section 5: lecture 3 the optimum rocket...

Post on 02-Jan-2021

12 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1MAE 5420 - Compressible Fluid Flow

Section 5: Lecture 3

The Optimum Rocket Nozzle

Not in Anderson

flow

2MAE 5420 - Compressible Fluid Flow

Nozzle Flow Summary

a)

b)

c)

d)

e)

f)

g)

3MAE 5420 - Compressible Fluid Flow

Next: The Optimum Nozzle (1)

Stephen Whitmore
Stephen Whitmore
Stephen Whitmore

4MAE 5420 - Compressible Fluid Flow

Next: The Optimum Nozzle (2)

Thrust = m•

Vexit + Aexit (pexit ! p" )

for given •

m!

Vexit "Aexit

A*

1

Pexit"Aexit

A*

! both {Vexit ,Pexit} contribute to thrust

! what Aexit

A*

is "optimal "?

5MAE 5420 - Compressible Fluid Flow

Rocket Thrust Equation

• Non dimensionalize as

• For a choked throat

m•

A*P0

=1

T0

!Rg

2

! +1

"#$

%&'

! +1! (1( )

Thrust = m•

Vexit + Aexit (pexit ! p" )

Thrust

P0Athroat

=m•

Vexit

P0Athroat

+Aexit

Athroat

(pexit ! p" )

P0

Thrust

P0A*

=Vexit

T0

!Rg

2

! +1

"#$

%&'

! +1! (1( )

+Ae

A*

(pexit ( p) )P0

6MAE 5420 - Compressible Fluid Flow

Rocket Thrust Equation (cont’d)

• For isentropic flow

• Also for isentropic flow

Vexit

= 2cpT0 exit

! Texit

"# $% = 2cpT0 exit

1!Texit

T0 exit

"

#&&

$

%''

1/2

p2

p1

=T2

T1

!

"#

$

%&

'' (1

Thrust

P0A*

=Vexit

T0

!Rg

2

! +1

"#$

%&'

! +1! (1( )

+Ae

A*

(pexit ( p) )P0

Texit

T0 exit

=pexit

P0 exit

!

"#

$

%&

' (1'

Thrust

P0A

*! CF " "Thrust Coefficent"

7MAE 5420 - Compressible Fluid Flow

Rocket Thrust Equation (cont’d)

• Subbing into velocity equation

• Subbing into the thrust equation

Vexit

= 2cpT0 exit

! Texit

"# $% = 2cpT0 exit

1!pexit

P0 exit

&

'(

)

*+

, !1,

"

#

---

$

%

.

.

.

1/2

Thrust

p0A*=

2cpT0 exit 1!pexit

P0 exit

"

#$

%

&'

( !1(

)

*

+++

,

-

.

.

.

1/2

T0

(Rg

2

( +1

"#$

%&'

( +1( !1( )

+Aexit

A*

(pexit ! p/ )P0

=

1!pexit

P0 exit

"

#$

%

&'

( !1(

)

*

+++

,

-

.

.

.

1/2

2cp(Rg

2

( +1

"#$

%&'

( +1( !1( )

+Aexit

A*

(pexit ! p/ )P0

8MAE 5420 - Compressible Fluid Flow

Rocket Thrust Equation (cont’d)

2cp!

Rg

=2c

p!

cp" c

v

=2!

1"1

!

=2! 2

! "1

• Finally, for an isentropic nozzle

• Simplifying

P0exit

= P0

• Non-dimensionalized thrust coefficient is a function of Nozzle pressure

ratio and back pressure only

Thrust

P0A*

= !2

! "12

! +1

#$%

&'(

! +1! "1( )

1"pexit

P0

#

$%&

'(

! "1!

)

*

+++

,

-

.

.

.

1/2

+Aexit

A*

(pexit " p/ )P0

Thrust

P0A

*! CF " "Thrust Coefficent"

9MAE 5420 - Compressible Fluid Flow

Example: Atlas V 401

First Stage

• Thrustvac = 4152 kn

• Thrustsl = 3827 kn

• Ispvac = 337.8 sec

• Ae/A* = 36.87

• P0 = 25.7 Mpa

• Lox/RP-1 Propellants

• Plot Thrust Versus Altitude

• =1.220122!

