failure of two overhead crane shafts - srce

Post on 09-Jan-2022

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

14

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

– En

gine

erin

g Po

wer

Željk

o D

omaz

et1 ,

Fran

cisk

o Lu

kša1 ,

Miro

Bug

arin

1

Failu

re o

f tw

o ov

erhe

ad c

rane

sha

fts

1 Fac

ulty

of E

lect

rical

Eng

inee

ring,

Mec

hani

cal E

ngin

eerin

g an

d N

aval

Arc

hite

ctur

e; U

nive

rsity

of S

plit;

Spl

it, C

roat

ia

Abs

trac

t

The

failu

re a

naly

sis

of tw

o ov

erhe

ad c

rane

sha

fts is

pre

sent

ed: t

he fa

ilure

of a

n ov

erhe

ad c

rane

dri

ve s

haft

and

the

failu

re o

f an

over

head

cra

ne g

earb

ox sh

aft,

due

to ro

tatin

g-be

ndin

g fa

tigue

. The

frac

ture

of t

he o

verh

ead

cran

e dr

ive

shaf

t ori

gina

ted

in s

mal

l rad

ius

fille

t bet

wee

n tw

o di

ffere

nt d

iam

eter

s of

the

shaf

t. A

new

sha

ft w

as m

ade

with

a

larg

er-s

ize

fille

t, re

sulti

ng in

redu

ced

stre

ss c

once

ntra

tion

in th

is re

gion

. The

failu

re o

f the

ove

rhea

d cr

ane

gear

box

shaf

t ori

gina

ted

in th

e in

ters

ectio

n of

two

stre

ss r

aise

rs, d

ue to

a c

hang

e in

the

shaf

t dia

met

er a

nd in

the

keyw

ay

corn

er. A

new

shaf

t was

mad

e w

ith a

larg

er-s

ize

fille

t and

a la

rger

size

radi

us o

f the

key

way

cor

ner t

o m

inim

ize

stre

ss

conc

entr

atio

n in

this

sect

ion.

In b

oth

case

s the

inst

alle

d co

uplin

gs w

ere

repl

aced

by

gear

cou

plin

gs in

ord

er to

allo

w

para

llel a

nd a

ngul

ar m

isal

ignm

ent a

s w

ell a

s to

avo

id a

dditi

onal

load

due

to m

isal

ignm

ent.

The

anal

ysis

sho

ws

that

th

e fa

tigue

life

can

be

sign

ifica

ntly

incr

ease

d w

ith a

sim

ple

chan

ge in

the

stru

ctur

al d

etai

ls

Key

wor

ds: F

ailu

re a

naly

sis;

Sha

ft fa

ilure

s; O

verh

ead

cran

es

1. I

ntro

duct

ion

The

fatig

ue f

ract

ures

of

shaf

ts o

rigin

ate

at p

oint

s of

st

ress

con

cent

ratio

n, s

uch

as c

hang

es in

the

shaf

t dia

m-

eter

and

end

s of

the

keyw

ays.

The

shar

p co

rner

at t

he

inte

rsec

tion

betw

een

two

diffe

rent

dia

met

ers o

f the

shaf

ts

or in

the

botto

m o

f the

key

way

can

cau

se lo

cal s

tress

to

be fe

w ti

mes

gre

ater

than

the a

vera

ge n

omin

al st

ress

. The

fa

ilure

ana

lysi

s of

an

over

head

cra

ne tr

olle

y dr

ive

shaf

t is

pre

sent

ed i

n th

e fir

st p

art

of t

his

pape

r. Th

e fa

ilure

or

igin

ated

in th

e ra

dius

fill

et b

etw

een

two

diffe

rent

di-

amet

ers o

f the

shaf

t. Th

e fa

ilure

ana

lysi

s of a

n ov

erhe

ad

cran

e tro

lley

gear

box

shaf

t is

pre

sent

ed i

n th

e se

cond

pa

rt of

the

pape

r. Th

e fa

ilure

of

this

sha

ft or

igin

ated

at

the

inte

rsec

tion

of tw

o st

ress

rai

sers

, the

cha

nge

in th

e sh

aft d

iam

eter

and

key

way

.

