precision calculation of electromagnetic observables for...

Post on 12-Aug-2020

9 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Precision Calculation of ElectromagneticObservables for Light Nuclei

Laura Mertes, Thomas Huther, Robert Roth

1 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Outline

1 Motivation

2 Ab initio calculationsSimilarity Renormalization Group (SRG)No-Core Shell Model (NCSM)

3 Electromagnetic Observables

4 ResultsElectromagnetic Observables of DeuteronM1 Observables of 6LiE2 Observables of 12CM1 Observables of Light Nuclei

5 Summary and Outlook

1 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Motivation

precision calculation of electromagnetic observables

→ provide information about structure of nuclei

→ accessible in experiments

→ examples: electromagnetic moments, transition strengths

ab initio calculations from first principles

→ consistent treatment of electromagnetic observables

→ neglected contributions

2 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Motivation

precision calculation of electromagnetic observables

→ provide information about structure of nuclei

→ accessible in experiments

→ examples: electromagnetic moments, transition strengths

ab initio calculations from first principles

→ consistent treatment of electromagnetic observables

→ neglected contributions

2 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Motivation

precision calculation of electromagnetic observables

→ provide information about structure of nuclei

→ accessible in experiments

→ examples: electromagnetic moments, transition strengths

ab initio calculations from first principles

→ consistent treatment of electromagnetic observables

→ neglected contributions

2 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Motivation

precision calculation of electromagnetic observables

→ provide information about structure of nuclei

→ accessible in experiments

→ examples: electromagnetic moments, transition strengths

ab initio calculations from first principles

→ consistent treatment of electromagnetic observables

→ neglected contributions

2 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Ab initio nuclear-structure calculations

Chiral Effective Field Theory (χEFT)

→ construct consistent interaction and electromagneticoperator

Similarity Renormalization Group (SRG)

→ accelerate convergence

Importance-Truncated No-Core Shell Model (IT-NCSM)

→ solve many-body Schrodinger equation

3 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Ab initio nuclear-structure calculations

Chiral Effective Field Theory (χEFT)

→ construct consistent interaction and electromagneticoperator

Similarity Renormalization Group (SRG)

→ accelerate convergence

Importance-Truncated No-Core Shell Model (IT-NCSM)

→ solve many-body Schrodinger equation

3 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Ab initio nuclear-structure calculations

Chiral Effective Field Theory (χEFT)

→ construct consistent interaction and electromagneticoperator

Similarity Renormalization Group (SRG)

→ accelerate convergence

Importance-Truncated No-Core Shell Model (IT-NCSM)

→ solve many-body Schrodinger equation

3 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Similarity Renormalization Group (SRG)

Similarity Renormalization Group (SRG)

initial Hamiltonian induces short-range correlations

idea: prediagonalization of H

→ decoupling of high- and low-energy physics

→ accelerate convergence

Continuous unitary transformation and flow equation

Hα = U†αH0Uα ⇒ d

dαHα = [ηα,Hα]

with initial conditions Hα=0 = H

Uα=0 = 1

antihermitian generator ηα = m2N [Trel,Hα]

4 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Similarity Renormalization Group (SRG)

Similarity Renormalization Group (SRG)

initial Hamiltonian induces short-range correlations

idea: prediagonalization of H

→ decoupling of high- and low-energy physics

→ accelerate convergence

Continuous unitary transformation and flow equation

Hα = U†αH0Uα ⇒ d

dαHα = [ηα,Hα]

with initial conditions Hα=0 = H

Uα=0 = 1

antihermitian generator ηα = m2N [Trel,Hα]

4 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Similarity Renormalization Group (SRG)

Similarity Renormalization Group (SRG)

initial Hamiltonian induces short-range correlations

idea: prediagonalization of H

→ decoupling of high- and low-energy physics

→ accelerate convergence

Continuous unitary transformation and flow equation

Hα = U†αH0Uα ⇒ d

dαHα = [ηα,Hα]

with initial conditions Hα=0 = H

Uα=0 = 1

antihermitian generator ηα = m2N [Trel,Hα]

4 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Similarity Renormalization Group (SRG)

