some of the physics that cooling allows -...

Post on 10-Mar-2021

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Eagle Ridge, Galena, Il. USASeptember 18 - 23, 2005

Walter OelertIKP – Forschungszentrum Jülich

Ruhr – Universität BochumCERN

The Reason for Beam Cooling:Some of the Physics that Cooling Allows

obvious:

cooling and control of coolingis the essential reason for our

existence,

gives us the opportunityto do and talk about

physics that cooling allows

• 1901 – 19101901 – Wilhelm Conrad Rontgen (Deutschland)

1902 – Hendrik Antoon Lorentz (Niederlande) undPieter (Niederlande)

1903 – Antoine Henri Becquerel (Frankreich)

Marie Curie (Frankreich) und Pierre Curie (Frankreich)

1904 – John William Strutt (Großbritannien und Nordirland)

1905 – Philipp Lenard (Deutschland)

1906 – Joseph John Thomson (Großbritannien-und-Nordirland)

1907 – Albert Abraham Michelson (USA)

1908 – Gabriel Lippmann (Frankreich)

1909 – Ferdinand Braun (Deutschland) undGuglielmo Marconi (Italien)

1910 – Johannes Diderik van der Waals (Niederlande)

• 1911 – 19201911 – Wilhelm Wien (Deutschland)

1912 – Gustaf Dalan (Schweden)

1913 – Heike Kamerlingh Onnes (Niederlande)

1914 – Max von Laue (Deutschland)

1915 – William Henry Bragg (Großbritannien-und-Nordirland undWilliam Lawrence Bragg (Großbritannien-und-Nordirland)

1916 nicht verliehen

1917 – Charles Glover Barkla (Großbritannien-und-Nordirland) (verliehen 1918)

1918 – Max Planck (Deutschland)(verliehen 1919)

1919 – Johannes Stark (Deutschland)

1920 – Charles Edouard Guillaume (Schweiz)

• 1921 – 19301921 – Albert Einstein (Deutschland) (verliehen 1922)

1922 – Niels Bohr (Danemark)

1923 – Robert Andrews Millikan (USA)

1924 – Karl Manne Siegbahn (Schweden) (verliehen 1925)

1925 – James Franck (Deutschland) undGustav Hertz (Deutschland)(verliehen 1926)

1926 – Jean Baptiste Perrin (Frankreich)

1927 – Arthur Holly Compton (USA) undCharles Thomson Rees Wilson (Großbritannien-und-Nordirland)

1928 – Owen Willans Richardson (Großbritannien-und-Nordirland) (verl. 1929)

1929 – Prince Louis Victor de Broglie (Frankreich)

1930 – Chandrasekhara Venkata Raman (Indien)

• 1931 – 19401931 nicht verliehen

1932 – Werner Heisenberg (Deutschland) (verliehen 1933)

1933 – Erwin Schrodinger (Osterreich) undPaul A. M. Dirac (Großbritannien-und-Nordirland)

1934 nicht verliehen

1935 – James Chadwick (Großbritannien-und-Nordirland)

1936 – Victor F. Hess (Osterreich)

Carl David Anderson (USA)

1937 – Clinton Davisson (USA) undGeorge Paget Thomson (Großbritannien-und-Nordirland)

1938 – Enrico Fermi (Italien)

1939 – Ernest O. Lawrence (USA)

1940 nicht verliehen

• 1941 – 19501941 nicht verliehen

1942 nicht verliehen

1943 – Otto Stern (USA) (verliehen 1944)

1944 – Isidor Isaac Rabi (USA)

1945 – Wolfgang Pauli (Osterreich)

1946 – Percy W. Bridgman (USA)

1947 – Edward Victor Appleton (Großbritannien-und-Nordirland)

1948 – Patrick Maynard Stuart Blackett (Großbritannien-und-Nordirland)

1949 – Hideki Yukawa (Japan)

1950 – Cecil Powell (Großbritannien-und-Nordirland)

• 1951 – 19601951 – John Cockcroft (Großbritannien-und-Nordirland) und

Ernest Thomas Sinton Walton (Republik-Irland)