10MAE 5420 - Compressible Fluid Flow

Example: Atlas V 401

First Stage (cont’d)

• From Homework 2

p! Sea level -- 101.325 kpa

Fvac ! Fsl = m•

e Ve + peAe( )"#$

%&'! m

e Ve + peAe ! pslAe( )"#$

%&'= pslAe

Ae =Fvac ! Fsl

psl=

4152000 kg!m

sec2

! 3827000 kg!m

sec2

101325 kg!m

sec2/m

2

= 3.2705m2

A*=Aexit

Aexit

A*

=3.2705

36.87= 0.0870

m2

11MAE 5420 - Compressible Fluid Flow

Compute Isentropic Exit Pressure

• User Iterative Solve to Compute Exit Mach Number

• Compute Exit Pressure

pexit

=P0 exit

1+! "12

Mexit

2#$%

&'(

!! "1

#$%

&'(

= 55.06 kPa=

Aexit

A*= 36.87 =

1

Mexit

2

! +1

"#$

%&'1+

! (1( )2

Mexit

2"#$

%&'

)

*+

,

-.

! +12 ! (1( )

)

*

+++

,

-

.

.

./

Mexit

= 4.2954

25.7 1000!

11.220122 1"

24.2954

2+# $

% &1.220122

1.220122 1"# $% &

12MAE 5420 - Compressible Fluid Flow

Look at Thrust as function of Altitude

(p!)

• All the pieces we need now

Thrust = ! P0A* 2

! "12

! +1

#$%

&'(

! +1! "1( )

1"pexit

P0

#

$%&

'(

! "1!

)

*

+++

,

-

.

.

.

1/2

+ Aexit (pexit " p/ )

! = 1.220122

P0= 25.7Mpa

pexit = 55.06kPa

A*= 0.087

m2

Aexit = 3.2705m2

"

#

$$$$$$

%

&

''''''

13MAE 5420 - Compressible Fluid Flow

Look at Thrust as function of Altitude (p!) (cont’d)

• Thrust increases

logarithmically

with altitude

14MAE 5420 - Compressible Fluid Flow

Exit Pressure has a dramaticeffect on Nozzle performance

Lift off

Vacuum (Space)

Over expanded

Under expandedLarge area ratio nozzlesat sea level cause flowseparation, performancelosses, high nozzlestructural loads

Bell constrains flowlimiting performance

Conical Nozzle Bell Nozzle

15MAE 5420 - Compressible Fluid Flow

The

"Opti

mum

Nozz

le”

16MAE 5420 - Compressible Fluid Flow

Lets Do the Calculus

• Prove that Maximum performance occurs when

Aexit

A*

Is adjusted to give pexit

= p!

17MAE 5420 - Compressible Fluid Flow

Optimal Nozzle

• Show is a function of Aexit

A*

P0

pexit

Aexit

A*=

1

Mexit

2

! +1

"#$

%&'1+

! (1( )2

Mexit

2"#$

%&'

)

*+

,

-.

! +12 ! (1( )

)

*

+++

,

-

.

.

.=

1

Mexit

2

! +1

"#$

%&'1+

! (1( )2

Mexit

2"#$

%&'

)

*+

,

-.

! +1! (1( )

)

*

+++

,

-

.

.

.

18MAE 5420 - Compressible Fluid Flow

Optimal Nozzle (cont’d)

Mexit =2

! "1#$%

&'(

P0

pexit

#

$%&

'(

! "1( )

!

"1)

*

+++

,

-

.

.

./

Aexit

A*=

2

! +1

#$%

&'(1+

! "1( )2

2

! "1#$%

&'(

P0

pexit

#$%

&'(

! "1( )

!

"1)

*

+++

,

-

.

.

.

#

$

%%%

&

'

(((

)

*

+++

,

-

.

.

.

! +1! "1( )

2

! "1#$%

&'(

P0

pexit

#$%

&'(

! "1( )

!

"1)

*

+++

,

-

.

