flexible electronics: materials, circuits, and design...

Post on 23-Mar-2020

27 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Flexible Electronics: Materials,

Circuits, and Design Methodology

Chris H. Kim

Dept. of Electrical and Computer Engineering

University of Minnesota, Minneapolis, MN

chriskim@umn.edu

www.umn.edu/~chriskim/

Presentation Outline

• Motivation and Applications

• Fabrication Methods and Transistor

Characteristics

• Design Methodology and Circuit Examples

• Case Study: Flexible Dynamic Random

Access Memory (DRAM) Array

• Closing Remarks

Acknowledgements Collaborator: Prof. C. Dan Frisbie, Chemical Engineering Dept., Univ. of Minnesota Students and post-docs: Wei Zhang, Mingjing Ha, Daniele Braga

Funding: National Science Foundation (NSF), Office of Naval Research (ONR)

2

Large Area Flexible Electronics

• Devices: Transistors, LEDs, batteries, sensors

• Flexible, large area, low temperature processing, low

cost, printable

• Applications: Flexible displays, e-paper, RFID, solar

cells, sensor sheets/tapes, lighting, …

• Market size: $9.4B in ‘12, projected to top $63B by ‘22

Flexible circuit E-paper Solar Cell

3

Flexible Electronics: Today

Display Solar cell

Battery

4

Next Generation Flexible Electronics

Problem: Traumatic brain injury for

soldiers exposed to repeated blasts.

Goal: To create a low cost, flexible blast

dosimeter to monitor pressure,

acceleration, sound and light. Non-

volatile memory will record data for one

week

DARPA Funded Project, PARC

5

Holst Centre / IMEC

Digital signal

processing

Memory

Ele

ctro

de

Amp ADC

Large area MxN sensor array

Battery

CPU and

wireless

transmitter

(silicon chip)

Power

management

+

-

Flexible electronics

(this work)Silicon electronics

(conventional)

control

Existing EEG system Proposed EEG system

Electrode sheet

Flexible electronics

...... ...

Next Generation Flexible Electronics

6 MURI/ONR funded project, Minnesota

3V, 6-bit analog-to-digital

converter (Stanford)

15V, delta-sigma analog-to-digital

converter (IMEC)

15V 8-bit microprocessor

(IMEC)

20V, 64b RFID tag

(IMEC)

Challenge: Complex System Integration

7

Presentation Outline

• Motivation and Applications

• Fabrication Methods and Transistor

Characteristics

• Design Methodology and Circuit Examples

• Case Study: Flexible Dynamic Random

Access Memory (DRAM) Array

• Closing Remarks

8

One Strategy: Stretchable Silicon Electronics

John Rogers, UIUC

9

Another Strategy: Printing Circuits

Roll-to-Roll

(dynamic, high-volume)

Sheet-to-Sheet

(static, low-volume,

high precision)

10

Sheet-to-Sheet Printing Methods

Each method has advantages/disadvantages and specific ink requirements

Ink Filament

Printing

Aerosol Jet

Printing

Inkjet

Printing

11

Ion-Gel Top-Gated OTFT

Gate

Ion-gel

Channel

S D

Substrate

Gate contact: PEDOT:PSS in water

(Baytron P)

Dielectric: 90 wt% ethyl acetate

8 wt% [EMIM][TFSI]

(Solvent Innovation)

2 wt% PS-PMMA-PS

S/D Contacts: Au

Substrate: Kapton or PEN (Dupont)

or Silicon

Semiconductor: 2 mg/ml P3HT(Merck)

90 vol% Chloroform

10 vol% Terpineol

12

I-V of Ion-Gel Top-Gated OTFT

• High gate capacitance

– Low voltage operation

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 01 0

- 1 1

1 0- 1 0

1 0- 9

1 0- 8

1 0- 7

1 0- 6

1 0- 5

1 0- 4

1 0- 3

I (A

)

VG

( V )