1952 – Felix Bloch (USA) und Edward Mills Purcell (USA)

1953 – Frits Zernike (Niederlande)

1954 – Max Born (Deutschland)

Walther Bothe (Deutschland)

1955 – Willis Eugene Lamb (USA)

Polykarp Kusch (USA)

1956 – William B. Shockley (USA), John Bardeen (USA) undWalter H. Brattain (USA)

1957 – Chen Ning (Volksrepublik-China) undTsung-Dao Lee (Volksrepublik-China)

1958 – Pawel Tscherenkow (UdSSR), Ilja Frank (UdSSR) undIgor Tamm (UdSSR)

1959 – Emilio Segre’ (USA) und Owen Chamberlain (USA)

1960 – Donald A. Glaser (USA)

• 1961 – 19701961 – Robert Hofstadter (USA)

Rudolf Mossbauer (Deutschland)

1962 – Lev Landau (UdSSR)

1963 – Eugene Wigner (USA)

Maria Goeppert-Mayer (USA) und J. Hans D. Jensen (Deutschland)

1964 – Charles H. Townes (USA) ,Nikolai Gennadijewitsch Bassow (UdSSR) undAlexander Michailowitsch Prochorow (UdSSR)

1965 – Richard Feynman (USA), Julian Schwinger (USA) undShinichiro Tomonaga (Japan)

1966 – Alfred Kastler (Frankreich)

1967 – Hans Bethe (USA)

1968 – Luis W. Alvarez (USA)

1969 – Murray Gell-Mann (USA)

1970 – Hannes AlfvAn (Schweden)

Louis Noel (Frankreich)

• 1971 – 19801971 – Dennis Gabor (Großbritannien-und-Nordirland)

1972 – John Bardeen (USA), Leon Neil Cooper (USA) undRobert Schrieffer (USA)

1973 – Leo Esaki (USA) und Ivar Giaever (USA)

Brian Davon Josephson (Großbritannien-und-Nordirland)

1974 – Martin Ryle (Großbritannien-und-Nordirland) undAntony Hewish (Großbritannien-und-Nordirland)

1975 – Aage N. Bohr (Danemark), Ben R. Mottelson (Danemark) undJames Rainwater (USA)

1976 – Burton Richter (USA) und Samuel C. C. Ting (USA)

1977 – Philip W. Anderson (USA) ,Nevill F. Mott (Großbritannien-und-Nordirland) undJohn H. van Vleck (USA)

1978 – Pjotr Kapiza (UdSSR)

Arno Penzias (USA) und Robert Woodrow Wilson (USA)

1979 – Sheldon Glashow (USA), Abdus Salam (Pakistan) undSteven Weinberg (USA)

1980 – James Cronin (USA) und Val Fitch (USA)

• 1981 – 19901981 – Nicolaas Bloembergen (USA) und Arthur L. Schawlow (USA)

Kai Manne Siegbahn (Schweden)

1982 – Kenneth G. Wilson (USA)

1983 – Subrahmanyan Chandrasekhar (USA)

William A. Fowler (USA)

1984 – Carlo Rubbia (Italien) und Simon van der Meer (Niederlande)

1985 – Klaus von Klitzing (Deutschland)

1986 – Ernst Ruska (Deutschland)

Gerd Binnig (Deutschland) und Heinrich Rohrer (Schweiz)

1987 – Johannes Georg Bednorz (Deutschland) und Karl Alex Muller (Schweiz)

1988 – Leon Max Lederman (USA), Melvin Schwartz (USA) undJack Steinberger (USA)

1989 – Wolfgang Paul (Deutschland)

Hans Georg Dehmelt (USA)

Norman Foster Ramsey (USA)

1990 – Jerome I. Friedman (USA), Henry W. Kendall (USA) undRichard E. Taylor (Kanada)

• 1991 – 20001991 – Pierre-Gilles de Gennes (Frankreich)

1992 – Georges Charpak (Frankreich)