2. F

ailu

re o

f ove

rhea

d cr

ane

driv

e sh

aft

In “

Stee

lwor

ks S

plit”

the

high

-spe

ed e

lect

ric o

verh

ead

cran

e, F

ig.1

, was

suita

ble

for t

rans

port

of th

e bill

ets f

rom

th

e m

elt

shop

to

the

rolli

ng m

ill h

all.

The

cran

e w

as

rate

d at

10

tons

with

a sp

an o

f 20.

5 m

and

han

dled

abo

ut

100

lifts

and

tra

nspo

rts p

er d

ay,

each

lift

ave

ragi

ng 5

to

ns. T

he st

eppe

d dr

ive

shaf

t use

d fo

r an

over

head

cra

ne

trolle

y w

heel

fra

ctur

ed a

fter

24 m

onth

s of

ser

vice

. The

el

ectri

c m

otor

pow

er r

atin

g w

as 3

kW

with

an

outp

ut

spee

d of

940

rpm

. The

max

imum

tra

vel

spee

d of

the

tro

lley

was

32

m/m

in.

The

shaf

t w

as c

onne

cted

with

the

gea

rbox

by

a ro

ller

chai

n co

uplin

g, s

uppo

rted

by t

wo

rolle

r be

arin

gs a

nd

conn

ecte

d w

ith th

e w

heel

by

a ke

y, F

igur

e 2.

The

shaf

t w

as m

ade

of q

uenc

hed

and

tem

pere

d st

eel

25C

rMo4

acco

rdin

g to

Ger

man

stan

dard

DIN

(Deu

tsch

es

Inst

itut f

ür N

orm

ung)

[1].

The

chem

ical

com

posi

tion

of

mat

eria

l was

ver

ified

by

usin

g qu

anto

met

er. T

he h

ard-

ness

and

the

mic

rost

ruct

ure

wer

e co

nfirm

ed to

be

tem

-pe

red

stee

l 25C

rMo4

. The

frac

ture

occ

urre

d on

the

fille

t

Fig.

1. O

verh

ead

cran

e fo

r tra

nspo

rt of

bill

ets

Fig.

2. O

verh

ead

cran

e tro

lley

[2]

Vol.

15(1

) 202

0 ––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

15

due

to c

hang

e be

twee

n tw

o di

ffere

nt d

iam

eter

s of

the

sh

aft

appr

oxim

atel

y 22

5 m

m f

rom

the

driv

en e

nd a

nd

appr

oxim

atel

y 30

mm

fro

m o

ne e

nd o

f th

e ke

yway

w

here

the

cran

e w

heel

was

key

ed to

the

axle

, Fig

ure

3.

2.1.

Fra

ctur

e su

rfac

e in

vest

igat

ion

The

cont

our o

f the

frac

ture

sur

face

was

con

vex

with

re-

spec

t to

the

smal

ler-s

ectio

n si

de. T

here

wer

e th

ree

frac

-tu

re re

gion

s, Fi

gure

4: a

regi

on o

f mul

tiple

cra

ck o

rigin

s ar

ound

the

oute

r per

imet

er (a

t A);

a re

gion

of t

he c

rack

pr

opag

atio

n zo

ne (

at B

); an

d a

regi

on o

f th

e fin

al, f

ast

frac

ture

(at C

).

The p

rese

nce o

f mul

tiple

crac

k or

igin

s sep

arat

ed b

y ra

tche

t m

arks

aro

und

the

oute

r per

imet

er w

as a

n in

dica

tion

of ro

-ta

tiona

l-ben

ding

fatig

ue w

ith se

vere

stre

ss c

once

ntra

tion.