VD

= - 0 . 1 V

VD

= - 1 . 0 V

0.0 0.5-0.5-1.0

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-11

VDS = -1.0V

VDS = -0.1V

VGS (V)

|I D

S|

(A)

1.0

~0.4mA drain current

@ Vdd=1.0V

Substrate

PEDOT:PSS

Ion GelP3HT

Au Au

13

-1.0

-0.5

0.0

0.5

1.0

-1.5

-1.0

-0.5

0.0

VA (100Hz)

VB (200Hz)

VOUT VDD = -1V

0 5 10 15 20

Time (ms)

Input V

oltage (

V)

Outp

ut

Voltage

(V

)

25 30

NAND Logic Gate

VDD

GND

VA VB

VOUT

Transistors

Resistor

500 um

VA VB VOUT

0 0 1

1 0 1

0 1 1

1 1 0 VDD

GND

VA VB

VOUT

14

Ring Oscillator with Tunable Load

0 10 20 30 40 50-2

-1

0

VDD

TL6

TD6

Vout

TL5

TD5

TL4

TD4

TL3

TD3

TL2

TD2

TL1

TD1

VBIAS

VDD = -2V VBIAS = -2.25V f ~ 150 Hz

Time (ms)

VO

UT (

V)

1mm

VBIAS

GND

VDD

VOUT

15

Presentation Outline

• Motivation and Applications

• Fabrication Methods and Transistor

Characteristics

• Design Methodology and Circuit Examples

• Case Study: Flexible Dynamic Random

Access Memory (DRAM) Array

• Closing Remarks

16

Process Design Kit (PDK): Taking a Page Out of

Silicon’s Playbook

Tool vendors, $5B (2010)

Fabless semiconductor

companies, $75B (2010)

IP companies, $3B

(2010)

Foundry, $25B

(2010)

PDK environment

17

Systematic Design Flow Based on a PDK

Basic cell

layout

Basic cell

schematic

-1.0 -0.50

-1

-2

-3

0.0

Cu

rre

nt

(mA

)

Voltage

Single device

measurementsRing oscillator

measurements

Array

circuit

layout

Array

circuit

schematic

Circuit

simulation

Automated

script-based

printing

Measurements

and testing

De

sig

n

itera

tion

G

D

SDevice

compact

model

Circuit

simulation

using HSPICE

Layout Versus

Schematic (LVS)

check

De

sig

n

itera

tion

Printing

Input File

Aerosol-Jet®

printing system

(Optomec, Inc.)

Design Rule

Check (DRC)

Ref: opdk.umn.edu 18

2 mm

VDD

D

CLK

GND

VDD

Q

Q

Reset

NAND Gate Inverter Crossover

D Flip-Flop Circuit (= 1 bit memory)

19

-1.5

-1.0

-0.5

0.0

-1.5

-1.0

-0.5

0.0

CLK (5Hz) Data (2.5Hz)

Q VDD = -1.5V

0 0.2 0.4 0.6

Time (s)

Input V

oltage (

V)

Ou

tput

Voltage (

V)

0.8

VDD

D

CLK

GND

VDD

Q

Q

1

Timing

Parameter

Output Data Pattern

“0” to “1” “1” to “0”

TC-Q 35ms 48ms

TSETUP 10ms 40ms

D flip-flop with Reset function

8 NAND gates + 3 Inverters

20

D Flip-Flop Circuit (= 1 bit memory)

Presentation Outline

• Motivation and Applications

• Fabrication Methods and Transistor

Characteristics

• Design Methodology and Circuit Examples

• Case Study: Flexible Dynamic Random

Access Memory (DRAM) Array

• Closing Remarks

21

General Purpose DRAM Array for

Display/Sensor Applications

• Low voltage, low

power

• Random access

• Compatible with

existing OTFT

logic circuits*

ONON OFF ...

...

FlexibleBattery VDD

GND

INV, NAND,

ROSC, etc.