1993 – Russell A. Hulse (USA) und Joseph Hooton Taylor Jr. (USA)

1994 – Bertram N. Brockhouse (Kanada) und Clifford Glenwood Shull (USA)

1995 – Martin L. Perl (USA)

Frederick Reines (USA)

1996 – David M. Lee (USA), Douglas D. Osheroff (USA) undRobert C. Richardson (USA)

1997 – Steven Chu (USA), Claude Cohen-Tannoudji (Frankreich) undWilliam D. Phillips (USA)

1998 – Robert B. Laughlin (USA), Horst Ludwig Stormer (Deutschland) undDaniel Chee Tsui (USA)

1999 – Gerardus t’ Hooft (Niederlande) undMartinus J.G. Veltman (Niederlande)

2000 – Schores Alfjorow (Russland) und Herbert Kroemer (Deutschland)

Jack S. Kilby (USA)

• 2001 – 20042001 – Eric A. Cornell (USA), Wolfgang Ketterle (Deutschland) und

Carl E. Wieman (USA)

2002 – Raymond Davis Jr. (USA) und Masatoshi Koshiba (Japan)

Riccardo Giacconi (USA)

2003 – Alexei Abrikossow (Russland), Witali Ginsburg (Russland) undAnthony James Leggett (Großbritannien-und-Nordirland)

2004 – David Gross (USA), David Politzer (USA) und Frank Wilczek (USA)

98 22

Dipole Breathingoscillations of a one-dimensional

Bose-Einstein condensate

Bose-Einstein condensate:momentum distribution of

ultracold bosonic atoms

generate laser light for atom cooling,

trapping and manipulation

Vacuum chamber surrounded by

optical elements and magnetic coils

D.M. Harber et al, Phys. Rev. A to be published

P(o) x, x`, y, y` ε

COSY dipole

target

drift chambers

scintillator S1

scintillator S3

Cerenkovcounter

neutral particledetector

beam

drift chambers

scintillator S1

silicon pads + scintillator

pp ppK+K-

dipole

hexagonal drift chamber

silicon pads

+ scintillator

target

beam

K-

ppK+drift chambers

scintillator S1

silicon pads + scintillatorsilicon pads + scintillator

pp ppK+K-

dipole

hexagonal drift chamber

silicon pads

+ scintillator

target

K+

p

~1m

~1m

100

200

30 60 90 120 [minutes]

even

trat

e /s

0

no cooling stochastic cooling

spilltime

60 min.

η (= p /m c)π,max π

0 0.2 0.4 0.60

10

20

30

40

50

pp pp π 0

σ

(µb)

tot

2

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

10 2

0 0.5 1 1.5 2 2.5 3 3.5 4

Pbeam

[GeV/c]

total

elastic

pp η

ΣpK+

ΛpK+

ηpp ´

cross section

πd+

ppK K+ -

COSY

σ[m

b]

IUCFfirst:

0

50

100

150

200

250

300

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

missing mass [ GeV/c2 ]

p p → p p X

even

ts /

0.5

MeV

/c2

0

50

100

150

200

250

0.945 0.95 0.955 0.96 0.965missing mass [ GeV/c2 ]

even

ts /

0.5

MeV

/c2

pp → ppη

σ[n

b]

103

104

10

102

Q[MeV]1 10 10

2

pp → ppη′

+ pp FSI

phase space (arb. norm.)

+ ph FSI

(A.M.Green, S.Wycech, PR C55 (1997) R2167)

aph = +0.7fm + i 0.4fm

rph = -1.5fm - i 0.24fm

10

100

1000

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

14 MeV 25 MeV 39 MeV 73 MeV 92 MeV118 MeV141 MeV170 MeV196 MeV

t’ [(Gev/c) 2]

cos θ cm > -.8

dσ/d

t’ [

µ b

/ (G

eV/c

) ]2

p p Λ Λ

1.771 GeV/c

1.771 GeV/c

-1 -0,5 1

1.922 GeV/c

cos θ [CM]

d σ /d

Ω [

µb/s

r]

