proteomik, dr. oeke yunita, gasal 2014.pdf

Post on 05-Jul-2018

223 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 1/40

KULIAH BIOTEKNOLOGI

PROTEOMIK

Dr. Oeke Yunita, S.Si., M.Si., Apt.

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 2/40

The birth of proteomics

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 3/40

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 4/40

Importance of Proteins:

• CATALYSTS • STRUCTURAL ELEMENTS 

• SIGNALS 

RECEPTORS • KEY COMPONENTS OF THE MACHINERY 

• INVOLVED IN MANIPULATION OF DNA AND RNA 

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 5/40

Proteins are the molecule tools for most cellular functions

TYPE FUNCTION EXAMPLE

Structural proteins Support Collagen, Elastin,

Keratin

Storage proteins Storage of amino acid Ovalbumin,

Casein

Transport proteins Transport of othersubstrate Hemoglobin

Hormonal proteins Coordination of and

organism’s activities

Insulin

Receptors proteins Response of cell to

chemical stimuli

Receptor in nerve

transmit route

Contractile proteins Movement Actin, MyosinDefensive proteins Protecton against

disease

Antibodys

Enzymatic proteins Selective acceleraton

of chemical reactions

Trypsin, ATPase,

GAPDH

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 6/40

Diverse properties of proteins in a cell

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 7/40

What is PROTEOMICS ?• The systematic analysis of the protein population in a

tissue, cell, or subcellular compartment.

• "The analysis of the entire protein complement

expressed by a genome, or by a cell or tissue type.“ 

• Systematic determination of diverse properties ofproteins, including sequence, quantity, state of

modification, interactions with other proteins,

activity, subcellular distribution and structure.

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 8/40

DNA

RNA

Protein

Transcription

Translation

Comparative genomics

Functional genomics

Comparative andfunctional proteomics

Genome sequencing projects

New avenue to study biology

Metabolites Metabonomics

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 9/40

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 10/40

In vitro/ In vivocell-based assays

Bioinformatics

Proteomics

TranscriptomicsCGTCCAACTGACGTCTACAAGTTCCTAAGCT

Genomics

Integrated view of the

complex biological systems

Integration of Omics

validation

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 11/40

PROTEOMICS

is inherently more challenging than

genomics/transcriptomics

Nucleic acids / genomics 

 – NA’s can be amplified 

 – NA’s show uniform behaviorin purifying and handling

 – NA’s are self -complimentary

 – NA’s have limited (butincreasingly appreciated)modifications

 – NA’s are stable to drying,spotting, etc.

Proteins/proteomics 

 – No

 – No

 – No

 – No

 – conditional

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 12/40

PROTEOMICS can answer

• Protein identification

• Protein Expression Studies

• Protein Function

• Protein Post-Translational Modification

• Protein Localization and Compartmentalization• Protein-Protein Interactions

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 13/40

General classification for

PROTEOMICS

• Protein Expression comparison (beginning)

 – Quantitative study of protein expression between samplesthat differ by some variable

• Structural Proteomics (simulation) – Goal is to map out the 3-D structure of proteins and

protein complexes

• Functional Proteomics (everything)

 – To study protein-protein interaction, 3-D structures,cellular localization and posttranslational modifications (PTMS) in order to understand the physiological functionof the whole set of proteome.

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 14/40

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 15/40

PROTEIN EXTRACTION

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 16/40

Current status of proteomic technologies

Two most applied technologies:

1. 2-D electrophoresis:

separation of complex protein mixtures

2. Mass spectrometry:

Identification and structure analysis

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 17/40

GEL ELECTROPHORESIS

• Denaturing – SDS-PAGE

 – SDS gives uniform neg. charge

 – Separates proteins by size/mass

• Non-denaturing

 – Separates based on charge and size/conformation

• Often combined with Western blotting (using

antibodies specific for proteins of interest)

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 18/40

SDS-PAGE

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 19/40

WESTERN BLOT

HIV lysate

proteins are

separated by

size using gel

electrophoresis

Proteins are

transferred

(blotted) onto the

surface of a

membrane

Strips are

incubated with

patient serumand antihuman

IgG conjugated

with an enzyme

(and

chromagen)

The membrane is

cut into strips

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 20/40

Western Blot Banding

*

*

*

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 21/40

2D Gels

• Proteins are first separated according to isoelectricpoint

 – pH gradient is applied (usually horizontally)

 – Each protein is charged except at it’s isoelectric point 

• Proteins are then denatured in sodium dodecylsulfate (SDS)

 – Unfolds them into straight molecules

 – Binds SDS molecules roughly proportional to the length ofthe denatured protein

 – Electric current then separates the proteins according tomass, similar to a regular agarose gel

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 22/40

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 23/40

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 24/40

2D-GE

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 25/40

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 26/40

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 27/40

Protein Data Bank (PDB)

Global data collection (>30000 records)

 – www.pdb.org

 – 3D structures

 – experimental data

 – biological and chemical information

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

1        9       7       

 6       

1        9       7       7       

1        9       7       

 8       

1        9       7       

 9       

1        9        8        0       

1        9        8       1       

1        9        8       2       

1        9        8        3       

1        9        8       4       

1        9        8        5       

1        9        8        6       

1        9        8       7       

1        9        8        8       

1        9        8        9       

1        9        9        0       

1        9        9       1       

1        9        9       2       

1        9        9        3       

1        9        9       4       

1        9        9        5       

1        9        9        6       

1        9        9       7       

1        9        9        8       

1        9        9        9       

2        0        0        0       

2        0        0       1       

2        0        0       2       

2        0        0        3       

2        0        0       4       

2        0        0        5       

2        0        0        6       

   P   D   B   e

  n  r   t   i  e  s

total

per year 

Proteins NA Complexes Other Total

X-ray   27335 807 1270 85   29497

NMR   4421 674 118 17   5230

El. Microsc.  77 9 27 0

  113Other    70 4 3 0   77

Total   31903 1494 1418 102 34917

Molecule TypeMethod

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 28/40

• Analyze the

proteome of both

diseased and healthy

cells

• Find changes in:

 – Cell or tissues

 –

Subcellularstructures

 – Protein complexes

 – Biological fluids

Clinical

Proteomics

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 29/40

• Develop new biomarkers for disease diagnosis

and early detection

• Identify new targets for drugs

• Better evaluate the therapeutic effect ofpossible drugs

Clinical Proteomics

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 30/40

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 31/40

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 32/40

Differential Protein Expression Profiling

Identification of proteins in a sample as a function of a particularstate: differentiation, stage of development, disease state, response

to drug or stimulus 

Normal DiseasedWhich proteins are upor down regulated ?

Biomarkers or drug targets

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 33/40

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 34/40

LUNG Ca

BIOMARKER

DISCOVERY

ClinicalProteomics

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 35/40

Overview of Proteomic Approach

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 36/40

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 37/40

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 38/40

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 39/40

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 40/40

top related