new developments for electrochemical energy storage · new developments for electrochemical energy...

Post on 29-Jun-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

0STYRIAN ACADEMY for Sustainable EnergiesSTYRIAN ACADEMY for Sustainable Energies

NEW DEVELOPMENTS FOR NEW DEVELOPMENTS FOR NEW DEVELOPMENTS FOR ELECTROCHEMICAL ENERGY ELECTROCHEMICAL ENERGY ELECTROCHEMICAL ENERGY

STORAGESTORAGESTORAGEKAIKAIKAI---CHRISTIAN MCHRISTIAN MCHRISTIAN MÖÖÖLLERLLERLLER

1STYRIAN ACADEMY for Sustainable Energies

History and Primary Batteries

Lead Acid Accumulator

Nickel Cadmium Accumulator

Nickel Metal Hydride Accumulator

Sodium Sulfur Accumulator

Sodium Nickel Chloride Accumulator

Redox-Flow Batteries

Electrochemical Double Layer Capacitors

Lithium-Ion Batteries

Outlook

2STYRIAN ACADEMY for Sustainable Energies

History and Primary Batteries

3STYRIAN ACADEMY for Sustainable Energies

Volta Pile (1799)

• medical investigations• discovery of elektrolysis• preparation of Na, K, Ba, Sr,

Ca, Mg, …

Electrolyte

Zinc

Silver

4STYRIAN ACADEMY for Sustainable Energies

Leclanché Element (1866)

supply of railway telegraphs and electric bells

5STYRIAN ACADEMY for Sustainable Energies

Different Types of Primary Batteries

Zinc Silveroxide

Zinc Carbon

Zinc Manganese(Alkaline)

Lithium Metal

Zinc Air

6STYRIAN ACADEMY for Sustainable Energies

Lead Acid Accumulator

7STYRIAN ACADEMY for Sustainable Energies

History

The first Electric Vehicle (1881)

Truck Starter Battery (1960)

Battery after Planté (1859)

8STYRIAN ACADEMY for Sustainable Energies

Reactions

Pb + SO42- PbSO4 + 2 e-, E°= - 0.356 V

PbO2 + SO42- + 2 e- + 4 H+ PbSO4 + 2 H2O, E°= +1.685 V

Overall Reaction

Pb + PbO2 + 2 SO42- + 4 H+ 2 PbSO4 + 2 H2O, ∆E°= 2.04 V

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

E / V vs. H2/H+

2.04 V

9STYRIAN ACADEMY for Sustainable Energies

Valve regulated lead acid batteries (VRLA)

• closed cells • fixed electrolyte

effectiver internal charge/discharge cycle oxygen diffuses through the electrolyte as gas

10STYRIAN ACADEMY for Sustainable Energies

Absorbent Glass Mat Technology(AGM)

11STYRIAN ACADEMY for Sustainable Energies

Nickel Cadmium Accumulator

12STYRIAN ACADEMY for Sustainable Energies

History

Waldemar Jungner(1869-1924)

1899 developed in Sweden by Waldemar Jungner

13STYRIAN ACADEMY for Sustainable Energies

Design

negative electrode: Cd

positive electrode: NiO(OH)

electrolyty: 20-%ige KOH

14STYRIAN ACADEMY for Sustainable Energies

Applications

Société des Accumulateurs Fixes et de Tractionvalue, 2008

15STYRIAN ACADEMY for Sustainable Energies

Market Data 2008

NiCd: 0.8 Mrd US $(-16 % to prior year)

NiMH: 1.2 Mrd US $(± 0 % to prior year)

16STYRIAN ACADEMY for Sustainable Energies

Nickel Metal Hydride Accumulator

17STYRIAN ACADEMY for Sustainable Energies

History

since 1967: first developments at the Battelle Geneva Research Center withTiNi anodes and the Philips Laboratories / CNRS with rare earth metals

1990: market introduction of Ni-metalhydride cells by SANYO

energy density: 30 - 80 Wh/kgvoltage: 1.3 V

18STYRIAN ACADEMY for Sustainable Energies

Design

AB5 (LaNi5)

(appr. 30 % „Mischmetal“ from rare

earth elements (La, Ce, Nd, Pr, …),

appr. 50 % Ni, + Al, Mn, Co)

take-up of 1.37 m% H

AB2 (TiMn2), Zr(Ni, V, Mn)2

NiO(OH)

20-% KOH

19STYRIAN ACADEMY for Sustainable Energies

Development of SANYO NiMH Batteries (1997 - 2004)

20STYRIAN ACADEMY for Sustainable Energies

SANYO Superlattive Alloy (2003)

• Mm0.83Mg0.17Ni3.1Al0.2 gives 25 % more capacity

21STYRIAN ACADEMY for Sustainable Energies

dissolution of Co and Mn and stripping on the separator

„shuttle effekt“ with nitrogen compounds

Mechanisms of Self Discharge

decomposition with O2 generation

22STYRIAN ACADEMY for Sustainable Energies

further improvements

• increase of the decomposition of the positive with additives

• anode material without Mn, Co, Zn, …

• new electrolyte ( + NaOH)

