinganyadjustmentstothefuelpump.

    Changingtheamountoffuelbeingdeliveredbyadjustingthepumpshouldbedoneonlywhenitiscertainthatthecauseofthetroubleisinthepump.Thispointcannotbeemphasizedtoostrongly.Forinstance,ifthefailureofacylindertofirecorrectlywasduetoacloggedfuelinjectionvalvetipandtheoperatorincreasedthefuelsupplytothecylinderwiththeintentionofincreasingthepowerdevelopedbythatparticularcylinder,theincreaseinfuelmightwashthevalvecleanandcausethecylindertobecomebadlyoverloadedfromtheexcessfuelsupplied.Thecorrectprocedurewouldhavebeentoreplacethecloggedinjectionvalvewithaspareandtocleantheonethatwasremoved.Thedecreaseinpowerdeliveredbyacylindermayalsobeduetosomeforeignmatterunderavalveorpistonring,andoncecleared,thecylinderwouldbecomeoverloadedifthefuelsupplyhad,inthemeantime,been

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 13/19

    5.Crackedcylinderliner.

    6.Excessiveclearancevolume.

    Incorrectingthese,itisgenerallynecessarytoreplacethedefectivepart.However,insomecasessuchasastickingringorvalve,itisnecessaryonlytocleanthepartandreplaceit.Thesecoldcompressionpressureswithfuelcut

    increased.

    Theoperatorwhoalwaysmaintainshisplantingoodmechanicalconditionwillberequiredtomakefew,ifany,adjustmentstothe

    183

    fuelsystemwhileitisrunning.Thefuelsupplytoanindividualcylindershouldnotbeadjusteduntilafteranexhaustivesearchhasrevealedthateveryotherconditionisnormalinallrespects.

    Afteranoverhaulinwhichpistonringsofcylinderlinershavebeenrenewed,considerableadjustmentoftheenginemaybenecessary.Lubricatingoilwillleakbytheringsintothecombustionspaceuntilaftertheringshaveproperlyseated.Thecompressionwillalsoincreaseasthesealbetweentheringsandthelinerbecomesmoreeffective.Thelubricatingoilwillburninthecylinder,givinganincorrectindicationoffueloilcombustion,andifthepumphasbeenproperlysetwhentheenginewasstarted,theenginewillbeoverloaded,oratleastunbalanced.Asthecompressionrisestonormalpressure,thepowerdevelopedwillincreaseasalsowilltheconditionsofpressureandtemperatureunderwhichthecombustiontakesplace.Hence,whenanoverhaulhasbeencompleted,theenginemustbecarefullywatcheduntiltheringsareseated,andthecompressionsettothelevelspecifiedintheinstructionsforthattypeofengine.Thisadjustmentwillbefacilitatedbytheuseoffrequentcompressiontests.Iftheengineisnotfittedsothatthecompressioncanbereadilyvaried,theengineshouldberununderlightloaduntilitiscertainthattheringshaveseated.

    9C3.Effectofunbalance.Ingeneral,

    developedwithinacylinderisdirectlyproportionaltothepowerproducedbythatcylinder,anyincreaseinonewillcauseacorrespondingincreaseintheother.Hence,ifthepowerisnotevenlydistributedthroughoutthecylinders,themeanindicatedpressuresintheindividualcylinderswillvary.Temperaturevariesdirectlyasthepressure,sothatadecreaseinpressurewillresultinacorrespondingdecreaseintemperature,Thequalityofcombustionobtaineddependsupontheheat,andheatuponthetemperature,sothatwithadecreaseinpressure,combustionwillnotbesogoodasbefore.Thispoorcombustionwilllowerthethermalefficiency,andtheoutputoftheenginewillbereduced.

    Ifanengineisdeveloping600bhp,anditsmechanicalefficiencyis80percent,theindicatedhorsepowerbeingdevelopedis750.Iftheenginehas10workingcylinders,eachcylindershouldbeproducing75indicatedhorsepower.Whenthisisnotthecasetheengineisunbalanced.Theeffectherewouldbetoincreasethemeanindicatedpressureofthosecylindersdoinglessthantheirshareofthework,andtodecreasethatofthosecylindersproducingmorethan75indicatedhorsepower.