.

.

=

2

! +1

#$%

&'(

P0

pexit

#$%

&'(

! "1( )

!#

$

%%

&

'

((

)

*

+++

,

-

.

.

.

! +1! "1( )

2

! "1#$%

&'(

P0

pexit

#$%

&'(

! "1( )

!

"1)

*

+++

,

-

.

.

.

=

2

! +1

#$%

&'(

! +1! "1( )

2

! "1#$%

&'(

P0

pexit

#$%

&'(

! "1( )

!#

$

%%

&

'

((

! +1! "1( )

P0

pexit

#$%

&'(

! "1( )

!

"1)

*

+++

,

-

.

.

.

=

2

! +1

#$%

&'(

! +1! "1( )

2

! "1#$%

&'(

P0

pexit

#$%

&'(

! +1!

P0

pexit

#$%

&'(

! "1( )

!

"1)

*

+++

,

-

.

.

.

• Substitute in

19MAE 5420 - Compressible Fluid Flow

Optimal Nozzle (cont’d)

Aexit

A*=

2

! +1

"#$

%&'

! +1! (1( )

2

! (1"#$

%&'

P0

pexit

"#$

%&'

! +1!

P0

pexit

"#$

%&'

! (1( )

!

(1)

*

+++

,

-

.

.

.

Thrust

P0A*

= !2

! "12

! +1

#$%

&'(

! +1! "1( )

1"pexit

P0

#

$%&

'(

! "1!

)

*

+++

,

-

.

.

.

1/2

+Aexit

A*

(pexit " p/ )P0

20MAE 5420 - Compressible Fluid Flow

Optimal Nozzle (cont’d)

• Subbing into thrust coefficient equation

Thrust

P0A*

= !2

! "12

! +1

#$%

&'(

! +1! "1( )

1"pexit

P0

#$%

&'(

! "1!

)

*

+++

,

-

.

.

.

1/2

+

2

! +1

#$%

&'(

! +1! "1( )

2

! "1#$%

&'(

P0

pexit

#$%

&'(

! +1!

P0

pexit

#$%

&'(

! "1( )

!

"1)

*

+++

,

-

.

.

.

(pexit " p/ )P0

=

!2

! "12

! +1

#$%

&'(

! +1! "1( )

1"pexit

P0

#$%

&'(

! "1!

)

*

+++

,

-

.

.

.

1/2

+1

!2

! "12

! +1

#$%

&'(

! +1! "1( )

2

! +1

#$%

&'(

! +1! "1( )

2

! "1#$%

&'(

P0

pexit

#$%

&'(

! +1!

P0

pexit

#$%

&'(

! "1( )

!

"1)

*

+++

,

-

.

.

.

(pexit " p/ )P0

0

1

2222

3

2222

4

5

2222

6

2222

=

!2

! "12

! +1

#$%

&'(

! +1! "1( )

1"pexit

P0

#$%

&'(

! "1!

)

*

+++

,

-

.

.

.

1/2

+! "12!

pexit

P0

#$%

&'(

! +1"!

pexit

P0

#$%

&'(

! "1( )

"!

"1)

*

+++

,

-

.

.

.

pexit

P0

"p/

P0

)

*+

,

-.

0

1

2222

3

2222

4

5

2222

6

2222

21MAE 5420 - Compressible Fluid Flow

Optimal Nozzle (cont’d)

• Necessary condition for Maxim (Optimal) Thrust

!Thrust

P0A*

"#$

%&'

!pexit=

!!pexit

(2

( )12

( +1

"#$

%&'

( +1( )1( )

1)pexit

P0

"#$

%&'

( )1(

*

+

,,,

-

.

///

1/2

+( )12(

pexit

P0

"#$

%&'

( +1)(

pexit

P0

"#$

%&'

( )1( )

)(

)1*

+

,,,

-

.

///

pexit

P0

)p0

P0

*

+,

-

./

1

2

3333

4

3333

5

6

3333

7

3333

*

+

,,,,,,,,

-

.

////////

=

(2

( )12

( +1

"#$

%&'

( +1( )1( ) !

