lec 6 -- copyright @ 2014 regents of the uc -- page 1ee143/fa14/... · ee 143: microfabrication...

Post on 25-Aug-2020

11 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

EE 143: Microfabrication Technology CTN 9/16/14

Lecture 6: Process Integration

Lecture in 180 Tan Hall today and from now

on -- ETS can record from this room

ETS recording today•

I have Lecture 1 (with poor sound) and

Lecture 5 recorded -- will transfer to ETS

for posting on YouTube

Announcements:

------------------------------------------

Example NMOS Process (finish this)•

Masks & Alignment•

Design Rules•

Lecture Topics:

------------------------------------------

Started NMOS process flow•

Last Time:

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 1

EE 143: Microfabrication Technology CTN 9/16/14

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 2

EE 143: Microfabrication Technology CTN 9/16/14

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 3

EE 143: Microfabrication Technology CTN 9/16/14

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 4

EE 143: Microfabrication Technology CTN 9/16/14

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 5

EE 143: Microfabrication Technology CTN 9/16/14

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 6

EE 143: Microfabrication Technology CTN 9/16/14

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 7

EE 143: Microfabrication Technology CTN 9/16/14

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 8

EE 143: Microfabrication Technology CTN 9/16/14

Example: NMOS Process

Layout:

Silicon oxidation: target = 100nm1.

LPCVD Si3N4: target = 100nm2.

Lithography: Mask I (active area)3.

Etch Si3N4 to clear it in field areas4.

Field isolation implant: B+ (p-type)5.

Remove PR6.

Grow 1mm of SiO2 by thermal oxidation

(LOCOS oxidation)

7.

Blanket etch all Si3N4 in hot phosphoric acid

wet etchant

8.

Threshold voltage implant: B+ (no mask)9.

Process Flow:

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 9

EE 143: Microfabrication Technology CTN 9/16/14

Remove 100nm of damaged oxide via a timed

wet etch in hydrofluoric acid (HF)

10.

Grow 100nm of gate thermal oxide in an

ultra-clean furnace

11.

LPCVD situ phosphorous-doped gate polysilicon12.

Lithography: Mask II (gate polysilicon)13.

Dry etch polysilicon to clear the field areas14.

Remove PR15.

D/S ion implantation: P or As (n-type)16.

Oxidize a bit (10nm) and anneal at 1050oC to

activate dopants and drive-in diffusion

17.

LPCVD PSG: target = 1m18.

Reflow PSG (& a little bit of diffusion) at

950oC

19.

Lithography: Mask III (contact hole)20.

Dry/wet etch SiO2 down to n+ S/D regions21.

Sputter Al: target = 1m22.

Lithography: Mask IV (metal)23.

Dry etch Al24.

Deposit via LTO or PECVD Si3N4 to serve as

passivation

25.

Lithography: Mask V (bond pad contacts)26.

Etch passivation layer down to metal27.

(optional) spin double-thick PR over the front

side

28.

Etch backside layers via successive wet

processes (to allow biasing of the substrate)

29.

Through step 2:

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 10

EE 143: Microfabrication Technology CTN 9/16/14

Through step 5:

Through step 12:

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 11

EE 143: Microfabrication Technology CTN 9/16/14

Through step 16:

Through step 21:

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 12

EE 143: Microfabrication Technology CTN 9/16/14

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 13

EE 143: Microfabrication Technology CTN 9/16/14

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 14

EE 143: Microfabrication Technology CTN 9/16/14

Lec 6 -- Copyright @ 2014 Regents of the UC -- Page 15

top related