Similarity Renormalization Group (SRG)

initial Hamiltonian induces short-range correlations

idea: prediagonalization of H

→ decoupling of high- and low-energy physics

→ accelerate convergence

Continuous unitary transformation and flow equation

Hα = U†αH0Uα ⇒ d

dαHα = [ηα,Hα]

with initial conditions Hα=0 = H

Uα=0 = 1

antihermitian generator ηα = m2N [Trel,Hα]

4 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Similarity Renormalization Group (SRG)

Similarity Renormalization Group (SRG)

initial Hamiltonian induces short-range correlations

idea: prediagonalization of H

→ decoupling of high- and low-energy physics

→ accelerate convergence

Continuous unitary transformation and flow equation

Hα = U†αH0Uα ⇒ d

dαHα = [ηα,Hα]

with initial conditions Hα=0 = H

Uα=0 = 1

antihermitian generator ηα = m2N [Trel,Hα]

4 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Similarity Renormalization Group (SRG)

SRG for arbitrary operators

evolved eigenstates of Hamiltonian |ψα〉 = U†α |ψ〉

expectation value of operator with eigenstates |ψ〉

Differential equation

d

dαUα = −Uαηα

so far: bare operator with evolved eigenstates

5 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Similarity Renormalization Group (SRG)

SRG for arbitrary operators

evolved eigenstates of Hamiltonian |ψα〉 = U†α |ψ〉

expectation value of operator with eigenstates |ψ〉

Differential equation

d

dαUα = −Uαηα

so far: bare operator with evolved eigenstates

5 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Similarity Renormalization Group (SRG)

SRG for arbitrary operators

evolved eigenstates of Hamiltonian |ψα〉 = U†α |ψ〉

expectation value of operator with eigenstates |ψ〉

〈ψ|O |ψ〉= 〈ψ|UαU†αOUαU†α |ψ〉

Differential equation

d

dαUα = −Uαηα

so far: bare operator with evolved eigenstates

5 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Similarity Renormalization Group (SRG)

SRG for arbitrary operators

evolved eigenstates of Hamiltonian |ψα〉 = U†α |ψ〉

expectation value of operator with eigenstates |ψ〉

〈ψ|O |ψ〉 = 〈ψ|UαU†αOUαU†α |ψ〉

Differential equation

d

dαUα = −Uαηα

so far: bare operator with evolved eigenstates

5 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Similarity Renormalization Group (SRG)

SRG for arbitrary operators

evolved eigenstates of Hamiltonian |ψα〉 = U†α |ψ〉

expectation value of operator with eigenstates |ψ〉

〈ψ|O |ψ〉 = 〈ψ|Uα︸ ︷︷ ︸〈ψα|

U†αOUα U†α |ψ〉︸ ︷︷ ︸|ψα〉

Differential equation

d

dαUα = −Uαηα

so far: bare operator with evolved eigenstates

5 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Similarity Renormalization Group (SRG)

SRG for arbitrary operators

evolved eigenstates of Hamiltonian |ψα〉 = U†α |ψ〉

expectation value of operator with eigenstates |ψ〉

〈ψ|O |ψ〉 = 〈ψ|Uα︸ ︷︷ ︸〈ψα|

U†αOUα︸ ︷︷ ︸|O(α)

α 〉

U†α |ψ〉︸ ︷︷ ︸|ψα〉

Differential equation

d

dαUα = −Uαηα

so far: bare operator with evolved eigenstates

5 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Similarity Renormalization Group (SRG)

SRG for arbitrary operators

evolved eigenstates of Hamiltonian |ψα〉 = U†α |ψ〉

expectation value of operator with eigenstates |ψ〉

〈ψ|O |ψ〉 = 〈ψ|Uα︸ ︷︷ ︸〈ψα|

U†αOUα︸ ︷︷ ︸|O(α)

α 〉

U†α |ψ〉︸ ︷︷ ︸|ψα〉

Differential equation

d

dαUα = −Uαηα

so far: bare operator with evolved eigenstates

5 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Similarity Renormalization Group (SRG)