0 0,5

0

10

20

30

40

0

2

4

6

0

0,5

1

Λ

p p Λ Λ

p p Λ Σ + c c0

p p Σ Σ++

0.01

0.1

1

100

1000

1.4 1.5 1.6 1.7 1.8 1.9 2.0

Momentum [GeV/c]

10

σ [µ

]bpp ΛΛ

pp ΛΣ + cc 0pp Σ Σ --

pp Σ Σ ++

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7

Excess energy [MeV]

p+p Λ+Λ

σ [

µb]

Excess e

nergy [M

eV]

Pol

aris

atio

n

t’ [(GeV/c) ]2

-0,5

0

0,5

1

1,5

0 50 100 150 200

Sing

let

Fra

ctio

n

Excess energy [MeV]

S = 0

S = 1

pp Σ Λ 0

pp Λ Λ

y

x

p

θΛ

p

θ Λ*

θ Λ*

x

y

p p

Λ

z

z

p + p Λ Λ

Kent D. PaschkeCMU

SF :

SF = 0

SF = 1

MEX

QG: SF= const. = 0

p + p Λ Λ

Dnn ( = 1)

p + p Λ Λ

Knn ( = 1)

MEX --> tensor interaction --> spin flip --> Dnn and Knn negativ QG --> minor tensor interaction --> smaller and positive Dnn and Knn

Kent D. PaschkeCMU

MEXMEX

QG QG

p

θp

Λ

π−

C

p

Λ

π+

P

p

Λ

π−

CP

p

Λ

π+

Α = = 0.006 ± 0.014

direct CP violation test:

I(θ ) = I (1 + α P cos θ )yy 0I(θ ) = I (1 + α P cos θ )yy 0

P = P

α + α

α − αA = (α + α) / (α − α) = 0.006 +- 0.014

99first H - production and - detection at LEAR

Xe Target

pe

p

norm

aliz

ed d

efle

ctio

n [m

m]

99

94

11

+

e-

T∆E

e+

"trace"

23,300

e+γγ

time of flight [ns]

19.7 +/- 0.6

p

exit window for neutral particles

H. Herr, D. Möhl, A. Winnacker (1982)

CERN - Accelerator - Complex

LHC

former AAC complexchanged to AD

! " #

$ %

% !

% &

' ( ) * +& $ , & % - ! " , ! ! - " . , " $ - # & , " / -

' ( 0 & & ! &

/ " , % -

1

& & .

2 3 4 3 , ' ( ) * - 5 3 2 3 4

2

& # /

1

" "

' 2

( 1 6

P(p) = 100 MeV/c( E(p) = 5 MeV )

spill : < 3 . 107 every 90 sspill length ~ 80 ns

MAGNETIC SEPTUM

ELECTRIC SEPTUM

POSITRON P.U.

BUMPER 1

S.S. 1

SEXTUPOLE

RESONANCE CAVITY

HORIZONTAL & VERTICALSCRAPERS S.S. 4

B 3S.S. 3

S.S. 2

1.60 m COOLING LENGTH

2.00 m

0.54 m

B 2

B 4

DECELERATION P.U.

POSITRON P.U.

BEAM CURRENT

TRANSFORMER

R.F. CAVITY

FAST KICKER

BUMPER 2

B 1

see talk byPavel Belochitskii

• CPT invariancehigh precision spectroscopy

• gravitationmatter - antimatter

CPT invariance fundamental featureof local relativisticquantum field theories

gravitational forcebetween matter and antimatteris essentially unknowneven in the sign

Motivationto make and study Cold Antihydrogen

Apfel Anti-Apfel Anti-Apfel

Erde Anti-Erde

Standard-Modell der Physik: G - wohl verstanden G - nicht experimentell bestimmt

Erde

Standard model of physics

G – fairly well understood G – experimentally not known,not studied

apple anti-apple anti-apple

earth anti-earth earth

e

p

e

Hydrogen

Antihydrogen

mirror - - image

p

hydrogen 1s – 2s spectroscopycold (5-7 K) H atomic beam

two photon excitation

velocity measurement → correct 2. order doppler shift

laser photon density variation→ correct stark shift

1s

2s 2p(τ ~ 0.12 s) (τ ~ 1.4 ns)

