mit 2.71/2.710 optics 10/25/04 wk8-a-1 the spatial frequency domain

Post on 27-Mar-2015

225 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

MIT 2.71/2.710 Optics 10/25/04 wk8-a-1

The spatial frequency domain

MIT 2.71/2.710 Optics 10/25/04 wk8-a-2

Recall: plane wave propagation

path delay increaseslinearly with x

plane of observation

MIT 2.71/2.710 Optics 10/25/04 wk8-a-3

Spatial frequency ⇔angle of propagation?

plane of observation

electric field

MIT 2.71/2.710 Optics 10/25/04 wk8-a-4

Spatial frequency ⇔angle of propagation?

plane of observation

MIT 2.71/2.710 Optics 10/25/04 wk8-a-5

The cross-section of the optical field with the optical axisis a sinusoid of the form

Spatial frequency ⇔angle of propagation?

i.e.it looks like

where

is called the spatial frequencyspatial frequency

MIT 2.71/2.710 Optics 10/25/04 wk8-a-6

2D sinusoids

MIT 2.71/2.710 Optics 10/25/04 wk8-a-7

2D sinusoids

min

max

MIT 2.71/2.710 Optics 10/25/04 wk8-a-8

2D sinusoids

min

max

MIT 2.71/2.710 Optics 10/25/04 wk8-a-9

2D sinusoids

min

max

MIT 2.71/2.710 Optics 10/25/04 wk8-a-10

Periodic Grating /1: vertical

Spacedomain

Frequency(Fourier)domain

Periodic Grating /2: tilted

Spacedomain

Frequency(Fourier)domain

MIT 2.71/2.710 Optics 10/25/04 wk8-a-11

Superposition: multiple gratings

Spacedomain

Frequency(Fourier)domain

MIT 2.71/2.710 Optics 10/25/04 wk8-a-12

MIT 2.71/2.710 Optics 10/25/04 wk8-a-13

More superpositions

Spacedomain

Frequency(Fourier)domain

MIT 2.71/2.710 Optics 10/25/04 wk8-a-14

Size of object vsfrequency content

Spacedomain

Frequency(Fourier)domain

MIT 2.71/2.710 Optics 10/25/04 wk8-a-15

Superimposing shifted objects

Spacedomain

Frequency(Fourier)domain

MIT 2.71/2.710 Optics 10/25/04 wk8-a-16

Linear shift invariant systemsin the time domain

MIT 2.71/2.710 Optics 10/25/04 wk8-a-17

Linear shift invariant systems

MIT 2.71/2.710 Optics 10/25/04 wk8-a-18

Linear shift invariant systems

impulse excitation impulse excitation

shift invarianceshift invariance

MIT 2.71/2.710 Optics 10/25/04 wk8-a-19

Linear shift invariant systems

impulse excitation impulse excitation

linearitylinearity

MIT 2.71/2.710 Optics 10/25/04 wk8-a-20

Linear shift invariant systems

arbitrary

sifting property of the δ-function convolution integral

MIT 2.71/2.710 Optics 10/25/04 wk8-a-21

Linear shift invariant systems

sinusoid sinusoid

attenuationphase delay

transfer function transfer function

same frequency

MIT 2.71/2.710 Optics 10/25/04 wk8-a-22

From time to frequency: Fourier analysis

Can I express an arbitrary g(t) as a superposition of sinusoids?

MIT 2.71/2.710 Optics 10/25/04 wk8-a-23

The Fourier integral

(aka inverse Fourier transforminverse Fourier transform)

superposition sinusoids

complex weight,expresses relative amplitude

(magnitude & phase) of superposed sinusoids

MIT 2.71/2.710 Optics 10/25/04 wk8-a-24

The Fourier transform

The complex weight coefficients G(ν),akaFourier transform Fourier transform o

f g(t)are calculated from the integral

MIT 2.71/2.710 Optics 10/25/04 wk8-a-25

Fourier transform pairs

MIT 2.71/2.710 Optics 10/25/04 wk8-a-26

2D2D Fourier transform pairs pairs

Image removed due to copyright concerns

(from Goodman, Introduction to Fourier Optics, page 14)

top related