SRG for arbitrary operators

evolved eigenstates of Hamiltonian |ψα〉 = U†α |ψ〉

expectation value of operator with eigenstates |ψ〉

〈ψ|O |ψ〉 = 〈ψ|Uα︸ ︷︷ ︸〈ψα|

U†αOUα︸ ︷︷ ︸|O(α)

α 〉

U†α |ψ〉︸ ︷︷ ︸|ψα〉

Differential equation

d

dαUα = −Uαηα

so far: bare operator with evolved eigenstates

5 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

No-Core Shell Model (NCSM)

No-Core Shell Model (NCSM)

solve time-independent many-body Schrodinger equation

H |ψ〉 = Em |ψ〉

model space is spanned by Slaterdeterminants of single-particle HOstates |Φν〉

truncation via unperturbedexcitation energy Nmax~Ω

convergence with increasing Nmax

as result obtain energies and

eigenstates |ψ(m)〉 =∑

ν C(m)ν |Φν〉

limited by model space size

[S. Schulz, modified]

6 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

No-Core Shell Model (NCSM)

No-Core Shell Model (NCSM)

solve time-independent many-body Schrodinger equation

H |ψ〉 = Em |ψ〉

model space is spanned by Slaterdeterminants of single-particle HOstates |Φν〉

truncation via unperturbedexcitation energy Nmax~Ω

convergence with increasing Nmax

as result obtain energies and

eigenstates |ψ(m)〉 =∑

ν C(m)ν |Φν〉

limited by model space size

[S. Schulz, modified]

6 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

No-Core Shell Model (NCSM)

No-Core Shell Model (NCSM)

solve time-independent many-body Schrodinger equation

H |ψ〉 = Em |ψ〉

model space is spanned by Slaterdeterminants of single-particle HOstates |Φν〉

truncation via unperturbedexcitation energy Nmax~Ω

convergence with increasing Nmax

as result obtain energies and

eigenstates |ψ(m)〉 =∑

ν C(m)ν |Φν〉

limited by model space size

[S. Schulz, modified]

6 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

No-Core Shell Model (NCSM)

No-Core Shell Model (NCSM)

solve time-independent many-body Schrodinger equation

H |ψ〉 = Em |ψ〉

model space is spanned by Slaterdeterminants of single-particle HOstates |Φν〉

truncation via unperturbedexcitation energy Nmax~Ω

convergence with increasing Nmax

as result obtain energies and

eigenstates |ψ(m)〉 =∑

ν C(m)ν |Φν〉

limited by model space size

[S. Schulz, modified]

6 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

No-Core Shell Model (NCSM)

No-Core Shell Model (NCSM)

solve time-independent many-body Schrodinger equation

H |ψ〉 = Em |ψ〉

model space is spanned by Slaterdeterminants of single-particle HOstates |Φν〉

truncation via unperturbedexcitation energy Nmax~Ω

convergence with increasing Nmax

as result obtain energies and

eigenstates |ψ(m)〉 =∑

ν C(m)ν |Φν〉

limited by model space size

[S. Schulz, modified]

6 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

No-Core Shell Model (NCSM)

No-Core Shell Model (NCSM)

solve time-independent many-body Schrodinger equation

H |ψ〉 = Em |ψ〉

model space is spanned by Slaterdeterminants of single-particle HOstates |Φν〉

truncation via unperturbedexcitation energy Nmax~Ω

convergence with increasing Nmax

as result obtain energies and

eigenstates |ψ(m)〉 =∑

ν C(m)ν |Φν〉

limited by model space size

[S. Schulz, modified]

6 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

No-Core Shell Model (NCSM)

Importance Truncated No-Core Shell Model (IT-NCSM)

starting point: approximation of target state

|ψ(m)ref 〉 =

∑νεMref

C(m)ref,ν |Φν〉

importance measure from 1st order perturbation theory

κ(m)ν = − 〈Φν |H|ψ(m)

ref 〉εν−εref

IT-model space is spanned by basis states |Φν〉 with|κν | ≥ κmin

κmin is importance threshold

solve EV problem in new model space

7 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

No-Core Shell Model (NCSM)