243 nm

243 nm

M. Fischer et al., eprint physics/0311128

2 2[ ] [ ] [ ][

[ ] 1 /[ ] 1

[ ] [ ][ ] [ ] [/] [ ] ]

q p M pq p

m e q eR HR

m em e q e m pe MH

+ + +

− − −

⎛ ⎞ ⎛ ⎞ += ⎜ ⎟ ⎜ ⎟ +⎝ ⎠⎝ ⎠

Status of CPT invariance in leptonic

and hadronicsystems

19 x 10-119 x 10-11p p

1032 x 10-92 x 10-12e+ e-

10152 x 10-32 x 10-18K0 K0

freegift

measurementaccuracy

CPT testaccuracy

_

_

part

icle

–an

tipar

ticle

sys

tem

s

different CPT tests:

Teilchen Falle (Harvard)

-V

-V

Positionsdetektor

Abbremsfolie (Be)

p

Gas-Zelle (He+ x%SF6)Ringelektrode

Vakuum < 10 -17

0

-V

Wirkungsgrad des Einfanges:

5 x 10 at V = - 4 kV- 4

Φ = Φ

2d²0[ ]z²z

z

0

-V

a)

b)

+

_

potential valleyfor + charge

potential mountainfor – charge

impossible to trap positive und negative chargewithin the same Penning-trap

project:make cold particles of opposite charge to interact

P1

P2

P3

P4

XET

XCTXR

BV1

XCB

XEB

BV2

BV3

HV

T1

T2

T3

T4

T5

T6

T7

T8

EET

ECTERECB

RL

PCTPRPCB

PEC

B1

B2

TBE

DEG

Positron-PartA

ntiproton-Part

Desing of the A

TRA

P - Trapdone by the H

AR

VA

RD

-Collaborationpartners

Antihydrogen - Production A

rea

e+ trap

p trap

H production

area

ball valve

ATRAP-I

scintillatingfibres

BGO

e+

degrader(Be) p

rotatingelectrode

e+ trap

p trap

5 cm

e energy+ ene

rgy

[eV

]

20

30

CO

UN

TS

Positron Cooling of Antiprotons with ~ 1.9 * 10 e @ - 15 Volt5 +

no positrons

85 ms

135 ms

535 ms

785 ms

910 ms

960 ms

1035 ms

1035 ms

1535 ms

5035 ms

10035 ms

2035 ms

0 -5 -10 -15 -20 -25 -30 -35 -40

Voltage [ V]

02040

02040

35 ms Cooling time:

Colling time [s]

Mea

nan

tipro

ton

ener

gy

energye+

• maximize production rates !• produce ‘cold‘ H0 !

study trapping mechanisms !• ground state H0 !

• cold trapped positrons• cold trapped antiprotons• overlap of p and e+

• combine p and e+ for production of H0

the way to high precision H0 spectroscopy

• trap neutral H0 !!!• laser cooling !!!• 1s-2s spectroscopy !!!• gravitational questions !!!

ATRAP-I

ATRAP-II

ATRAP-I

BGO

PPAC

e+

outerscintillator2 layer( 6+12 )

scintillatingfibres(3 layer)

16 fold PM for fibres

110 mCi22Na source

PM for BGOp

SCsolenoid5.4 T

outerscintillator

scintillatingfibres

tracking ofchargedparticles

γ- detection

ConfigurationofATRAP-II

BGO crystal

scsolenoid

Penningtrap

Laser

Laser access

trappingof HIoffe trap

for H

50 cm

HV T

1

T2

T3

T4

T5

T6

T7

T8

EE

T

EC

TE

RE

CB

RL

PC

T

PR

PC

B

PE

C

B1

B2

TB

E

DE

G

BV

2 BV

3

0 5 10 15 [cm] 20

87 V/cm

158 V/cm

Refernz- Potentialmulde

100

0

-100

-200

-300

-400

-500

Das elektrische Feld (E) ionisiertElektronenbahnen im Antiwasserstoff - Atom

10

1

Hauptquantenzahl n

elek

tris

ches

Fel

d (

E)