!pexit1)

pexit

P0

"#$

%&'

( )1(

*

+

,,,

-

.

///

1/2

+( )12(

pexit

P0

"#$

%&'

( +1)(

pexit

P0

"#$

%&'

( )1( )

)(

)1*

+

,,,

-

.

///

pexit

P0

)p0

P0

*

+,

-

./

1

2

3333

4

3333

5

6

3333

7

3333

*

+

,,,,,,,,

-

.

////////

= 0

22MAE 5420 - Compressible Fluid Flow

Optimal Nozzle (cont’d)

• Evaluating the derivative

!!p

exit

1"pexit

P0

#$%

&'(

) "1)

*

+

,,,

-

.

///

1/2

+) "12)

pexit

P0

#$%

&'(

) +1")

pexit

P0

#$%

&'(

) "1( )

")

"1*

+

,,,

-

.

///

pexit

P0

"p0

P0

*

+,

-

./

1

2

3333

4

3333

5

6

3333

7

3333

*

+

,,,,,,,,

-

.

////////

=

Let’s try to get

rid of This term

23MAE 5420 - Compressible Fluid Flow

Optimal Nozzle (cont’d)

• Look at the term

=

! "12! P

0

#$%

&'(

pexit

P0

#$%

&'(

! +1"!

pexit

P0

#$%

&'(

! "1( )

"!

"1)

*

+++

,

-

.

.

.

"pexit

P0

#$%

&'(

1

"! 1

1"pexit

P0

#$%

&'(

! "1( )

!)

*

+++

,

-

.

.

.

/

0

1111

2

1111

3

4

1111

5

1111

24MAE 5420 - Compressible Fluid Flow

Optimal Nozzle (cont’d)

• Look at the term

! "12! P

0

#$%

&'(

pexit

P0

#$%

&'(

! +1"!

pexit

P0

#$%

&'(

! "1( )

"!

"1)

*

+++

,

-

.

.

.

"pexit

P0

#$%

&'(

1

"! 1

1"pexit

P0

#$%

&'(

! "1( )

!)

*

+++

,

-

.

.

.

/

0

1111

2

1111

3

4

1111

5

1111

=

! "12! P

0

#$%

&'(

pexit

P0

#$%

&'(

! +1"!

pexit

P0

#$%

&'(

! "1( )

"!

"1)

*

+++

,

-

.

.

.

"

pexit

P0

#$%

&'(

1

"! pexit

P0

#$%

&'(

1

"!

1"pexit

P0

#$%

&'(

! "1( )

!)

*

+++

,

-

.

.

.

/

0

1111

2

1111

3

4

1111

5

1111

Bring Inside

25MAE 5420 - Compressible Fluid Flow

Optimal Nozzle (cont’d)

• Look at the termFactor Out

! "12! P

0

#$%

&'(

pexit

P0

#$%

&'(

! +1"!

pexit

P0

#$%

&'(

! "1( )

"!

"1)

*

+++

,

-

.

.

.

"

pexit

P0

#$%

&'(

1

"! pexit

P0

#$%

&'(

1

"!

1"pexit

P0

#$%

&'(

! "1( )

!)

*

+++

,

-

.

.

.

/

0

1111

2

1111

3

4

1111

5

1111

=

! "12! P

0

#$%

&'(

pexit

P0

#$%

&'(

! +1"!

pexit

P0

#$%

&'(

! "1( )

"!

"1)

*

+++

,

-

.

.

.

"

pexit

P0

#$%

&'(

1

"! pexit

P0

#$%

&'(

1

"! pexit

P0

#$%

&'(

! "1( )

"!

pexit

P0

#$%

&'(

! "1( )

"!

"1)

*

+++

,

-

.

.

.

/

0

1111

2

1111

3

4

1111

5

1111

pexit

P0

!"#

$%&

' (1( )

('

26MAE 5420 - Compressible Fluid Flow

Optimal Nozzle (cont’d)

• Look at the termCollect

Exponents

! "12! P

0

#$%

&'(

pexit

P0

#$%

&'(

! +1"!

pexit

P0

#$%

&'(

! "1( )

"!