    Theturningmomentactingonthecrankshaftisproportionaltotheforceactingonthepiston.Thisforce,inturn,istheresultofthemeanindicatedpressuredevelopedinthecylinder.Iftheseforcesfromdifferentcylindersarenotequal,

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 14/19

    theeffectofunbalanceisanoverheatedengine.Clearancesareestablishedbytheenginedesignertoallowforsufficientexpansionofmovingpartswhenoperatingatthedesignedtemperatures.Consequently,anengineoperatingattemperaturesinexcessofthoseforwhichitwasdesignedmaysuffermanycasualties.Excessiveexpansionofthemovingpartswillcauseseizuresandaburningupoftheengine.Ifthetemperaturesriseabovetheflashpointofthelubricatingoilvaporsinthecrankcase,anexplosionmayresult.Thehightemperaturesmaydestroythelubricatingoilfilmbetweenadjacentsurfacesofthemovingpartsandresultinfurtherincreasedtemperaturesduetotheincreasedfriction.Infact,theeffectisthesameasforoverheatingfromanycause.

    Sincethemeanindicatedpressure

    thereisanuneventurningmomentactingalongthelengthofthecrankshaft,andvibrationsresult.Thesevibrations,ifsufficientlysevere,mayshaketheenginelooseinitsfoundation,cracktheenginehousing,framework,andbedplate,destroythebearings,andevenbreakthecrankshaft.Itisobviousthatabadlyvibratingenginecanresultinseriousdamageandshouldbestoppedimmediately.

    Toavoidalltheharmfuleffectsofoverloadingandunbalancingofload,theloadonadieselengineshouldbeequallydistributedamongtheworkingcylindersandnocylinder,ortheengineitself,shouldeverbeoverloaded.Inconclusion,thecorrectproceduretofollowinbalancinganengineis:

    1.Maintaintheengineinpropermechanicalcondition.

    184

    2.Adjustthefuelsysteminaccordancewiththemanufacturer'sinstructions.

    3.Operatetheenginewithinthetemperaturelimitsspecifiedintheinstructions.

    4.Keepthecylindertemperaturesandpressuresasevenlydistributedaspossible.

    5.Trainyourselftodetectabadconditionbythesensesoftouchandhearing.

    D.ENGINEDYNAMICSANDVIBRATIONS

    9D1.Balancing.Itisnotpossibletobalanceoutalltheforcesproducingvibrationinanengine.However,theprimaryorprincipalforcesmaybealmostentirelybalancedbytheadditionofweightstothecrankshaftorconnectingrodsattheproperplaces.Balancingbytheadditionofweightssoastocreateforcesequalandoppositetothoseofinertiaisknownascounterbalancing.Usually,aftercounterbalancing,therearestillsomesmallforcesremainingthathavenotbeencompletelybalancedout.Theseremainingforcesareproducedbythereciprocatingparts,sinceitispossibletocompletelycounterbalanceallprimaryrotatingforces.

    excessivevibrationinservice.Thisisduetothelowspeedsusedwiththebalancingmachines.Dieselenginesintheservicemustoperateoverawidespeedrangeusually,andforthisreasontheyarenotaccepteduntilaftertheyhavebeentriedatallspeedsatwhichtheymustoperatewheninstalledinservice.

    Inanyevent,allrotatingpartsoftheengineshouldbeasaccuratelybalancedaspossible.

    9D2.Flywheels.Aflywheelstoresupenergy,theamountofwhichdependsupontherotatingspeed,theweight,andthediameterofthewheel.Inmostmarineenginesheavyflywheelsarenot

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 15/19

    Allrotatingpartsaresubjectedtotwokindsofunbalance.Theyarecalledstaticunbalanceanddynamicunbalance.Theunbalancedconditioninbothcasescanbereadilydeterminedandcorrectedbycounterbalancing.

    Astaticbalancingtestisconductedbyplacingthetwoendsoftherotatingpartonperfectlysmooth,horizontal,andparallelrails.Ifstaticallyunbalanced,thepartwillrollontherailsuntilitscenterofgravityreachesitslowestpositionandthenitwillcometorest.If,however,itscenterofgravityliesalongitsaxisitwillremainatrestwhenplacedinanyposition,anditistheninstaticbalance.