RBL’s

*Y. Xia, et al., Adv. F

unc. Mater., 2010

22

Previous Organic Memory Reseach

• Non-volatile memory

– Floating-gate structure

– Ferroelectric materials

• Volatile memory

– Write-only SRAM (JSSC07)

• Braille sheet display

• Static power problem

– No previous work on

general purpose DRAM BIAS

VDD VDD

WL

BL

VSSVSS

M. Takamiya, JSSC 2007

Floating Gate

Control Gate

T. Sekitani, Science 2009

23

Electrolyte Gated OTFT with an

Unusually High Gate Capacitance

• Polarized ions enable Cgate=10~100µF/cm2 *

– High gate capacitance ideal for DRAM cells

– 65nm LP CMOS: Cgate~1.4µF/cm2

*Y. Xia, et al., Adv. Func. Mater., 2010

Gate

Source Drain

Substrate

Channel

--

-

--

---

--

+

~5µm

R

S

S S

R R

R

S

S

R

Transistor OFF

Gate

Source Drain

Substrate

Channel

- - - - - - - - - -R

S

S S

R R

R

S

S

R

+ + ++ +

Transistor ON

24

P-type Only 3T DRAM Gain Cell

• Ideal memory cell for electrolyte gated OTFTs

– Long retention time (> 1 minute), compared to 65nm

CMOS (~100µs [4])

– P-type only implementation possible, no static power

RWL = VDD

WWL=0

VDDWBL =

VDD / 0

RBL

= 0

0

VDDVDD / 0 RBL

VDD

VDD+ΔV

VDDVDD / 0 0

Leakage

for ‘0’

Write mode Hold mode Read mode

VDD+ΔV

[4] K. Chun, et al., VLSI symp., 2009

25

8x8 Printed Organic DRAM Array

24 mm

Process

Channel

Array size

TRETENTION

PSTANDBY

Ion-gel organic TFT

Poly(3-Hexylthiophene)

64 bits (8 WLs, 8 BLs)

> 60sec @ 1.30V WWL

5.5 nW/bit

Read delay < 12 msec

Write delay < 20 msec

Array dim 24 x 25 mm2

Supply 0.8V - 1.2V

PACTIVE 8 µW/bit

TR dim. W/L = 500µm / 25µm

Photograph of Printed

Organic DRAM Array

ISSCC 2011, EE Times, MIT Tech Review

26

Array Retention Time Measurements

• Worst case retention time: 30 sec for WWL=1.25V

• Retention time over 1 minute for WWL=1.30V

WWL = 1.25V

WWL = 1.30V

30 40 50 60

0%

10%

20%

30%

Retention time (sec)%

of

failin

g c

ells

201 2 3 4 5 6 7

8

1

2

3

4

5

6

7

Wo

rdlin

e #

Bitline #

> 60

50

40

308

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

-60

-55

-50

-45

-40

-35

-30

(sec)1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

-60

-55

-50

-45

-40

-35

-30

27

Power Consumption Comparison

• 12X+ power savings in active mode

• < 10nW/bit refresh power in retention mode

1000 4T+2R SRAM

100

10

1

0.1

0.01

0.001

98µW

8µW 8µW

Po

we

r c

on

su

mp

tio

n (

µW

/bit

)

11nW 5.5nWWW

L=

1.2

5V

SRAM

(Pstatic only)

DRAM

(active)

DRAM

(active)

DRAM

(stdby)

DRAM

(stdby)

WW

L=

1.3

0V

WW

L=

1.2

5V

WW

L=

1.3

0V

IDC

1/12

1/17,818

‘1’ ‘0’

BL BLB

WL WL

RWL

WBL RBL

3T DRAM

WWL

28

Closing Remarks • Flexible electronic products are already here

– Displays, solar cells, batteries

• Next generation flexible electronics systems

– Multi-functional electronic sheets for sensing,

detection, processing, storage, and communication

– Complex integration of various circuit components

• Multi-disciplinary effort key to success

– Ink and material development

– Transistors and interconnect design

– Fabrication methods (R2R, sheet based)

– Circuit design and computer-aided-design tools

– Application and systems

29

top related