• hydrophilic separator

Decrease of the self discharge

• more crystalline anode materialwith optimized composition

• additiv coating on the ande material

• thinner casing (such as NiMH 2700 mAh)

23STYRIAN ACADEMY for Sustainable Energies

Applications

value, 2008

Toyota Prius Battery

Toyota Prius Battery

24STYRIAN ACADEMY for Sustainable Energies

Sodium Sulfur Accumulator

25STYRIAN ACADEMY for Sustainable Energies

History

• 1972 - 1987: Research of the BBC (Brown, Boveri & Cie, now ABB, Asea Brown Boveri) in Mannheim

• since 1984: NGK Insulators Ltd. (japanese industrial ceramic producer)

26STYRIAN ACADEMY for Sustainable Energies

Design

liquid Nainner metal cartidge with holes controls access

of Na to the electrolyte interface(0.1 mm gap for

safety)

liquid Sin graphite felt as current collector to the Cr/Mo-

steel outer container

β‘‘-Al2O3-ceramic (Na2O · Al2O3)solid electrolyte for Na-ions, at 300°C as good

conductivity as aqueous electrolytes, also

separator for the liquid electrodes

27STYRIAN ACADEMY for Sustainable Energies

Properties

• Energy density 200 Wh/kg

• Voltage (dep. on SOC) 1,78 - 2,08 V

• Temperature: 300 - 350 °C

• Thermal managment required, suitable for stationary applications

28STYRIAN ACADEMY for Sustainable Energies

Reactions

x S + 2e- Sx2- , E°= - 0.77 – -1.07 V

2 Na + x S Na2Sx, ∆E°= 2.08 – 1.78 V, x = 5 … 3

Na Na+ + e- , E°= - 2.85 V

29STYRIAN ACADEMY for Sustainable Energies

Applications

• Energy Storage for the grid, wind, solar energy

• Space: demonstrator for Space Shuttle flight november 1997 (STS-87 mission)

• EV such as Ford "Ecostar" (Prototype)

30STYRIAN ACADEMY for Sustainable Energies

wind park in USA

34 MW NAS for 51 MW wind park

Applications

31STYRIAN ACADEMY for Sustainable Energies

Europes biggest NaS battery (1 MW) will supply 1000 households for six hours on the Azoren island Graciosa (test in Berlin since 1.7. 2009)

Applications

32STYRIAN ACADEMY for Sustainable Energies

Applications

Ford Ecostar EV (1992-1994)

• ABB NaS Battery

• 37 kWh, 360 kg

• const. power 30 kW, max. 58 kW

• max speed: 115 km/h

• acceleration (0-88 km/h): < 14 s

• range: >160 km

• paxload: 410 kg (incl. driver and passenger)

• test fleet with105 cars (e.g., Deutsche Telekom)

33STYRIAN ACADEMY for Sustainable Energies

Sodium Nickel Chloride AccumulatorZEBRA Battery

34STYRIAN ACADEMY for Sustainable Energies

History

1985 Start of development within the Zeolite Battery Research Africa Project (ZEBRA) at the Council for Scientific and Industrial Research (CSIR) in Pretoria, south africa, for applications in cars and military applications

2010 FIAMM (ital. automotive supplier) and

MES-DEA lounch FZ Sonick SA

since 2006 Renault Twingo, range 120 km, 25 000 €; similar Smart, Panda

35STYRIAN ACADEMY for Sustainable Energies

Design

liquid Na outside: no expensive Ni container, square cells possible (better packaging), no mechanical stress with teperature cycles

porous Ni matrix (current collector) with NiCl2, impegnated with NaAlCl4 (molten salt as second electrolyte, mp. 157 °C)

β‘‘-Al2O3-ceramic (Na2O · Al2O3)

36STYRIAN ACADEMY for Sustainable Energies

Reactions

Ni2+ (Fe2+) + 2e- Ni (Fe) , E°= - 0.27 V (-0.5 V)

2 Na + Ni(Fe)Cl2 2 NaCl + Ni(Fe), ∆E°= 2.58 V (2.35 V)

Na Na+ + e- , E°= - 2.85 V

37STYRIAN ACADEMY for Sustainable Energies

Applications

Smart ForTwo electric drive

• power: 30 kW / 41 PS• acc. 0-60 km/h: 5,7s• max. speed: 112 km/h• range: 115 km• charge time ca. 8 h • battery life: 80 000 km

38STYRIAN ACADEMY for Sustainable Energies

Applications

Mercedes-Benz A class

39STYRIAN ACADEMY for Sustainable Energies

Applications: IVECO Daily

range (with 3 Batteries): 120 km

82 PS, max. 70 km/h

charge time: 8 hours (with 380 V)

battery life: 1000 cycles (130 000 km)

Price with 3 batteries 102 914 € (standard car ca. 27 000 €)

40STYRIAN ACADEMY for Sustainable Energies

Redox-Flow Batteries

41STYRIAN ACADEMY for Sustainable Energies

History

• beginning of 1970ies: NASA investigates different redox couples on their suitability for redox-flow batteries (Fe/Cr and Fe/Ti systems)

