sib-rams/lpdm modeling for evaluating regional scale co 2 fluxes

Post on 13-Jan-2016

37 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

DESCRIPTION

2007 ChEAS meeting. SiB-RAMS/LPDM modeling for evaluating regional scale CO 2 fluxes Marek Uliasz, Colorado State University. global CO 2 - PCTM. global CO 2 - PCTM. SiB-RAMS. global CO 2 - PCTM. SiB-RAMS. LPDM. global CO 2 - PCTM. SiB-RAMS. LPDM. influence functions for - PowerPoint PPT Presentation

TRANSCRIPT

SiB-RAMS/LPDM modeling for evaluating regional scale CO2 fluxes

Marek Uliasz, Colorado State University

2007 ChEAS meeting

global CO2 - PCTM

global CO2 - PCTM

SiB-RAMS

global CO2 - PCTM

SiB-RAMS

LPDM

global CO2 - PCTM

SiB-RAMS

LPDM

influence functions for concentrations and flux measurements

-2000 -1000 0 1000 2000

x [km]

-1000

0

1000

y [km]

0

0.1

0.2

0.3

0.4

0.5

Influence functions for 31 towers for 30 day sampling period starting June 9, 2004 (passive tracer)

-2000 -1000 0 1000 2000

x[ km]

-1000

0

1000

y km]

0

0.0 1

0.0 5

0.1

0.5

1

2

respiration flux

-2000 -1000 0 1000 2000

x[ km]

-1000

0

1000

y km]

0

0.0 1

0.0 5

0.1

0.5

1

2

fossil fuel flux

-2

-1

-0.5

-0.1

-0.05

-0.01

0

-2000 -1000 0 1000 2000

x[ km]

-1000

0

1000

y km]

assimilation flux

-500 0 500 1000 1500

x [km]

-500

0

500

1000

1500

y [km]

0

0.1

0.2

-500 0 500 1000 1500

x [km]

-500

0

500

1000

1500

y [km]

0

0.1

0.2

WLEF 30m WLEF 396m

-500 0 500 1000 1500

x [km]

-500

0

500

1000

1500

y [km]

0

0 .01

0 .02

-500 0 500 1000 1500

x [km]

-500

0

500

1000

1500

y [km]

0

0 .01

0 .02

WLEF 396mWLEF 30m

Effect of local and distanst CO2 fluxesEffect of local and distanst CO2 fluxes

0

100

200

300

400

500

600

height [m]

SiB-RAMS vertical resolution

0

100

200

300

400

500

600

height [m]

SiB-RAMS vertical resolution

216 288 360 432 504 576 648 720 792 864 936

time [hours]

-30

-20

-10

0

10

20

CO2 [ppm]

SiB-RAMS

WLEF 396m

216 288 360 432 504 576 648 720 792 864 936

time [hours]

-30

-20

-10

0

10

20

CO2 [ppm]

SiB-RAMS

How big area around the WLEF need to be considered to allow surface CO2 fluxes to catch a larger scale concentration variability?

50 km?500 km?1000 km?Go global?

How big area around the WLEF need to be considered to allow surface CO2 fluxes to catch a larger scale concentration variability?

50 km?500 km?1000 km?Go global?

216 288 360 432 504 576 648 720 792 864 936

time [hours]

-20

-15

-10

-5

0

5

CO2 [ppm]

SiB-RAMS

LPDM R=50 km

216 288 360 432 504 576 648 720 792 864 936

time [hours]

-20

-15

-10

-5

0

5

CO2 [ppm]

SiB-RAMS

LPDM R=200 km

216 288 360 432 504 576 648 720 792 864 936

time [hours]

-20

-15

-10

-5

0

5

CO2 [ppm]

SiB-RAMS

LPDM R=500 km

216 288 360 432 504 576 648 720 792 864 936

time [hours]

-20

-15

-10

-5

0

5

CO2 [ppm]

SiB-RAMS

LPDM R=1000 km

216 288 360 432 504 576 648 720 792 864 936

time [hours]

-20

-15

-10

-5

0

5

CO2 [ppm]

SiB-RAMS

LPDM R=1500 km

216 288 360 432 504 576 648 720 792 864 936

time [hours]

-20

-15

-10

-5

0

5

CO2 [ppm]

SiB-RAMS

LPDM RAMS domain

0 4 8 12 16 20

tracer residence time in US domain [days]

0

0.02

0.04

0.06

0.08

0.1

frequency [-]

KWKT 457m

0 4 8 12 16 20

tracer residence time in US domain [days]

0

0.005

0.01

0.015

0.02

0.025

frequency [-]

WLEF 396m

0 4 8 12 16 20

tracer residence time in US domain [days]

0

0.005

0.01

0.015

0.02

0.025

frequency [-]

AMT 107m

0 4 8 12 16 20

tracer residence time in US domain [days]

0

0.005

0.01

0.015

0.02

0.025

frequency [-]

ARM 60m

0 4 8 12 16 20

tracer residence time in US domain [days]

0

0.005

0.01

0.015

0.02

0.025

frequency [-]

CDL 30m

0 4 8 12 16 20

tracer residence time in US domain [days]