"1)

*

+++

,

-

.

.

.

"

pexit

P0

#$%

&'(

1

"! pexit

P0

#$%

&'(

1

"! pexit

P0

#$%

&'(

! "1( )

"!

pexit

P0

#$%

&'(

! "1( )

"!

"1)

*

+++

,

-

.

.

.

/

0

1111

2

1111

3

4

1111

5

1111

=

! "12! P

0

#$%

&'(

pexit

P0

#$%

&'(

! +1"!

pexit

P0

#$%

&'(

! "1( )

"!

"1)

*

+++

,

-

.

.

.

"

pexit

P0

#$%

&'(

! +1"!

pexit

P0

#$%

&'(

! "1( )

"!

"1)

*

+++

,

-

.

.

.

/

0

1111

2

1111

3

4

1111

5

1111

= 0 Good!

27MAE 5420 - Compressible Fluid Flow

Optimal Nozzle (cont’d)

• and the derivative reduces to

!!p

exit

1"pexit

P0

#$%

&'(

) "1)

*

+

,,,

-

.

///

1/2

+) "12)

pexit

P0

#$%

&'(

) +1")

pexit

P0

#$%

&'(

) "1( )

")

"1*

+

,,,

-

.

///

pexit

P0

"p0

P0

*

+,

-

./

1

2

3333

4

3333

5

6

3333

7

3333

*

+

,,,,,,,,

-

.

////////

=

28MAE 5420 - Compressible Fluid Flow

Optimal Nozzle (concluded)

• Find Condition where

=0

pexit

P0

!p"

P0

#

$%

&

'( = 0) p

exit= p"

• Condition for Optimality

(maximum Isp)

29MAE 5420 - Compressible Fluid Flow

Optimal Thrust Equation

Thrustopt = ! P0A*

2

! "12

! +1

#$%

&'(

! +1! "1( )

1"pexit

P0

#

$%&

'(

! "1!

)

*

+++

,

-

.

.

.

Aexit

A*=

2

! +1

"#$

%&'

! +1! (1( )

2

! (1"#$

%&'

P0

p)

"#$

%&'

! +1!

P0

p)

"#$

%&'

! (1( )

!

(1*

+

,,,

-

.

///

0 forces...pexit = p)

30MAE 5420 - Compressible Fluid Flow

Rocket Nozzle Design Point

Thrustopt = ! P0A*

2

! "12

! +1

#$%

&'(

! +1! "1( )

1"pexit

P0

#

$%&

'(

! "1!

)

*

+++

,

-

.

.

.

Aexit

A*=

2

! +1

"#$

%&'

! +1! (1( )

2

! (1"#$

%&'

P0

p)

"#$

%&'

! +1!

P0

p)

"#$

%&'

! (1( )

!

(1*

+

,,,

-

.

///

0 forces...pexit = p)

31MAE 5420 - Compressible Fluid Flow

Atlas V, Revisited

• Re-do the Atlas V plots for Optimal Nozzle

i.e. Let

Aexit

A*=

2

! +1

"#$

%&'

! +1! (1( )

2

! (1"#$

%&'

P0

p)

"#$

%&'

! +1!

P0

p)

"#$

%&'

! (1( )

!

(1*

+

,,,

-

.

///

0 forces...pexit = p)

32MAE 5420 - Compressible Fluid Flow

Atlas V, Revisited (cont’d)

• ATLAS V

First stage is

Optimized for

Maximum

performance

At~ 5k altitude

16,404 ft.

33MAE 5420 - Compressible Fluid Flow

How About Space Shuttle

SSME

• Thrustvac = 2100.00 kn

• Thrustsl = 1670.00 kn

• Ispvac = 452.55sec

• Ae/A* = 77.52

• P0 = 18.96Mpa

• Lox/LH2 Propellants

• =1.196

Per Engine (3)

!