Importance Truncated No-Core Shell Model (IT-NCSM)

starting point: approximation of target state

|ψ(m)ref 〉 =

∑νεMref

C(m)ref,ν |Φν〉

importance measure from 1st order perturbation theory

κ(m)ν = − 〈Φν |H|ψ(m)

ref 〉εν−εref

IT-model space is spanned by basis states |Φν〉 with|κν | ≥ κmin

κmin is importance threshold

solve EV problem in new model space

7 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

No-Core Shell Model (NCSM)

Importance Truncated No-Core Shell Model (IT-NCSM)

starting point: approximation of target state

|ψ(m)ref 〉 =

∑νεMref

C(m)ref,ν |Φν〉

importance measure from 1st order perturbation theory

κ(m)ν = − 〈Φν |H|ψ(m)

ref 〉εν−εref

IT-model space is spanned by basis states |Φν〉 with|κν | ≥ κmin

κmin is importance threshold

solve EV problem in new model space

7 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

No-Core Shell Model (NCSM)

Importance Truncated No-Core Shell Model (IT-NCSM)

starting point: approximation of target state

|ψ(m)ref 〉 =

∑νεMref

C(m)ref,ν |Φν〉

importance measure from 1st order perturbation theory

κ(m)ν = − 〈Φν |H|ψ(m)

ref 〉εν−εref

IT-model space is spanned by basis states |Φν〉 with|κν | ≥ κmin

κmin is importance threshold

solve EV problem in new model space

7 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

No-Core Shell Model (NCSM)

Importance Truncated No-Core Shell Model (IT-NCSM)

starting point: approximation of target state

|ψ(m)ref 〉 =

∑νεMref

C(m)ref,ν |Φν〉

importance measure from 1st order perturbation theory

κ(m)ν = − 〈Φν |H|ψ(m)

ref 〉εν−εref

IT-model space is spanned by basis states |Φν〉 with|κν | ≥ κmin

κmin is importance threshold

solve EV problem in new model space

7 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Magnetic Dipole Moment

interaction between external field and nucleus

caused by orbital motion of protons and spins of nucleons

Magnetic dipole operator

M10 =

√3

4πµN

A∑i=1

[gpsz(i) + lz(i)Πp(i) + gnsz(i)Πn(i)]

magnetic moments are defined as expectation values of M10

Magnetic dipole moment

µ =

√4π

3〈J,MJ = J|M10|J,MJ = J〉

8 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Magnetic Dipole Moment

interaction between external field and nucleus

caused by orbital motion of protons and spins of nucleons

Magnetic dipole operator

M10 =

√3

4πµN

A∑i=1

[gpsz(i) + lz(i)Πp(i) + gnsz(i)Πn(i)]

magnetic moments are defined as expectation values of M10

Magnetic dipole moment

µ =

√4π

3〈J,MJ = J|M10|J,MJ = J〉

8 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Magnetic Dipole Moment

interaction between external field and nucleus

caused by orbital motion of protons and spins of nucleons

Magnetic dipole operator

M10 =

√3

4πµN

A∑i=1

[gpsz(i) + lz(i)Πp(i) + gnsz(i)Πn(i)]

magnetic moments are defined as expectation values of M10

Magnetic dipole moment

µ =

√4π

3〈J,MJ = J|M10|J,MJ = J〉

8 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Magnetic Dipole Moment

interaction between external field and nucleus

caused by orbital motion of protons and spins of nucleons

Magnetic dipole operator

M10 =

√3

4πµN

A∑i=1

[gpsz(i) + lz(i)Πp(i) + gnsz(i)Πn(i)]

magnetic moments are defined as expectation values of M10

Magnetic dipole moment

µ =

√4π

3〈J,MJ = J|M10|J,MJ = J〉

8 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Electromagnetic Observables of Deuteron

Electromagnetic Observables of Deuteron

Magnetic dipole moment

0 0.02 0.04 0.06 0.08 0.10.82

0.84

0.86

0.88

0.9

2H

SRG evolved M1 operator

bare M1 operator

α[fm4]