• 1986: Vanadium redox-flow battery patented by Maria Skyllas-Kazacos at the University of New South Wales in Australia

• 2009: Prudent Energy Inc. takes over VRB Power Systems

• 2008: Cellstrom (Austria) produces in series the energy storage system FB10/100

42STYRIAN ACADEMY for Sustainable Energies

Design

43STYRIAN ACADEMY for Sustainable Energies

Design

Vanadium in different oxidation states (VII+, VIII+, VIV+, VV+)counter ion: sulfate

current collector: carbon felt

water / H2SO4

Ru for higher current densities H3PO4 and ammonium phosphate for stabilisation

Separator: Nafion, Polystyrenesulfonic acid

44STYRIAN ACADEMY for Sustainable Energies

Reactions

VO2+ + 2H+ + e- VO2+ + H2O , E°= 0.991 V

V2+ + VO2+ + 2H+ V3+ + VO2+ + H2O , ∆E°= 1.246 V

V2+ V3+ + e- , E°= - 0.255 V

45STYRIAN ACADEMY for Sustainable Energies

Applications

VRB Kanada – 2 MW

VRB Energy Storage System (VRB-ESS™) – 5kW

46STYRIAN ACADEMY for Sustainable Energies

Applications

47STYRIAN ACADEMY for Sustainable Energies

Applications

cellcube FB 10-100 (100kWh, 4.5 × 2.2 × 2.4 m, 10.3 t)

power modules

application as solar charging station

48STYRIAN ACADEMY for Sustainable Energies

Electrochemical Double Layer Capacitors

49STYRIAN ACADEMY for Sustainable Energies

Names

• Electrochemical (Double Layer) Capacitor (EC, EDLC)

• Supercapacitor, Ultracapacitor

50STYRIAN ACADEMY for Sustainable Energies

Different Types of Capacitors

elektrostatic capacitor

elektrolyte capacitor

Electrochemical (Double Layer) Capacitor, „Supercap“

51STYRIAN ACADEMY for Sustainable Energies

Design

Quelle: WIMA

active carbon with > 1000 m2/g

aq. H2SO4 or organic solvents with supporting electrolyte (e.g., acetonitrile with tetrabutylammonium tetrafluoroborate, AN / Bu4NBF4)

52STYRIAN ACADEMY for Sustainable Energies

History

• 1957: H. I. Becker of General Electric discovers the charge storage effect of porous carbon electrodes

• 1978: after licensing to NEC commercialisation as “supercapacitor” for memory backup for computer: bipolar construction with six to eight cells in series (to achieve the commonly voltage of 5.5 V)

53STYRIAN ACADEMY for Sustainable Energies

History

• 1998: TheDaewoo Group lounches in Korea NessCap (prismatical wound cells with organic electrolyte).

• 2002: Maxwell buys the SC producer Montena Components (Rossens, Schweiz): cylindrical wound cells with carcon coated alumina foils, trade name „Boostcap“

• 2005: Nippon Chemi-Con (NCC, Japan) puts DLCAP product line on the US market: Electrolyte contains propylene carbonate instead of acetonitrile

54STYRIAN ACADEMY for Sustainable Energies

Electrolytes

E / V vs. H2/H+

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

aqueous electrolyte

organic electrolyte

1.2 V

2.7 V

55STYRIAN ACADEMY for Sustainable Energies

BMW Concept X3 EfficientDynamics

► overall capacity of 190 kW

► efficiency 98 %, (NiMH 84 %)

56STYRIAN ACADEMY for Sustainable Energies

► up to 30 % energy saving► cable free driving of ca. 1 km with two modules► 20-25 s charge time► 12/2009 six trains in field (19 in 2010, Rhein-Neckar)

Mitrac Energy Saver

57STYRIAN ACADEMY for Sustainable Energies

Lithium-Ion Batteries

58STYRIAN ACADEMY for Sustainable Energies

Host Compounds

LixCn xLi+ + xe- + Cn

Negative - "Anode" Positive - "Kathode"

Li1-xCoO2 + xe- + xLi+ LiCoO2

59STYRIAN ACADEMY for Sustainable Energies

Applications with High Energy Density

60STYRIAN ACADEMY for Sustainable Energies

Applications with High Power Density

61STYRIAN ACADEMY for Sustainable Energies

Tesla

• 6831 Lithium-IoCells (18650)

• 450 kg

• 55 kWh (≈≈≈≈ 120 Wh/kg)

• 0-100 km/h: 4 s

• range: 350 km

• guarantee for 80 % of initial capacity up to 160.000 km

62STYRIAN ACADEMY for Sustainable Energies

Tesla

Battery Box / Energy Storage System "PEM" Power Electronics Module

63STYRIAN ACADEMY for Sustainable Energies

Stationary Applications

64STYRIAN ACADEMY for Sustainable Energies

Stationary Applications

65STYRIAN ACADEMY for Sustainable Energies

Kai-Christian Möller

Fraunhofer Institute for Silicate Research ISCNeunerplatz 2D-97082 Würzburg, Germany

kai-christian.moeller@isc.fraunhofer.de

top related