    Itfrequentlyoccursthatthecenterofgravityofabodyliesinitsaxisofrotationbutthatitsirregularshapeorcompositiongeneratesadisturbingforcewhenthebodyisrotated.Inthiscasethebodywouldbeinstaticbalanceandindynamicunbalance.Ingeneral,beforebalancing,mostrotatingpartsareinbothstaticanddynamicunbalance.

    Inallcases,completebalancingcanbeobtainedbyattachingweightstotherotatingbody,ifthepositionanddegreeofunbalancingareknown.Fordeterminingthisunbalanceallnavalshipyardsareequippedwithbalancingmachines.Experiencewithlargeandhighspeedmachineryhasshownthatbalancingmachinesshowgoodresultsbutdonotinsureagainst

    necessary,astheotherrotatingmassesontheshaftservethesamepurpose.Thesemassesaretheclutchandgenerator,andwithalargenumberofcylindersfiring,thepowerstrokeissmoother,andthereislessneedforaflywheel.

    Theflywheelservesthreepurposes,namely:

    1.Topreventtheenginefromstallingwhenrunningatidlingspeed.

    2.Toreducethevariationsinspeedatallloads.

    3.Tohelpcarrytheengineovercenterswhenstarting.

    Whenthespeedoftheshafttendstoincrease,theflywheelabsorbsenergy.Whenittendstodecrease,theflywheelgivesupitsenergytotheshaftinanefforttokeepitrotatingatauniformspeed.

    9D3.Torsionalvibrations.Thetwistinganduntwistingoftheshaftsystemresultintorsionalvibrations.Allshaftshavesomeflexibilityandwithweightsattachedtothem,suchaspistons,gearsandcamshaftsindieselengines,theyhavewhatisknownasanaturalfixedfrequency.Whenthefrequencyofthepowerstrokeimpulsescoincideswiththenaturalfrequencyoftheentireshaftsystem,atorsionalvibrationisproduced,andtheshaftisthensaidtobe

    185

    rotatingatacriticalspeed.Thiscriticalspeedisdependentonthedimensionsofthecrankshaft,thenumberofcylinders,allrotatingmassesoftheengine,othershaftingandmassesincludingthepropeller,thenumberofpowerstrokesperminute,thearrangementofthecylinders(whethertheyareinlineorinaV),andthecylinderfiringorder.

    bedplate,crankcase,orsimilarmembers,resultsinflexuralvibrations.Thecauseofflexuralvibrationliesinthefaultybalanceoftherotatingandreciprocatingmassesoftheengineandthepresenceofthesocalledfreeforcesorrockingcouples.Itmaybemanifestinthehorizontalorverticalplanesandmayinturnbethecauseofvibrationofsurroundingstructures,suchastheship's

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 16/19

    Withoutgoingintofurtherdetail,itissufficienttosaythattorsionalcriticalspeedsdependuponthenumberofpowerimpulsesperrevolutionandthenaturalrateofvibrationofthecombinedshaftsystem.Specialinstrumentsareavailablefordeterminingthedegreeoftorsionalvibrationandthenaturalfrequencyofanyparticularshaftsystem.

    Tochangetherangeorpointofmaximumvibrationofthecriticalspeedsforagiveninstallationitisnecessarytomakeachangeinthemassesontheelasticshaftsystem.Itisevidentthereforethatinenginesoperatingataconstantspeed,itismuchsimplertochangethenaturalfrequencyinordertoavoiddangerouscriticalspeedsthanitisinamarineenginerequiringawiderangeofoperatingspeeds.

    Criticalspeedsandmodeofvibrationsaredeterminedwiththeaidofaninstrumentrecordingtorsionalvibrations.Theenginebuilderscalculatethecriticalspeedsandfurnishaguaranteethat,withtheenginecoupledtotheloadforwhichitisdesigned,nodangerouscriticalspeedswilloccurwithintheoperatingspeeds.

    Torsionalvibrationsneednotnecessarilyshaketheframingoftheengineandmaynotevenbenoticeabletotheoperator.Thisfacthasbeenborneoutinseveralcasualtiesinwhichthecrankshaftbrokewithoutwarning.Excessivewearofgearsorofattachedauxiliariesandrepeatedbreakageofshaftingorotherpartsattachedtoitcanverywellbecausedbytorsionalvibrations.Mostinstallationsinnavalvesselshavebeencheckedandtestedtodeterminetheexactlocationoftorsionalvibrations,theiramplitudes,andfrequencies.

