simulations on diffusion and transport...

Post on 09-Jul-2018

226 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Simulations on diffusion and transport phenomena

・phenomena‐ Examples for transport and diffusion phenomena‐ Discuss about the common characteristics and nature among these examples

・physical models‐ Explain to the mathematical model about Brownian motion, turbulent diffusion, and turbulence transport

・numerical simulations‐ Examples for simulating one‐particle diffusion, thermal convection, and passive scalar turbulence

Field of computational applied science T. Watanabe

Homework (report)  1.Mention about the example of transport and diffusion phenomena 

that you can observe at your ordinal life, engineering  system,  etc. Then explain about their characteristics by using the mathematics, pictures, painting, and so on. 

2.Discuss about the importance and significance when the numerical simulations for examples mentioned in 1. are performed. 

・using A4 size paper and summarizing within 1~2 sheets・making cover sheet and state your student number , nameand the date of submission・site for submission:  2号館4階422B室 (insert in the box)・deadline for submission July, 3(Fri.) 17:00

3.Please give your thoughts on this lecture.

Examples on transport and diffusion phenomena

• pollutant diffusion• come flying volcanic ash, yellow dust • water vapor, thermal (cloud physics)• thermal transport • combustion• chemical reaction flow• ・・・

http://www.nsc.go.jp/mext_speedi/index.html

緊急時迅速放射能影響予測ネットワークシステム(System for Prediction of Environmental Emergency  Dose Information, SPEEDI)

Outflow and diffusion of a radioactive substance from a nuclear power plant at Fukushima 

原子力施設から大量の放射性物質が放出されたり、あるいはそのおそれがあるという緊急時に、周辺環境における放射性物質の大気中濃度や被ばく線量などを、放出源情報、気象条件および地形データをもとに迅速に予測するシステム

Computational details on SPEEDI

Yellow dust

直径4ミクロン程度

環境省パンフレットより抜粋

Volcanic ash (Sakurajima, kagoshima)

桜島の噴火の衛星写真(Wikipediaより引用)

火山灰: 火山からの噴出物で直径2mm以下の大きさのものアイスランド島の火山噴火(2010年4月) ⇒ 経済活動への影響大

Birth of cloud

地球上の雲を概観した衛星画像(Wikipediaより引用)

雲粒: 直径1‐10μm程度⇒ 凝結、粒同士の衝突合併を繰り返し 0.2 mm程度まで成長

さらに成長すると雨粒(1mm)になり,重力により落下する.

Formation of cumulonimbus

・浮力により上昇した空気塊が凝結し、雲を作って

消滅するプロセスを繰り返しながら雲頂が高くなっていく。

・凝結の潜熱により雲内は暖められ,不安定な雲の成長が続く。鉛直方向に空気の性質は輸送される。

Complicated physical system interacting between fluid and particles with thermal transport

・ motions of air and vapor  (fluid equations)・ variation of temperature (thermodynamics eq.)・ growth of droplets, deformation, merging, splitting(motions for ensemble of particles)

読売新聞 平成21年3月15日

気象庁HP:http://www.jma.go.jp/jma/kishou/know/whitep/1‐3‐1.html

Progress numerical weather prediction :Importance for understanding the meso‐scale atmospheric phenomena

・⊿T > ⊿Tc

・ simple example for thermal convectionupper plate : lower thermal sourceLower plate: higher thermal source             :  temperature difference 

・⊿T < ⊿Tc

Thermal conduction (only) conduction+convection⇒Benard convection

L

Thermal convection

Thermal convection

Formation of Benard cellin experiments

Simulation for turbulent thermal convectionJ. Schumacher, Phys. Rev. Lett. 100, 134502 (2008) 

Common physics and nature・ Heat / mass transfer by fluid motions(transport・diffusion)・ complicated interaction between many particles and 

surrounded fluid with heat transfer・ existence of motions with the wide range of temporal 

and spatial scales

1.Numerical simulations for transport and diffusion of many particles in fluids

2.Numerical simulations for heat transfer model in turbulence 

Let’s consider the role of fluid motions on transport/diffusion phenomena ! 

