local causality - eötvös loránd...

Post on 12-Jul-2020

11 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

LOCAL CAUSALITYGabor Hofer-Szabo

Research Centre for the Humanities, Budapest

email: szabo.gabor@btk.mta.hu

Peter VecsernyesWigner Research Centre for Physics, Budapest

email: vecsernyes.peter@wigner.mta.hu

Local Causality – p. 1

Project

Broader project: How the three concepts of causality,probability and locality relate to one another in ourfundamental physical theories?

Local Causality – p. 2

Project

Broader project: How the three concepts of causality,probability and locality relate to one another in ourfundamental physical theories?

Narrower question: How to formulate local causality inlocal classical and quantum theory?

Local Causality – p. 3

Project

I. What is a local physical theory?

II. Locality concepts

III. Local causality

IV. Classical nets

Local Causality – p. 4

I. What is a local physical theory?

Local Causality – p. 5

Local physical theory

Minkowski spacetime:Directed poset: (K,⊆)

Local Causality – p. 6

Local physical theory

Minkowski spacetime:Net: {N (V ), V ∈ K}

Local Causality – p. 7

Local physical theory

Isotony:

V1

Local Causality – p. 8

Local physical theory

Isotony: if V1 ⊂ V2

V V1

2

Local Causality – p. 9

Local physical theory

Isotony: if V1 ⊂ V2, then N (V1) is a subalgebra of N (V2)

V V1

2

Local Causality – p. 10

Local physical theory

Microcausality (Einstein causality):

V1 V2

Local Causality – p. 11

Local physical theory

Microcausality (Einstein causality): [N (V1),N (V2)] = 0

V1 V2

Local Causality – p. 12

Local physical theory

Covariance: spacetime symmetries are represented on N

Local Causality – p. 13

Local physical theory

Local physical theory: an isotone, microcausal andcovariant net

It embraces local classical and quantum theories

Local Causality – p. 14

Local physical theory

Local primitive causality:

V

Local Causality – p. 15

Local physical theory

Local primitive causality:

V’’

V

Local Causality – p. 16

Local physical theory

Local primitive causality: N (V ) = N (V ′′)

V’’

V

Local Causality – p. 17

Local physical theory

Microcausality 6⇐⇒ Local primitive causality

Example: local field algebras

F(V ) := N (V ′)′ ∩ F

Local Causality – p. 18

II. Locality concepts

Local Causality – p. 19

Locality concepts

Microcausality: no-signalling, parameter independence

Local primitive causality: no superluminal propagation

Local Causality – p. 20

Locality concepts

No-signalling, parameter independence:

{Ak}k∈K : mutually orthogonal projections in N (VA)

Non-selective projective measurement:

E{Ak} : N ∋ X 7→∑

k∈K

AkXAk

No-signalling: for any locally faithful state φ and for anyprojection B ∈ N (VB) such that VA and VB are spatiallyseparated spacetime regions:

(φ ◦ E{Ak})(B) = φ(B)

Local Causality – p. 21

Locality concepts

Outcome independence

A: projection in N (VA)

Selective projective measurement:

EA : N ∋ X 7→ AXA

Outcome independence: for any locally faithful state φ

and for any projection B ∈ N (VB) such that VA and VBare spatially separated spacetime regions:

(φ ◦ EA)(B)

φ(A)= φ(B)

Local Causality – p. 22

Locality concepts

Local determinism:

For any two states φ and φ′ and for any nonemptyconvex spacetime region V , if φ|N (V ) = φ′|N (V ) thenφ|N (V ′′) = φ′|N (V ′′)

V’’

V

Local primitive causality =⇒ Local determinism

Local Causality – p. 23

Locality concepts

Stochastic Einstein locality:

For any two states φ and φ′, for any VA spacetimeregions, any projection A ∈ N (VA) and any spacetimeregion VC such that VC ⊂ I−(VA) and VA ⊂ V ′′

C, if

φ|N (VC) = φ′|N (VC) then φ(A) = φ′(A)