    9D4.Flexuralvibrations.Thebendingofthepartsoftheengineframingsuchasthe

    hullinmarineinstallations.Thistypeofvibrationdoesnotdependonthewaytheengineiscoupledtoitsload,andifanenginedoesnotvibrateontest,novibrationswilldevelopafteritisplacedinservice.

    9D5.Torsionalvibrationdampening.Therearecertainforcesactinginresistancetotorsionalvibrations.Theseforcesareduetothefrictionofthebearingsthatcarrytheshaftingandtheworkabsorbedinthemetaloftheshaftinresistingthetwistingcalledhysteresis.Propellersinthewaterarethemostinfluentialfactor.Alloftheseforcesmaybesaidtobetheresultofnaturalcauses,andtheyacttodampenout,orreducetheamplitudeofthetorsionalvibrations.Inadditiontothesenaturalforces,thereareothermethodsemployedtoreduceoreliminatetheseverityofthevibrations.Thismaybeaccomplishedbychangingthefiringorderofthecylindersintheengine,orbychangingtherotatingweights,ortheflexibilityoftheshaftings.

    Inadditiontotheabovedampeningfactorsandmethodstherearevarioustypesofcommercialtorsionalvibrationdampeners,suchasthatusedontheFM38D81/810cylinderengine.Eachsuchdampenermustbedesignedforaspecificshaftsystemoperatingwithaparticulartypeengine.Vibrationdampenersareusuallylocatedatornearapointofmaximumtorsionalvibrationamplitudealongtheshaft,generallyattheforwardendofanengine.

    Thereareseveraldifferenttypesofdampeners.All,however,accomplishthesamepurpose.Theytendtoreducetheswingingmotionoftheshaft.Thisisaccomplishedbyhavingafreelyrotatingdiskordisksactingagainstafixeddiskwhichcreatesfrictionandtherebyactsasabrake.Thispreventstheshaft,fromtwistinganduntwistingwhilerotatingonitsaxis.

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 17/19

    186

    E.ENGINEPRESSUREINDICATOR

    9E1.General.Efficientuninterruptedperformanceoftheenginedependsuponthemaintenanceofequalcorrectcompressionwithoutfuel,andfiringpressureswithfuelamongthevariouscylinders.Poorenginecompressioncauseslossofpower,pooracceleration,smokyexhaust,andstartingdifficulties.Anabnormallyhighfiringpressureinoneormorecylindersmaycauseenginewear,unevenrunning,andoverheating.Thesecompressionpressuresmaybemeasuredbyinstrumentsknownaspressureindicators.Compressionreadingswithoutfuelaretakenaftertheengineiswarmedupandthefuelcutoffonthatparticularcylinder.Firingpressurereadingsaretakenwiththeenginewarmedupandoperatingunderastatedloadatastatedspeed.

    9E2.Typesofengineindicators.Therearetwogeneralclassesofenginepressurerecordingindicators.Inthefirst,theinstrumentmeasuresgraphicallythecylinderpressureandatthesametimeindicatesthepositionofthepistonatanypointofitsstrokeorcycle.Inotherwords,theindicatordrawsadiagramofthepressureinthecylinderwithrespecttothemovementofthepiston.Sincethemovementofthepistonisameasureofthevolumedisplaced,thediagramisdrawntotheordinatesofpressureandvolume.Inthesecondgeneralclass,theindicatorrecordsthemaximumpressuresonly.

    Figure95showsthefundamentalprincipleoftheoperationofanengineindicatorinwhichthemovementofthepistonisrecorded.Theindicatorequipmentincludesasmallcylinderthatcanbeattachedtothemainworkingcylinderoftheengine,apistonandrodthatworkinthissmallcylinder,withapencilontheendoftherod.Thepencilpointbearsonthepapertackedtothedrumwhichismovedbyhook

    horizontaldistancewillrepresentpistonmovement.Asanexample,inatwostrokecycleengine,onecompleterevolutionorcyclewouldproduceadiagramliketheoneshownintheillustration.Thisdiagramiscalledanindicatorcard.Iftheindicatorspringiscalibratedsothatthenumberofpoundsofpressurerequiredtoraisethepencil1inchisknown,thentoreadthepressureatanypointonthecardallthatisnecessaryistomeasurethedistanceininchesfromtheatmosphericlineXYonthediagramtothepointatwhichtheamountofpressureisdesired,andmultiplythisbythecalibrationnumberofthespring.Thetotallengthofthediagramrepresentsthestrokeofthepiston.Thishorizontalscalethencanbelaidoffininches,feet,pistonstroke,orvolumeofpistondisplacement.