µgs(M1)[µ

N]

Electric quadrupole moment

0 0.02 0.04 0.06 0.08 0.10.26

0.27

0.28

0.29

2H

SRG evolved E2 operator

bare E2 operator

α[fm4]

Qgs(E2)[efm

2]

expectation value of bare operators is α dependent

consistent SRG changes moments by a few percent

9 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Electromagnetic Observables of Deuteron

Electromagnetic Observables of Deuteron

Magnetic dipole moment

0 0.02 0.04 0.06 0.08 0.10.82

0.84

0.86

0.88

0.9

2H

SRG evolved M1 operator

bare M1 operator

α[fm4]

µgs(M1)[µ

N]

Electric quadrupole moment

0 0.02 0.04 0.06 0.08 0.10.26

0.27

0.28

0.29

2H

SRG evolved E2 operator

bare E2 operator

α[fm4]

Qgs(E2)[efm

2]

expectation value of bare operators is α dependent

consistent SRG changes moments by a few percent

9 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

M1 Observables of 6Li

M1 Observables of 6Li

bare M1 operators

experiment

6Li

μ(1+) [μN]

B(M

1,0+->

1+)[μ

N2]

0.81 0.82 0.83 0.84 0.85 0.8614.5

15

15.5

16

16.5

SRG evolved M1 operators

experiment

6Li

μ(1+) [μN]

B(M

1,0+->

1+)[μ

N2]

0.81 0.82 0.83 0.84 0.85 0.8614.5

15

15.5

16

16.5

IT-NCSMhω 16 MeVα 0.08fm4

(open) NN+3Nind

(filled) NN+3Nfull

EM+500EGM(450/500)(600/500)(550/600)(450/700)(600/700)

Nmax

2

4

6

8

10

12

contributions to µ by using consistent SRG transformation

small contributions to transition strength

10 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

M1 Observables of 6Li

M1 Observables of 6Li

bare M1 operators

experiment

6Li

μ(1+) [μN]

B(M

1,0+->

1+)[μ

N2]

0.81 0.82 0.83 0.84 0.85 0.8614.5

15

15.5

16

16.5

SRG evolved M1 operators

experiment

6Li

μ(1+) [μN]

B(M

1,0+->

1+)[μ

N2]

0.81 0.82 0.83 0.84 0.85 0.8614.5

15

15.5

16

16.5

IT-NCSMhω 16 MeVα 0.08fm4

(open) NN+3Nind

(filled) NN+3Nfull

EM+500EGM(450/500)(600/500)(550/600)(450/700)(600/700)

Nmax

2

4

6

8

10

12

contributions to µ by using consistent SRG transformation

small contributions to transition strength

10 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

M1 Observables of 6Li

M1 Observables of 6Li

bare M1 operators

experiment

6Li

μ(1+) [μN]

B(M

1,0+->

1+)[μ

N2]

0.81 0.82 0.83 0.84 0.85 0.8614.5

15

15.5

16

16.5

SRG evolved M1 operators

experiment

6Li

μ(1+) [μN]

B(M

1,0+->

1+)[μ

N2]

0.81 0.82 0.83 0.84 0.85 0.8614.5

15

15.5

16

16.5

IT-NCSMhω 16 MeVα 0.08fm4

(open) NN+3Nind

(filled) NN+3Nfull

EM+500EGM(450/500)(600/500)(550/600)(450/700)(600/700)

Nmax

2

4

6

8

10

12

contributions to µ by using consistent SRG transformation

small contributions to transition strength

10 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

M1 Observables of 6Li

M1 Observables of 6Li

bare M1 operators

experiment

6Li

μ(1+) [μN]

B(M

1,0+->

1+)[μ

N2]

0.81 0.82 0.83 0.84 0.85 0.8614.5

15

15.5

16

16.5

SRG evolved M1 operators

experiment

6Li

μ(1+) [μN]

B(M

1,0+->

1+)[μ

N2]

0.81 0.82 0.83 0.84 0.85 0.8614.5

15

15.5

16

16.5

IT-NCSMhω 16 MeVα 0.08fm4

(open) NN+3Nind

(filled) NN+3Nfull

EM+500EGM(450/500)(600/500)(550/600)(450/700)(600/700)