0

0.005

0.01

0.015

0.02

0.025

frequency [-]

FRS 20m

0 4 8 12 16 20

tracer residence time in US domain [days]

0

0.005

0.01

0.015

0.02

0.025

frequency [-]

HRV 30m

0 4 8 12 16 20

tracer residence time in US domain [days]

0

0.005

0.01

0.015

0.02

0.025

frequency [-]

WPL 10m

Tracer residence time [days] for different towers in 5800x3400 km modeling domain over continental US derived from SiB-RAMS/LPDM simulations for 30 day period (June 9 - July 8, 2004)

0 20 days

0

0.04

0.08

0.12

0.16

0.2

frequency [-]

0 12 24 36 48 60 72tracer residence time [hours]

600x600km domain

CO2 at 396m WLEF towerinfluence functions analysis for 600x600kn domain

CO2 at 396m WLEF towerinfluence functions analysis for 600x600kn domain

161 162 163 164 165 166 167 168 169 170 171sampling time [days]

-50

0

50

100

150

200

250

300

350

400

CO2 [ppm]

initial field

WLEF 396m

161 162 163 164 165 166 167 168 169 170 171sampling time [days]

-50

0

50

100

150

200

250

300

350

400

CO2 [ppm]

initial field

inflow flux

WLEF 396m

161 162 163 164 165 166 167 168 169 170 171sampling time [days]

-50

0

50

100

150

200

250

300

350

400

CO2 [ppm]

initial field

inflow flux

backgroundWLEF 396m

161 162 163 164 165 166 167 168 169 170 171sampling time [days]

-50

0

50

100

150

200

250

300

350

400

CO2 [ppm]

initial field

inflow flux

background

surface flux

WLEF 396m

161 162 163 164 165 166 167 168 169 170 171sampling time [days]

-25

-20

-15

-10

-5

0

5

10

15

CO2 [ppm]

background variations

surface flux

WLEF 396m

161 162 163 164 165 166 167 168 169 170 171sampling time [days]

-25

-20

-15

-10

-5

0

5

10

15

CO2 [ppm]

background variationsWLEF 396m

161 162 163 164 165 166 167 168 169 170 171sampling time [days]

-25

-20

-15

-10

-5

0

5

10

15

CO2 [ppm]

background variations

respiration

WLEF 396m

161 162 163 164 165 166 167 168 169 170 171sampling time [days]

-25

-20

-15

-10

-5

0

5

10

15

CO2 [ppm]

assimilation

background variations

respiration

WLEF 396m

161 162 163 164 165 166 167 168 169 170 171sampling time [days]

-25

-20

-15

-10

-5

0

5

10

15

CO2 [ppm]

fossil fuel

assimilation

background variations

respiration

WLEF 396m

171 172 173 174 175 176 177 178 179 180 181sampling time [days]

-25

-20

-15

-10

-5

0

5

10

15

CO2 [ppm]

fossil fuel

assimilation

background variationsrespiration

WLEF 396m

181 182 183 184 185 186 187 188 189 190 191sampling time [days]

-25

-20

-15

-10

-5

0

5

10

15

CO2 [ppm]

fossil fuel

assimilation

background variationsrespiration

WLEF 396m

162 165 168 171 174 177 180 183 186 189sampling time [days]

-25

-20

-15

-10

-5

0

5

10

15

CO2 [ppm]

fossil fuel

assimilation

background variationsrespiration

WLEF 396m

216 240 264 288 312 336 360 384 408 432 456 480

sampling time [hours]

350

360

370

380

390

400

CO2 [ppm]

WLEF 396m obsSiB-RAMSSiB-RAMS/LPDM (600x600km)

216 240 264 288 312 336 360 384 408 432 456 480

sampling time [hours]

350

360

370

380

390

400

CO2 [ppm]

WLEF 396m obsSiB-RAMSSiB-RAMS/LPDM (600x600km)

216 240 264 288 312 336 360 384 408 432 456 480

sampling time [hours]

350

360

370

380

390

400

CO2 [ppm]

WLEF 396m obsSiB-RAMSSiB-RAMS/LPDM (600x600km)

350

360

370

380

390

400

CO2 [ppm]

WLEF 396m obsSiB-RAMS/LPDM, c0=5

SiB-RAMS/LPDM, c0=2

216 240 264 288 312 336 360 384 408 432 456 480

sampling time [hours]

350

360

370

380

390

400

CO2 [ppm]

WLEF 396m obsSiB-RAMS/LPDM, c0=5

SiB-RAMS/LPDM, c0=2

216 240 264 288 312 336 360 384 408 432 456 480

sampling time [hours]

2 ( , , ) (( , , , ) ( , ,) ( ) ), )RCO AFLUX x y t R x y t A x yx ty x yβ β= +

respiration & assimilation fluxes simulated by SiB-RAMS

respiration & assimilation fluxes simulated by SiB-RAMS

time independent corrections to beestimated from concentration data

for each inversion cycle

time independent corrections to beestimated from concentration data

for each inversion cycle

k – index over observations (sampling times and towers)i – index over source areas (grid cells)

Implementation for a given inversion cycle Implementation for a given inversion cycle

top related