    Thistypeofindicatorislittleusedbyoperatingpersonnelonfleettypesubmarinestoday,mainlybecausethereisnoprovisionmadeonmodernenginesfortheattachmentoftheequipmentnecessarytotaketheindicatorcard,andalsobecausetherearenomeansofcompressionadjustmentotherthancompleteoverhauloftheengine.

    Theothertypeofindicator(indicatingmaximumpressuresonly)isusedtosomeextentfortakingmaximumcylinderpressures,tocheckagainstmanufacturer'stestdataandpreviousshipboardpressuretests.ThetwomostcommonlyusedindicatorsofthistypearethePremaxindicatorandtheKieneindicator.

    Themethodnormallyusedtochecktheequaldistributionofpoweramongthevariouscylindersistocomparetheexhaustgastemperaturesofthecylindersbymeansofthermocouplesplacedintheexhaustelbowsofeachcylinder.Pyrometerreadingshaveprovedtobeagoodcheckonthegeneralrunningconditionsofanengine,andtherecords

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 18/19

    andstringoverapulley.Anypressureintheworkingcylinderenterstheindicatorcylinderandforcesthesmallindicatorpistonandpencilinaverticaldirectionatthesametimethemainpistonmovesthecardinahorizontaldirectionbymeansofthestringandpulley.

    Itisreadilyseenthatanyverticaldistanceonthediagramwillrepresentpressure,andthe

    ofexhaustgastemperaturesareofgreatvalueinconjunctionwithindicatorreadingsasaidsingettingthebestresultsfromadieselengine.However,eventhoughtheexhausttemperaturesarenormal,theengineattimesmaynotdevelopitsratedhorsepower.

    9E3.Premaxindicator.ThePremaxindicatorisaninstrumentfordeterminingcylinder

    187

    Figure95.Principleofengineindicator.

    Figure96.Premaxpressureindicator.

    Figure97.Kienepressureindicator.

    188

    compressionandfiringpressures.The 9E4.Kieneindicator.TheKienediesel

  • 6/14/2015 SubmarineMainPropulsionDieselsChapter9

    http://maritime.org/doc/fleetsub/diesel/chap9.htm#fig901 19/19

    indicatorconsistsessentiallyofapistonsubjecttocylinderpressure,aspringagainstwhichthepistonactsandthetensionofwhichisadjustablebymeansofanindexsleeve,acontrolswitch,andaneonlightcircuitthatshowsifthepistonismoving.Itisattachedtothecylinderindicatorcockinthesamewayasanyotherindicator.Thepressureactingononesideofthepistonintheindicatorisgraduallyincreasedbyincreasingthespringtensionwiththeindexsleeveuntilthisspringpressureisequaltothemaximumcylinderpressurewhichactsontheoppositesideofthepiston.Whenthetwopressuresareequal,thepistonstopsmoving,asshownbystoppingoftheneonlightflashes.Thepressurereadingisthenreadonthescalesleeve.

    indicatorisapressureindicatorgageformeasuringthecompressionandfiringpressureofanenginewhileitisrunning.Thecompleteunitconsistsofapressuregageandanaircooledpressurechamberwhichisattachedtothecylinderindicatorcock.

    Thecylinderdischargepassesthroughtheindicatorplugupthroughthefiller,screen,andseatpiece.Thisraisesthevalve,allowingthegastopassthroughthedrilledholesintheguidepieceintothepressurechamberandontothegage.Theactionofthegasinthecurvedtubeofthegagetendstostraightenthetube,therebymovingthegageneedleandrecordingthepressureonacalibratedscale.

    189

    PreviousChapter

    SubDieselHomePage

    Nextchapter

    Copyright2013,MaritimeParkAssociationAllRightsReservedLegalNoticesandPrivacyPolicyVersion1.10,22Oct04