Nature of “flows” -turbulence-

Turbulence

• Complicated and irregular flow pattern (⇔laminar )

• Instability of flow  (non‐linear)• Energy dissipation 

(non‐equilibrium)• Strong ability of mixing 

and transfer 

Visualization of grid generated turbulent flow

Reynolds number  Re : Non‐dimensional parameter chara

νUL

ReU : characteristic vel. L : characteristic lengthν: kinematic viscosity  

U~2m/s, L~1m/s, ν~1.5×10‐5 m2/s 

Re >> 1 : turbulent (airplane, car, etc…)Re < 1   : laminar (microbe)

例: flow around the walking man

Re ~105  

・flow around the circular cylider (種子田定俊著: 画像から学ぶ流体力学(朝倉書店))

Re=1404, 大小様々な渦を含む乱雑な流れ。後流ではカルマン渦列が形成されている。

D. J. Trriton, Physical Fluid Dynamics, Oxford Sci. Pub. , pp 29

(日本流体力学会編、「流れの可視化」 朝倉書店,  p155)

St Christopher and the vortex A Karman vortex in the wake of St Christopher’s heels

T. Mizota et al. Nature 404, p.226

Direct numerical simulation of turbulence

fuuuu

21 νp

ρt

0 uContinuty equation 

Navier-Stokes eq.

Equations of motion for fluid

:, txu:ρ :ν

:, tp xFluid velocity Pressure Density (=const.) viscosity

zyx

kji

・Initial and boundary conditions  → solving the partial differential equation 

・discretization of variables hlhl tt uxuxu ,,

,2,1,0 lxΔlx l    ,2,1,0 htΔht h   

・differential method, spectral method, etc…

1. Vortical structures in turbulence        

sωωIsosurface of 

vorticity:

3D turbulence

2.Vortical structures in turbulence

vorticitysmall 0 large

2D turbulence

1.Particle diffusion in fluids 

Particle diffusion  :  Brownian motion

ttζdttdm Rvv

Drag force Random force due to the water molecules 

tdttd vx

Equation of motion for Brownian particle in fluid 

fluid

particle

tR

:tv :tx Position vector Velocity vector

:m Mass of particle 

Temporal evolutions of Brownian particles

Trajectories of four particles2,000 particles (animation)

Particle diffusion: Brownian motionStatistical law: time dependence of mean squared displacement

Dtxtx 20 2

:representing  ensemble average 

ζTkD B

D:  diffusion coefficient 12~ TlD

DlT 2~ー> time scale that cluster of particles extends up to the scale l

lT

Particle diffusion by turbulence

ttttζdttdm Rxuvv

,

Stokes drag force Random forcedue to water molecules

tdttd vx

Equation of motion for single particle in turbulent flow

:, txu Velocity vector  at x,time t

Fluctuating randomly in space and time

t,xu

粒子 tR

Simulation on turbulent diffusion of particles

D=400 D=1000 D=4000

09.0tS 22.0tS 9.0tS

D=density of particle / density of fluid

dssvxtxt

0

0

Evaluation of diffusion coefficient

2021lim xtxt

Dt

t

t t

τdτsvsvτt

sdsdsvsvxtx

0

0 0

2

2

0

tvdttdx

τdτsvsvD

0

Diffusion coefficient

τdτsτsxussxuζTkD B

0,,

0, tRttutvζdttdvm x

ζtRttxutv ,

Molecular diffusion Turbulent diffusion

Light particle :

Diffusion by thermal motions <<  Diffusion by turbulent flows

smO 21310 smO 2110

(water(20℃)、particle diameter = 1μm、Re=104)

2.Heat and mass transfer in fluids

Basic equation for thermal convection

0 u

・equation of motion for fluid

Tz

Raptu

PrReRe1

22uuu

TTtT 2

PrRe1

u

advection diffusion

Buoyancy term

κ

νPr

3TgLΔRa

Prandlenumber

Rayleigh 

number:体積膨張率 g:重力加速度 ν:動粘度

Rayleigh’s linear stability theoryRayleigh number:

流体中での対流に関する無次元数レイリー数が大きくなると対流が発生する。対流の擾乱が成長も減衰もしないような臨界状態を臨界レイリー数と呼ぶ。

Critical Rayleigh number:

⇒no convection

⇒onset of convection

2

322 )(k

kRaC

3TgLΔRa

cRa

5.657cRacRaRa

cRaRa

●領域のサイズ Lx=8 , Ly=1

●格子点の数 Na=160 ,Nb=20

●上下の壁の温度 T1=1 , T2=0

●レイノルズ数 Re=1

●プラントル数 Pr=1

●レイリー数 Ra=600,700,2000,10000

●すべり境界条件(上下) 周期境界条件(左右)

Numerical simulations for thermal convection

Results for above critical Ra

T V

Ra=700

t=1.0 t=1.0

t=25.0

t=30.0

t=25.0

t=30.0

t=40.0 t=40.035.2267.2

38

k  

Simulation results for higher Ra numbers

Ra=2000    

T V

Ra=10000   

Passive scalar transport under mean gradient

・ Existence of mean scalar gradients

distribution of Temperature (T), salinity (S) inside the sea (normal direction)

104.0 CmT 101.0 mkggS

Schmit number ,Plandle number

 CS

310OSC  

10~1 OOPr   : heat

: salinity

Passive scalar:  Any motions of scalar quantitydoes not affect to fluid motions 

Passive scalar under uniform mean gradient

TκTtT 2 uAdvection – diffusion eq.

Fluctuation of               does not affect to fluid motion tθ ,x

Scalar field

mean gradient

xGxx tθtT ,,

G,0,0G

32 Guθκθ

u

T

z

fluctuation

計算機A 計算機B

計算機D 計算機C

Image of parallel computation

Large-scale simulationParallel computation by using 「supercomputer」

A B

D C

「Kei」 ( CCP2012,Kobe )

Large-scale simulation for turbulent transport

Mixing by turbulent vortices

103 102048 NGrid points:

Process numbers: pe=128

Total memory:2TB(=2000GB)

Computation time:5000(h)=208days

Buoyancy term=0

Vortical structures (green) and  temperature sheets(blue)

Visualization of numerical results of turbulent transport 

vorticity(z)(color) and scalar gradient (x‐y plane)(black)

Visualization of numerical results of turbulent transport 

Structures in 2D slice

x

z

zx ,,

・z-direction

・x-direction

-1

263Rcase G

海上保安庁海洋情報部 http://www1.kaiho.mlit.go.jp/

distribution of temperature at sea surface

44

2D slice                by 20483 DNS

2

0,, yx

L

45

L

5

2D slice                by 20483 DNS 0,, yx

46

905

10

2D slice                by 20483 DNS 0,, yx

Summary of lecture• Physics of transport and diffusion phenomena

‐Mathematical models of particle motion in fluid and its numerical simulations‐Model for heat and mass transfer in turbulent flow(Simulations for scalar field advected by fluid motion)

• Diffusion of the ensemble of particles by turbulence(molecular diffusion  vs.  Turbulent diffusion)

• Heat transfer by turbulence(cliff structures in temperature field, correlation with vortices )

Effective use of the transfer ability of turbulence Diffusion properties by turbulece

Importance for better understanding of the flow properties 

Application for constructing more reliable simulation models (weather prediction, pollutant diffusion) 

Homework (report)  1.Mention about the example of transport and diffusion phenomena 

that you can observe at your ordinal life, engineering  system,  etc. Then explain about their characteristics by using the mathematics, pictures, painting, and so on. 

2.Discuss about the importance and significance when the numerical simulations for examples mentioned in 1. are performed. 

・using A4 size paper and summarizing within 1~2 sheets・making cover sheet and state your student number , nameand the date of submission・site for submission:  2号館4階422B室 (insert in the box)・deadline for submission July, 3(Fri.) 17:00

3.Please give your thoughts on this lecture.

top related