The

rela

tivel

y sm

all s

ize

of th

e fin

al fr

actu

re re

gion

was

an

indi

catio

n of

low

nom

inal

stre

ss. I

n ro

tatio

nal-b

end-

ing,

dur

ing

each

revo

lutio

n, e

very

poi

nt o

f the

sha

ft ci

r-cu

mfe

renc

e w

as s

ubje

cted

to te

nsile

-com

pres

sive

stre

ss

and

ther

efor

e th

e cr

ack

coul

d be

initi

ated

at a

ny p

oint

on

the

shaf

t per

iphe

ry.

The

indi

vidu

al c

rack

s pr

opag

ated

tow

ard

a sin

gle

crac

k fro

nt, r

egio

n B,

Fig

ure

4. T

he c

rack

surfa

ces w

ere

pres

sed

toge

ther

dur

ing

the

com

pres

sive

com

pone

nt o

f the

stre

ss

cycl

e, a

nd m

utua

l ru

bbin

g oc

curre

d. T

he b

each

mar

ks

wer

e not

visi

ble b

ecau

se th

ey w

ere o

blite

rate

d by

rubb

ing.

The

conc

lusi

on f

rom

the

surf

ace

inve

stig

atio

n w

as th

at

the

shaf

t fra

ctur

ed a

s a

resu

lt of

rot

atio

nal-b

endi

ng f

a-

tigue

. The

prim

ary

caus

e of

the

frac

ture

was

the

bend

ing

load

dur

ing

the

rota

tion,

alth

ough

the

tota

l loa

d w

as a

co

mbi

natio

n of

ben

ding

and

tors

iona

l loa

ds. T

he s

mal

l ra

dius

of t

he fi

llet a

t a c

hang

e in

shaf

t dia

met

er, d

etai

l B

in F

igur

e 3,

resu

lted

in h

igh

stre

ss c

once

ntra

tion,

whi

ch

initi

ated

the

crac

k.

The

visu

al e

xam

inat

ion

of th

e w

heel

and

rai

l rev

eale

d sm

ooth

and

ligh

t con

tact

are

a on

the

side

s of

bot

h pa

rts

due

to m

utua

l ru

bbin

g, d

etai

l in

Fig

ure

1, w

hich

was

ca

used

by

addi

tiona

l tor

sion

al lo

ad. P

ost-f

ailu

re v

erifi

-ca

tion

of p

aral

lelis

m a

nd s

traig

htne

ss o

f th

e ra

ils w

ith

optic

al in

stru

men

t rev

eale

d m

isal

ignm

ent i

n pa

ralle

lism

an

d st

raig

htne

ss.

2.2.

Str

ess

anal

ysis

2.2.

1. B

endi

ng s

tress

es

Dur

ing

norm

al o

pera

tion,

ben

ding

stre

sses

in th

e cr

itica

l ar

ea w

ere

caus

ed b

y a

whe

el v

ertic

al l

oad.

The

whe

el

verti

cal

load

was

con

side

red

as a

for

ce a

pplie

d at

the

ce

nter

line

of t

he w

heel

con

tact

with

the

shaf

t, se

e Fi

gure

5.

The

appl

ied

forc

e was

calc

ulat

ed fr

om th

e des

ign

load

, se

e re

fere

nce

[2].

A n

umer

ical

ana

lysi

s of

loca

l stre

sses

was

don

e by

the

finite

ele

men

t met

hod

usin

g A

DIN

A s

oftw

are.

The

line

-ar

ela

stic

mod

el w

ith 3

D so

lid e

lem

ents

with

eig

ht D

OF

per n

odes

was

use

d, F

igur

e 5.

Eac

h no

de h

ad 3

deg

rees

of

free

dom

, tra

nsla

tion

in X

, Y an

d Z

dire

ctio

n. T

he m

od-

el is

fixe

d in

the

line

on th

e po

sitio

ns o

f bea

ring

cent

ers

and

load

ed w

ith c

once

ntra

ted

forc

es in

the

node

s. Th

e nu

mer

ical

ana

lysi

s of

loca

l stre

sses

reve

aled

that

des

ign

forc

e du

e to

ver

tical

load

sho

uld

not h

ave

led

to s

haft

frac

ture

. For

ce 3

0 kN

cau

sed

loca

l stre

sses

of 7

9 M

Pa in

th

e cr

itica

l are

a.