Nmax

2

4

6

8

10

12

contribution of chiral currents: [S. Pastore et al., Phys.Rev.C87, 035503(2013)]

→ to magnetic-dipole moment: weak→ to transition strength: not negligible

11 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

E2 Observables of 12C

E2 Observables of 12C

bare E2 operators

experiment

12C

Q(2+) [efm2]

B(E

2,2+->

0+)[e

2fm

4]

3 4 5 6 7 8 94

5

6

7

8

9

SRG evolved E2 operators

experiment

12C

Q(2+) [efm2]

B(E

2,2+->

0+)[e

2fm

4]

3 4 5 6 7 8 94

5

6

7

8

9

IT-NCSMhω 16 MeVα 0.08fm4

(open) NN+3Nind

(filled) NN+3Nfull

EM+500EGM(450/500)(600/500)(550/600)(450/700)(600/700)

Nmax

2

4

6

8

description of strong correlation by rotor model

contributions from consistent SRG are small

12 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

E2 Observables of 12C

E2 Observables of 12C

bare E2 operators

experiment

12C

Q(2+) [efm2]

B(E

2,2+->

0+)[e

2fm

4]

3 4 5 6 7 8 94

5

6

7

8

9

SRG evolved E2 operators

experiment

12C

Q(2+) [efm2]

B(E

2,2+->

0+)[e

2fm

4]

3 4 5 6 7 8 94

5

6

7

8

9

IT-NCSMhω 16 MeVα 0.08fm4

(open) NN+3Nind

(filled) NN+3Nfull

EM+500EGM(450/500)(600/500)(550/600)(450/700)(600/700)

Nmax

2

4

6

8

description of strong correlation by rotor model

contributions from consistent SRG are small

12 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

E2 Observables of 12C

E2 Observables of 12C

bare E2 operators

experiment

12C

Q(2+) [efm2]

B(E

2,2+->

0+)[e

2fm

4]

3 4 5 6 7 8 94

5

6

7

8

9

SRG evolved E2 operators

experiment

12C

Q(2+) [efm2]

B(E

2,2+->

0+)[e

2fm

4]

3 4 5 6 7 8 94

5

6

7

8

9

IT-NCSMhω 16 MeVα 0.08fm4

(open) NN+3Nind

(filled) NN+3Nfull

EM+500EGM(450/500)(600/500)(550/600)(450/700)(600/700)

Nmax

2

4

6

8

description of strong correlation by rotor model

contributions from consistent SRG are small

12 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

E2 Observables of 12C

E2 Observables of 12C

bare E2 operators

experiment

12C

Q(2+) [efm2]

B(E

2,2+->

0+)[e

2fm

4]

3 4 5 6 7 8 94

5

6

7

8

9

SRG evolved E2 operators

experiment

12C

Q(2+) [efm2]

B(E

2,2+->

0+)[e

2fm

4]

3 4 5 6 7 8 94

5

6

7

8

9

IT-NCSMhω 16 MeVα 0.08fm4

(open) NN+3Nind

(filled) NN+3Nfull

EM+500EGM(450/500)(600/500)(550/600)(450/700)(600/700)