VA

VC

Local determinism =⇒ Stochastic Einstein localityLocal Causality – p. 24

Locality concepts

Primitive causality:

For any Cauchy surface S and any open neighborhoodOS of S: N (OS) = N

Local primitive causality =⇒ Primitive causality

Local Causality – p. 25

Locality concepts

Determinism:

For any two states φ and φ′ and for any Cauchy surfaceS and any open neighborhood OS of S, ifφ|N (OS) = φ′|N (OS) then φ = φ′

Local determinism =⇒ Determinism

Local Causality – p. 26

III. Local causality

Local Causality – p. 27

Local causality

Remark:

Local primitive causality is a dependence relation; localcausality is an independence relation.

Local primitive causality does not rely on the notion ofstate, it is a property of the net exclusively; localcausality does depend on the state.

Local Causality – p. 28

Local causality

”Let C denote a specification of all beables, of some theory, belongingto the overlap of the backward light cones of spacelike regions A and B.

A B

C ba

Let a be a specification of some beables from the remainder of the

backward light cone of A, and B of some beables in the region B. Then

in a locally causal theory

p(A|a,C,B) = p(A|a,C) (1)

whenever both probabilities are given by the theory.” (Bell, 1987, p. 54)Local Causality – p. 29

Local causality

”Let C denote a specification of all beables, of some theory, belongingto the overlap of the backward light cones of spacelike regions A and B.

A B

Ca

Let a be a specification of some beables from the remainder of the

backward light cone of A, and B of some beables in the region B. Then

in a locally causal theory

p(A|a,C,B) = p(A|a,C) (2)

whenever both probabilities are given by the theory.” (Bell, 1987, p. 54)Local Causality – p. 30

Local causality

C

A B

“A theory will be said to be locally causal if the probabilities attached tovalues of local beables in a space-time region A are unaltered byspecification of values of local beables in a space-like separated regionB, when what happens in the backward light cone of A is alreadysufficiently specified, for example by a full specification of local beablesin a space-time region C . . . ” (Bell, 1990)

Local Causality – p. 31

Local causality

V VA B

S

Definitions. A local physical theory represented by a net{N (V ), V ∈ K} is called locally causal, if for any pairA ∈ N (VA) and B ∈ N (VB) of projections supported inspacelike separated regions VA, VB ∈ K and for every locallyfaithful state φ establishing a correlation between A and B,the following is true:

Local Causality – p. 32

Local causality

V

V V

V

A B

Ca

Local causality I. For any am ∈ N (Va) and atomic eventCk ∈ N (VC)

φ(AmBn|amCk) = φ(Am|amCk)φ(Bn|amCk)

Local Causality – p. 33

Local causality

V VA B

VC

Local causality II. For any atomic event Ck ∈ N (VC)

φ(Am ∧ Bn|Ck) = φ(Am|Ck)φ(Bn|Ck)

Local Causality – p. 34

Local causality

V VA B

VC

Local causality III. For any atomic event Ck ∈ N (VC)

φ(Am ∧ Bn|Ck) = φ(Am|Ck)φ(Bn|Ck)

Local Causality – p. 35

Local causality

V VA B

VC

Local causality IV. For any atomic event Ck ∈ N (VC)

φ(Am ∧ Bn|Ck) = φ(Am|Ck)φ(Bn|Ck)

Local Causality – p. 36

Local causality

V VA B

VC

Local causality V. For any atomic event Ck ∈ N (VC)

φ(Am ∧ Bn|Ck) = φ(Am|Ck)φ(Bn|Ck)

Local Causality – p. 37

Local causality

V

V V

V

A B

Ca

Local causality I.

It implies the standard probabilistic characterization ofthe common cause (screening-off, locality but notno-conspiracy).

Local Causality – p. 38

Local causality

V VA B

VC

Local causality II.

Weaker than Local causality I.

Trivially holds for a classical, atomic net satisfying localprimitive causality.

(For non-atomic nets it holds vacuously.)

Local Causality – p. 39

Local causality

V VA B

VC

Local causality III.