34MAE 5420 - Compressible Fluid Flow

How About Space Shuttle

SSME (cont’d)

• SSME is

Optimized for

Maximum

performance

At~ 12.5k

Altitude

~ 40,000 ft

35MAE 5420 - Compressible Fluid Flow

How About Space Shuttle

SSME (cont’d)

"Optimum Nozzle" (cont'd)

altitude , ft

Vexit , ft

sec nominal SSME exit velocity

• Exit Velocity

Telescoping nozzle

36MAE 5420 - Compressible Fluid Flow

How About Space Shuttle

SSME (cont’d)

"Optimum Nozzle" (concluded)

~ 7.2% increase in Isp

altitude , ft

nominal SSME Isp curve

• Isp

Telescoping nozzle Isp

Mean value

Isp , sec

37MAE 5420 - Compressible Fluid Flow

How About Space Shuttle

SRB

• Thrustvac = 1270.00 kn

• Thrustsl = 1179.00 kn

• Ispvac = 267.30 sec

• Ae/A* = 7.50

• P0 = 6.33 Mpa

• PABM (Solid) Propellant

• =1.262480

Per Motor (2)

!

38MAE 5420 - Compressible Fluid Flow

How About Space Shuttle

SSME (cont’d)

• SRB is

Optimized for

Maximum

performance

At <1k altitude

3280 ft.

39MAE 5420 - Compressible Fluid Flow

Solve for Design Altitude of Given Nozzle

Aexit

A*=

2

! +1

"#$

%&'

! +1! (1( )

2

! (1"#$

%&'

P0

p)

"#$

%&'

! +1!

P0

p)

"#$

%&'

! (1( )

!

(1*

+

,,,

-

.

///

0 rewrite...as

2

! (1"#$

%&'

P0

p)

"

#$%

&'

! (1( )

!

(1*

+

,,,

-

.

///

Aexit

A*

"#$

%&'2

(2

! +1

"#$

%&'

! +1! (1( ) P

0

p)

"

#$%

&'

! +1!

= 0

40MAE 5420 - Compressible Fluid Flow

Solve for Design Altitude of Given Nozzle(cont’d)

Factor out p!

P0

"

#$%

&'

( +1(

2

! "1#$%

&'(

P0

p)

#

$%&

'(

! "1( )

!

"1*

+

,,,

-

.

///

Aexit

A*

#$%

&'(2

"2

! +1

#$%

&'(

! +1! "1( ) P

0

p)

#

$%&

'(

! +1!

= 0

2

! "1#$%

&'(

p)

P0

#

$%&

'(

! +1! P

0

p)

#

$%&

'(

! "1( )

!

"1*

+

,,,

-

.

///

Aexit

A*

#$%

&'(2

"2

! +1

#$%

&'(

! +1! "1( )

= 0

2

! "1#$%

&'(

p)

P0

#

$%&

'(

! +1! p)

P0

#

$%&

'(

"! "1( )

!

"p)

P0

#

$%&

'(

! +1!

*

+

,,,

-

.

///

Aexit

A*

#$%

&'(2

"2

! +1

#$%

&'(

! +1! "1( )

= 0

41MAE 5420 - Compressible Fluid Flow

Solve for Design Altitude of Given Nozzle(cont’d)

Simplify

2

! "1#$%

&'(

p)

P0

#

$%&

'(

2

!

"p)

P0

#

$%&

'(

! +1( )

!*

+

,,,

-

.

///

Aexit

A*

#$%

&'(2

"2

! +1

#$%

&'(

! +1! "1( )

= 0

p)

P0

#

$%&

'(

2

!

"p)

P0

#

$%&

'(

! +1( )

!*

+

,,,

-

.

///"

2

! +1

#$%

&'(

! +1! "1( )

2

! "1#$%

&'(

Aexit

A*

#$%

&'(2= 0

42MAE 5420 - Compressible Fluid Flow

Solve for Design Altitude of Given Nozzle(cont’d)

• Newton Again?

• No … there is an easier way

• User Iterative Solve to Compute Exit Mach Number

Aexit

A*= 36.87 =

1

Mexit

2

! +1

"#$

%&'1+

! (1( )2

Mexit

2"#$

%&'

)

*+

,

-.

! +12 ! (1( )

)

*

+++

,

-

.

.