Post

-fai

lure

ver

ifica

tion

reve

aled

par

alle

l mis

alig

nmen

t of

0.5

mm

bet

wee

n tw

o sh

aft a

xes.

The

num

eric

al a

nal-

ysis

of

loca

l stre

sses

rev

eale

d th

at d

ispl

acem

ent o

f 0.

5 m

m c

ause

d an

inc

reas

e in

loc

al s

tress

es i

n th

e cr

itica

l ar

ea th

ree

times

(298

MPa

), Fi

gure

5.

A ro

ller c

hain

cou

plin

g w

as u

sed

to tr

ansm

it po

wer

be-

twee

n sh

afts

. The

torq

ue w

as tr

ansm

itted

thro

ugh

a do

u-bl

e ro

ller c

hain

. Due

to c

lear

ance

s bet

wee

n th

e ch

ain

and

the

spro

cket

tee

th o

n tw

o co

uplin

gs,

the

rolle

r ch

ain

coup

ling

perm

itted

ecc

entri

city

– ε

(pa

ralle

l m

isal

ign-

men

t) be

twee

n sh

afts

up

to 2

% o

f the

rolle

r cha

in p

itch

Fig.

3. S

tepp

ed d

rive

shaf

t

Fig.

4. F

ract

ure

surf

aces

Fig.

5. N

umer

ical

ana

lysi

s

16

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

– En

gine

erin

g Po

wer

and

angu

lar

mis

alig

nmen

t – α

bet

wee

n sh

afts

up

to 1

°, [3

], se

e Fi

gure

6.

If e

ccen

trici

ty a

nd a

ngul

ar m

isal

ignm

ent

betw

een

the

whe

el s

haft

axis

and

the

driv

e ax

is i

s hi

gher

tha

n th

e ch

ain

coup

ling

can

com

pens

ate,

ther

e is

a v

ertic

al fo

rce

on t

he e

nd o

f th

e w

heel

sha

ft an

d al

so c

orre

spon

ding

ad

ditio

nal b

endi

ng s

tress

es in

the

criti

cal p

lace

.

2.2.

2. T

orsi

onal

stre

sses

The

max

imum

app

lied

torq

ue o

f 71

6 N

m i

n th

e dr

ive

shaf

t was

est

imat

ed fr

om th

e el

ectri

c m

otor

pow

er ra

ting

of 3

kW

, the

max

imum

trav

el s

peed

of t

he tr

olle

y of

32

m/m

in a

nd th

e w

heel

dia

met

er w

as 2

50 m

m. T

he c

alcu

-la

ted

nom

inal

she

ar s

tress

for

the

shaf

t dia

met

er o

f 50

m

m w

as 2

8.6

MPa

. The

stre

ss c

once

ntra

tion

fact

or d

ue

to to

rsio

nal s

tress

at a

cha

nge

of th

e sh

aft d

iam

eter

ac-

cord

ing

to l

itera

ture

[4]

was

1.8

. The

max

imum

she

ar

loca

l stre

ss a

t the

inte

rsec

tion

of th

e ch

ange

of t

he s

haft

diam

eter

due

to s

tress

con

cent

ratio

n w

as 5

1.5

MPa

.

From

the

com

paris

on b

etw

een

bend

ing

and

shea

r stre

ss-

es it

was

con

clud

ed th

at b

endi

ng st

ress

es w

ere

dom

inan

t fo

r the

sha

ft fr

actu

re.

2.3.