Is there a difference between Local causality II and III?(Causal Markov Condition)

Local Causality – p. 40

Local causality

V VA B

VC

Local causality IV.

6= Strong Common Cause Principle: there exists anon-trivial partition {Ck} ∈ N (VC) such that

φ(Am ∧ Bn|Ck) = φ(Am|Ck)φ(Bn|Ck)

Local Causality – p. 41

Local causality

V VA B

VC

Local causality V.

Trivially holds for a classical, atomic net satisfying localprimitive causality.

6= Weak Common Cause Principle

Local Causality – p. 42

Local causality

Questions:

1. How Local causality IV and V relate to the CommonCause Principles in classical and non-classical nets?

2. What is the relation between local primitive causality andlocal causality?

Local Causality – p. 43

IV. Classical nets

Local Causality – p. 44

Classical nets

Two dimensional discrete Minkowski spacetime:

Local Causality – p. 45

Classical nets

Local algebras:

+

Local Causality – p. 46

Classical nets

Local algebras:

Local Causality – p. 47

Classical nets

Deterministic dynamics:

++

+

Local Causality – p. 48

Classical nets

Deterministic dynamics:

++

++

Local Causality – p. 49

Classical nets

Deterministic dynamics:

++−

Local Causality – p. 50

Classical nets

Deterministic dynamics:

++−

Local Causality – p. 51

Classical nets

Stochastic dynamics:

++

+

Local Causality – p. 52

Classical nets

Stochastic dynamics: with probability p

++

++

Local Causality – p. 53

Classical nets

Stochastic dynamics: with probability 1− p

++

+−

Local Causality – p. 54

Classical nets

Stochastic dynamics:

++−

Local Causality – p. 55

Classical nets

Stochastic dynamics: with probability p

++−

Local Causality – p. 56

Classical nets

Stochastic dynamics: with probability 1− p

++−

+

Local Causality – p. 57

Classical nets

Local primitive causality does not hold:

++

−−

Local Causality – p. 58

Classical nets

But local causality does hold:

���������������������������������������������

���������������������������������������������

��������������������������������

��������������������������������

���������������������������������������������

���������������������������������������������

������������������������������������

������������������������������������

������������������������������������

������������������������������������

���������������������������������������������

���������������������������������������������

��������������������������������

��������������������������������

����������������������������������������

����������������������������������������

��������������������������������

��������������������������������

++ +

−−−

+

+−

Local Causality – p. 59

ReferencesG. Hofer-Szabó, P. Vecsernyés, ”Reichenbach’s Common Cause Principle in AQFT withlocally finite degrees of freedom,” Found. Phys., 42, 241-255 (2012a).

G. Hofer-Szabó, P. Vecsernyés, ”Noncommuting local common causes for correlationsviolating the Clauser–Horne inequality,” J. Math. Phys., 53, 122301 (2012b).

G. Hofer-Szabó, P. Vecsernyés, ”Noncommutative Common Cause Principles in algebraicquantum field theory,” J. Math. Phys., 54, 042301 (2013a).

G. Hofer-Szabó, P. Vecsernyés, ”Bell inequality and common causal explanation in algebraicquantum field theory,” Stud. Hist. Phil. Mod. Phys., (submitted) (2013b).

V.F. Müller and P. Vecsernyés, ”The phase structure of G-spin models”, to be published

F. Nill and K. Szlachányi, ”Quantum chains of Hopf algebras with quantum doublecosymmetry” Commun. Math. Phys., 187 159-200 (1997).

M. Rédei, ”Reichenbach’s Common Cause Principle and quantum field theory,” Found.Phys., 27, 1309–1321 (1997).

M. Rédei and J. S. Summers, ”Local primitive causality and the Common Cause Principle inquantum field theory,” Found. Phys., 32, 335-355 (2002).

H. Reichenbach, The Direction of Time, (University of California Press, Los Angeles, 1956).

K. Szlachányi and P. Vecsernyés, ”Quantum symmetry and braid group statistics in G-spinmodels” Commun. Math. Phys., 156, 127-168 (1993).

Local Causality – p. 60

top related