Nmax

2

4

6

8

description of strong correlation by rotor model

contributions from consistent SRG are small

12 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

M1 Observables of Light Nuclei

Magnetic Dipole Moments of Light Nuclei

IT-NCSMNN+3Nfull

EM+500

~ω 16 MeV(open) 0.04 fm4

(filled) 0.08 fm4

bare

SRG evolved

experiment

contribution by performing a consistent SRG depends onnucleus

13 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

M1 Observables of Light Nuclei

Magnetic Dipole Moments of Light Nuclei

IT-NCSMNN+3Nfull

EM+500

~ω 16 MeV(open) 0.04 fm4

(filled) 0.08 fm4

bare

SRG evolved

experiment

contribution by performing a consistent SRG depends onnucleus

13 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

M1 Observables of Light Nuclei

Magnetic Dipole Moments of Light Nuclei

IT-NCSMNN+3Nfull

EM+500

~ω 16 MeV(open) 0.04 fm4

(filled) 0.08 fm4

bare

SRG evolved

experiment

contribution by performing a consistent SRG depends onnucleus

13 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

M1 Observables of Light Nuclei

Magnetic Dipole Moments of Light Nuclei

IT-NCSMNN+3Nfull

EM+500

~ω 16 MeV(open) 0.04 fm4

(filled) 0.08 fm4

bare

SRG evolved

experiment

contribution by performing a consistent SRG depends onnucleus

14 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

M1 Observables of Light Nuclei

M1 Transition Strengths of Light Nuclei

IT-NCSMNN+3Nfull

EM+500

~ω 16 MeV(open) 0.04 fm4

(filled) 0.08 fm4

bare

SRG evolved

experiment

small contributions through consistent SRG

15 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

M1 Observables of Light Nuclei

M1 Transition Strengths of Light Nuclei

IT-NCSMNN+3Nfull

EM+500

~ω 16 MeV(open) 0.04 fm4

(filled) 0.08 fm4

bare

SRG evolved

experiment

small contributions through consistent SRG

15 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

M1 Observables of Light Nuclei

M1 Transition Strengths of Light Nuclei

IT-NCSMNN+3Nfull

EM+500

~ω 16 MeV(open) 0.04 fm4

(filled) 0.08 fm4

bare

SRG evolved

experiment

small contributions through consistent SRG

15 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

M1 Observables of Light Nuclei

M1 Transition Strengths of Light Nuclei

IT-NCSMNN+3Nfull

EM+500

~ω 16 MeV(open) 0.04 fm4

(filled) 0.08 fm4

bare

SRG evolved

experiment

underestimation of M1 transition strengths

16 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Summary and Outlook

contribution of consistent SRG evolution depends on

→ nuclei

→ observable

for 6Li: consistent SRG evolution of M1-operator

→ adds contributions to magnetic moment

→ has small effect on transition strength

Outlook

next step to improve consistency → include two-body currentsfrom chiral EFT

Mlm ∝∫ (

~r × ~j (~r))~∇r lYlm(θ, φ) d3r

17 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Summary and Outlook

contribution of consistent SRG evolution depends on

→ nuclei

→ observable

for 6Li: consistent SRG evolution of M1-operator

→ adds contributions to magnetic moment

→ has small effect on transition strength

Outlook

next step to improve consistency → include two-body currentsfrom chiral EFT

Mlm ∝∫ (

~r × ~j (~r))~∇r lYlm(θ, φ) d3r

17 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Summary and Outlook

contribution of consistent SRG evolution depends on

→ nuclei

→ observable

for 6Li: consistent SRG evolution of M1-operator

→ adds contributions to magnetic moment

→ has small effect on transition strength

Outlook

next step to improve consistency → include two-body currentsfrom chiral EFT

Mlm ∝∫ (

~r × ~j (~r))~∇r lYlm(θ, φ) d3r

17 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Summary and Outlook

contribution of consistent SRG evolution depends on

→ nuclei

→ observable

for 6Li: consistent SRG evolution of M1-operator

→ adds contributions to magnetic moment

→ has small effect on transition strength

Outlook

next step to improve consistency → include two-body currentsfrom chiral EFT

Mlm ∝∫ (

~r × ~j (~r))~∇r lYlm(θ, φ) d3r

17 / 18

Motivation Ab initio calculations Electromagnetic Observables Results Summary and Outlook

Epilog

Thanks to my group

S. Alexa, E. Gebrerufael, T. Huther, R. Roth,S. Schulz, H. Spielvogel, C. Stumpf, A. Tichai,K. Vobig, R. WirthInstitut fur Kernphysik, TU Darmstadt

Thank you for your attention!

Verwendete Schriften

Schriftzug oben:Frutiger light regularKerning 0 % Geviert

Schriftzug unten:DFG TTF regularKerning 1 % Geviert

JURECA LOEWE-CSC LICHTENBERG

COMPUTING TIME

18 / 18

top related