Cor

rect

ive

actio

n

A c

orre

ctiv

e ac

tion

was

con

side

red

in tw

o w

ays:

a) D

ecre

asin

g th

e st

ress

con

cent

ratio

n in

the

criti

cal a

rea

by in

crea

sing

the

size

of t

he fi

llet r

adiu

s an

d

b) R

educ

ing

the

influ

ence

of

para

llel m

isal

ignm

ent b

e-tw

een

the

shaf

t axi

s an

d co

uplin

g ax

is o

n lo

cal s

tress

es

by c

hang

ing

the

type

of

the

coup

ling,

whi

ch p

erm

itted

m

ore

para

llel m

isal

ignm

ent b

etw

een

axes

.

2.3.

1. In

crea

sing

the

size

of t

he fi

llet r

adiu

s

The

dist

ance

bet

wee

n th

e la

rge

diam

eter

of

the

shaf

t (w

heel

) and

the

bear

ing

was

11

mm

, Fig

ure

7. T

he sp

ac-

er w

as p

ositi

oned

bet

wee

n th

e w

heel

and

bea

ring.

In-

crea

sing

the

size

of

the

fille

t rad

ius

was

lim

ited

by th

e de

sign

of t

he s

pace

r.

Ther

efor

e, n

umer

ical

exp

erim

ents

wer

e ca

rrie

d ou

t fo

r fo

ur d

iffer

ent s

izes

of t

he fi

llet r

adiu

s in

ord

er to

redu

ce

loca

l stre

sses

bel

ow th

e en

dura

nce

limit,

Fig

ures

8 a

nd

10.

Fig.

6. R

olle

r cha

in c

oupl

ing

[3]

Fig.

7. D

esig

n of

the

spac

er

Fig.

8. S

tress

dis

tribu

tion

Fig.

9. G

ear c

oupl

ing,

[7]

Vol.

15(1

) 202

0 ––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

17

The

stre

ss c

once

ntra

tion

fact

ors

in th

e cr

itica

l are

as h

ad

a go

od a

gree

men

t with

lite

ratu

re [4

] and

[5].

The

fatig

ue

stre

ngth

cur

ve o

f th

e m

ater

ial w

as u

sed

from

lite

ratu

re

[6].

The

curv

es in

Fig

ure

8 sh

ow th

e in

crea

sing

siz

e of

the

fille

t rad

ius

from

1.5

mm

to 5

mm

, red

ucin

g m

axim

um

loca

l stre

ss b

y ab

out 1

.5 ti

mes

(fro

m 2

98 to

200

MPa

).

2.3.

2. C

hang

e of

the

coup

ling

type

A g

ear

coup

ling

was

con

side

red

to s

ubst

itute

the

rolle

r ch

ain

coup

ling,

Fig

ure

9. T

he g

ear c

oupl

ing

can

acco

m-

mod

ate m

ore e

ccen

trici

ty an

d an

gula

r mis

alig

nmen

t tha

n th

e ro

ller c

hain

cou

plin

g. A

ccor

ding

to [7

], th

e ge

ar c

ou-

plin

g pe

rmits

par

alle

l of

fset

0.7

5 m

m,

angu

lar

3° a

nd

axia

l gap

from

-0.5

to 1

mm

. Sin

ce p

ost-f

ailu

re v

erifi

ca-

tion

reve

aled

par

alle

l mis

alig

nmen

t of 0

.5 m

m b

etw

een

two

shaf

t axe

s, th

e ap

plic

atio

n of

the

gear

cou

plin

g in

th

is ca

se ca

n el

imin

ate f

orce

on

the s

haft

due t

o m

isal

ign-

men

t an

d ca

n al

so r

educ

e lo

cal

stre

sses

in

the

criti

cal

area

.

Figu

re 1

0 sh

ows

the

influ

ence

of

cons

ider

ed c

orre

ctiv

e ac

tions

on

fatig

ue li

fe.