./

Mexit

= 4.2954

43MAE 5420 - Compressible Fluid Flow

Solve for Design Altitude of Given Nozzle(cont’d)

• Compute Exit Pressure

pexit

=P0 exit

1+! "12

Mexit

2#$%

&'(

!! "1

#$%

&'(

= 55.06 kPa=25.7 1000!

11.220122 1"

24.2954

2+# $

% &1.220122

1.220122 1"# $% &

• Set

pexit

= p!

opt

44MAE 5420 - Compressible Fluid Flow

Solve for Design Altitude of Given Nozzle(cont’d)

• Table look up of US 1976 Standard Atmosphere

or World GRAM 99 Atmosphere

Atlas V example

pexit = 55.06 kPa

45MAE 5420 - Compressible Fluid Flow

Space Shuttle Optimum Nozzle?

What is A/A* Optimal for SSME

at 80,000 ft altitude (24.384 km)?

p!= 2.76144 kPa

At 80kft

p! = 2.76144 kPa "P0

p!

=18.9 #10

2.76144= 6844.3

" Mexit

=2

$ %1

P0

p!

&

'()

*+

$ %1

$

%1

,

-

.

.

.

/

0

111

= 2

1.196 1!18900

2.76144" #$ %

1.196 1!1.196

1!" #& '& '$ %

" #& '& '$ % 0.5

=

5.7592

46MAE 5420 - Compressible Fluid Flow

Space Shuttle Optimum Nozzle? (cont’d)

What is A/A* Optimal for SSME

at 80,000 ft altitude (24.384 km)?

p!= 2.76144 kPa

At 80kft

p! = 2.76144 kPa "P0

p!

=18.9 #10

2.76144= 6844.3

" Mexit

=2

$ %1

P0

p!

&

'()

*+

$ %1

$

%1

,

-

.

.

.

/

0

111= 5.7592

A

A*=1

M

2

! +1

"#$

%&'1+

! (1( )2

M2

"#$

%&'

)

*+

,

-.

! +12 ! (1( )

=

2

1.196 1+! "# $

11.196 1%

25.7592

2( )+! "

# $! "# $

1.196 1+

2 1.196 1%( )

5.7592= 340.98

(originally 77.52)

47MAE 5420 - Compressible Fluid Flow

Space Shuttle Optimum Nozzle? (cont’d)

What is A/A* Optimal for SSME

at 80,000 ft altitude (24.384 km)?

p!= 2.76144 kPa

At 80kft

A

A*=1

M

2

! +1

"#$

%&'1+

! (1( )2

M2

"#$

%&'

)

*+

,

-.

! +12 ! (1( )

= 340.98

• Compute Throat Area

m226

100! "# $

2%4

=0.05297

Aexit=18.062 m2---> 4.8 (15.7 ft) meters in diameter

As opposed to 2.286 meters for original shuttle

48MAE 5420 - Compressible Fluid Flow

Space Shuttle Optimum Nozzle? (cont’d)

Now That’s Ugly!

• So What are the Alternatives?

49MAE 5420 - Compressible Fluid Flow

"The

Linea

r

Aero

spike

Rock

et

Engi

ne"

"The Linear AerospikeRocket Engine"

… Which leads us to

the … real alternative

50MAE 5420 - Compressible Fluid Flow

51MAE 5420 - Compressible Fluid Flow

Linear Aerospike

Rocket Engine Nozzle

has same effect as

telescope nozzle

Linear Aerospike Rocket EngineNozzle has same effect as telescope nozzle

Lift off Vacuum (Space)

• Aerospike's flow unconstrained, allows best performance

52MAE 5420 - Compressible Fluid Flow

More Aerospike

Credit: Aerospace web

53MAE 5420 - Compressible Fluid Flow

Advantages of Aerospike High Expansion Ratio Experimental

Nozzle

• Truncated aerospike nozzles can be as short as 25% the length of a conventional

bell nozzle.

– Provide savings in packing volume and weight for space vehicles.

• Aerospike nozzles allow higher expansion ratio than conventional nozzle for a

given space vehicle base area.

– Increase vacuum thrust and specific impulse.