[V/c

m] E = (3.21 x 10 V/cm) / n8 4

100

1000

10 000

20 40 60 80 100 120 140 160 180 200 220 2400.1

p

n = 1

n = 200

n = ~ 49

95 V/c

35 V/c

n = 43 n = 55

the electric field (E) ionizesthe antihydrogen atom

elec

trica

lfie

ld(E

) [V

/cm

]

main quantum number n

H production and detection(Phys. Rev. Lett. 89 (2002) 233401 , 213401)

measured

from simplelinear fit

linear fit plus variousfield-ionization models

n – state distribution

2000

3000

1000

0

15

25

50

anti

hydr

ogen

ato

ms

/ 250

000

ant

ipro

tons

millions of positrons0 1 2 3 4 5

F ~ 360 V/cm

3450 H

5 x 10 e6 +

27 H

5 x 10 e6 +

normalization well F ~ 90 V/cm

F - 3/2

F - 5/2

F - 2

1000

100

10

1

10 100

10- 3

10- 4

10- 5

prestripping field F [V/cm]filled symbols: data from 2003open symbols: data from 2002

num

ber

of a

ntih

ydro

gen

atom

s, N

num

ber

of

antih

ydro

gen

atom

s / a

ntip

roto

n

0.6 0.5 0.4 0.3 0.2 0.1

N = a F + c - 2

ρ is less than this value in µm

more deeply bound states

velocity measurement

potential distribution in the trap

V /

Vol

ts

z / cm-140

-120

-40

-20

0 e+

p p

ionizationwell

analysiswell

-60

-80

-100

potential distribution in the trap

V /

Vol

ts

z / cm-140

-120

-40

-20

0 e+

p p

ionizationwell

analysiswell

-60

-80

-100

H

e+

e+p

velocity measurement

potential distribution in the trap

V /

Vol

ts

z / cm-140

-120

-100

-80

-60

-40

-20

0 e+

p p

H pe+

ionizationwell

analysiswell

velocity measurement

H arehotter thanexpected

velocity measurementaccepted for publication PRL

∆B ~ 1T

H trapping efficiency

magnetic quadrupol trap (Ioffe trap)

< 5 % (4.2 K , ∆B=1T)

15

0m

,g6

5+

Dy

15

06

5+

Tb

14

36

2+

14

3m

,g6

2+

Eu S

m

157

68

+E

r127

55

+C

s

157

68

+T

m

17

37

5+

16

67

2+

16

67

2+

180

78+

Pt

Re

Hf

Ta

15

26

6+

15

26

6+

Ho

Dy

15

96

9+

15

96

9+

13

65

9+

Tm

Yb

Pr

W

16

47

1+

17

17

4

Lu

16

47

1+

Hf

14

56

3+

12

25

3+

Gd

I

17

57

6+

16

17

0+

13

86

0+16

17

0+

16

87

3+

16

87

3+

Os

Ta

W

Yb

Nd

Lu

14

96

5+

Tb

15

66

8+

15

66

8+

Er

Tm

15

46

7+

15

46

7+

HoEr

16

37

1+

14

76

4+

14

76

4+

14

76

4+

Dy

Tb

Gd

Lu

16

57

2+

16

57

2+

17

27

5+

16

37

1+

17

07

4+

Hf

TaR

e

W

Hf

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

8

7

6

5

4

3

2

1

0

Frequency / Hz

Inte

nsity

/a

rb.u

nits

mass known mass unknown

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Inte

nsity

/arb

.un

its

Frequency / Hz

143 62+gSm

143 62+mSm

754 keV

33800 33900 34000 34100 34200 34300 34400 34500

(1 particle)(1 particle)

m/ m 700000 ~~

Litvinov et al.

top related