• For missions to the Moon and Mars, advanced nozzles can increase the thrust and

specific impulse by 5-6%, resulting in a 8-9% decrease in propellant mass.

• Lower total vehicle mass and provide extra margin for the mass inclusion of other

critical vehicle systems.

• New nozzle technology also applicable to RCS, space tugs, etc…

54MAE 5420 - Compressible Fluid Flow

Spike Nozzle … Other advantages (cont’d)

• Higher expansion ratio for smaller size II

Credit: Aerospace web

55MAE 5420 - Compressible Fluid Flow

Spike Nozzle … Other advantages (cont’d)

• Thrust vectoring without Gimbals

Credit: Aerospace web

56MAE 5420 - Compressible Fluid Flow

Performance Comparison

• Although less than Ideal

The significant Isp recovery

of Spike Nozzles offer significant

advantage

57MAE 5420 - Compressible Fluid Flow

Aerospike on the Moon?G. Mungas, M. Johnson, D. Fisher, C.

Mungas, B. Rishikoff, (2008) "NOFB

Monopropulsion System for Lunar Ascent

Vehicle Utilizing Plug Nozzle with

Clustered Engines for Ascent Main

Engine", LPS-II-33, 2008 JANNAF

Conference, 6th Modeling and Simulation /

4th Liquid Propulsion / 3rd Spacecraft

Propulsion Joint Subcommittee Meeting

Nozzle Coefficient vs. Aerospike Nozzle Length [2]

58MAE 5420 - Compressible Fluid Flow

Optimal Nozzle Summary

Credit: Aerospace web

59MAE 5420 - Compressible Fluid Flow

Optimal Nozzle Summary (cont’d)

• Thrust equation

can be re-written as

Thrust = m•

Vexit + Aexit (pexit ! p" )

Thrust = ! P0A* 2

! "12

! +1

#$%

&'(

! +1! "1( )

1"pexit

P0

#

$%&

'(

! "1!

)

*

+++

,

-

.

.

.

1/2

+ Aexit (pexit " p/ )

and

Aexit

A*=

2

! +1

"#$

%&'

! +1! (1( )

2

! (1"#$

%&'

P0

pexit

"#$

%&'

! +1!

P0

pexit

"#$

%&'

! (1( )

!

(1)

*

+++

,

-

.

.

.

60MAE 5420 - Compressible Fluid Flow

Optimal Nozzle Summary (cont’d)

• Eliminating Aexit from the expression

Thrust = ! P0A*

2

! "12

! +1

#$%

&'(

! +1! "1( )

1"pexit

P0

#$%

&'(

! "1!

)

*

+++

,

-

.

.

.

1/2

+! "12!

pexit

P0

#$%

&'(

! +1"!

pexit

P0

#$%

&'(

! "1( )

"!

"1)

*

+++

,

-

.

.

.

pexit

P0

"p/

P0

)

*+

,

-.

0

1

2222

3

2222

4

5

2222

6

2222

P0, , drive by combustion process, only pe is effected by nozzle

• Optimal Nozzle given by!Thrust

P0A*

"#$

%&'

!pexit= 0( pexit = p)

opt

!

61MAE 5420 - Compressible Fluid Flow

Optimal Nozzle Summary (cont’d)

• Optimal Thrust (or thrust at design condition)

Thrustopt = ! P0A*

2

! "12

! +1

#$%

&'(

! +1! "1( )

1"p)

P0

#

$%&

'(

! "1!

*

+

,,,

-

.

///

Aexit

A*=

2

! +1

"#$

%&'

! +1! (1( )

2

! (1"#$

%&'

P0

p)

"#$

%&'

! +1!

P0

p)

"#$

%&'

! (1( )

!

(1*

+

,,,

-

.

///

0 forces...pexit = p)

62MAE 5420 - Compressible Fluid Flow

Optimal Nozzle Summary (concluded)

• Optimum nozzle configuration for a particular mission

depends upon system trades involving

performance, thermal issues, weight, fabrication,

vehicle integration and cost.http://www.k-makris.gr/RocketTechnology/

Nozzle_Design/nozzle_design.htm

top related