The

actu

al s

ervi

ce li

fe w

as e

stim

ated

from

the

wor

king

tim

e of

the

cran

e, th

e nu

mbe

r of

lifti

ngs

and

the

whe

el

diam

eter

. The

cra

ne w

as in

ser

vice

for a

bout

400

wor

k-in

g da

ys in

the

perio

d of

two

year

s. Th

e av

erag

e nu

mbe

r of

tran

spor

ts p

er d

ay w

as 1

00 w

ith th

e tra

vel o

f the

trol

-le

y 10

m p

er e

ach

trans

port.

For

the

whe

el d

iam

eter

of

250

mm

and

the

corr

espo

ndin

g sh

aft t

he a

ctua

l ser

vice

lif

e w

as a

bout

4.8

·105 c

ycle

s. Th

e es

timat

ed s

ervi

ce li

fe

from

the n

umer

ical

mod

el w

as ab

out 3

·105 c

ycle

s, Fi

gure

10

.

The

rede

sign

of t

he s

haft

fille

t rad

ius

from

1.5

mm

to 5

m

m r

educ

ed m

axim

um l

ocal

stre

ss b

elow

the

fat

igue

en

dura

nce

limit

(abo

ut 9

0% o

f en

dura

nce

limit)

. Th

e ap

plic

atio

n of

a g

ear c

oupl

ing

to a

ccom

mod

ate

para

llel

mis

alig

nmen

t re

duce

d m

axim

um l

ocal

stre

ss t

o ab

out

35%

of

the

endu

ranc

e lim

it, w

hat

was

mor

e th

an t

wo

times

in

com

paris

on t

o th

e re

desi

gn o

f th

e sh

aft

fille

t ra

dius

. A c

ombi

natio

n of

the

fille

t rad

ius

rede

sign

and

th

e ap

plic

atio

n of

the

gear

cou

plin

g ad

ditio

nally

redu

ced

loca

l stre

sses

, Fig

ure

10.

Bas

ed o

n th

is a

naly

sis,

the

actu

al se

rvic

e lif

e of

the

shaf

t ca

n be

impr

oved

fro

m th

e fin

ite (

abou

t 4.8

·105 c

ycle

s)

to th

e in

finite

life

time.

2.3.

3. C

orre

ctio

n

New

sha

fts w

ere

mad

e fr

om q

uenc

hed

and

tem

pere

d st

eel 4

2CrM

o4 a

ccor

ding

to D

IN [

1] w

ith a

larg

er-s

ize

fille

t, w

hich

min

imiz

ed s

tress

con

cent

ratio

n in

this

re-

gion

and

pre

vent

ed re

curr

ence

of t

he fa

ilure

. The

rolle

r ch

ain

coup

lings

wer

e re

plac

ed b

y ge

ar c

oupl

ings

to r

e-du

ce th

e in

fluen

ce o

f par

alle

l mis

alig

nmen

t bet

wee

n th

e sh

aft a

xis

and

coup

ling

axis

on

loca

l stre

sses

.

3. F

ailu

re o

f ove

rhea

d cr

ane

gear

box

shaf

t

An

elec

tric

over

head

cra

ne, F

ig. 1

1, w

as s

uita

ble

for t

he

trans

port

of a

ladl

e with

liqu

id st

eel f

rom

the l

adle

furn

ace

to th

e co

ntin

uous

cas

ting

mac

hine

. The

cra

ne w

as ra

ted

at

50 to

ns w

ith a

spa

n of

18.

4 m

and

han

dled

abo

ut 2

0 lif

ts an

d tra

nspo

rts p

er d

ay, e

ach

lift a

vera

ging

43

tons

. The

ste

pped

driv

e sha

ft us

ed in

an o

verh

ead

cran

e tro

lley

gear

-bo

x, F

igur

e 12

, bro

ke a

fter 3

6 m

onth

s of

ser

vice

.

The

elec

tric

mot

or p

ower

rat

ing

was

5.5

kW

with

an

outp

ut s

peed

of 9

40 rp

m. T

he m

axim

um tr

avel

spe

ed o

f th

e tro

lley

was

20

m/m

in. T

he o

verh

ead

cran

e tro

lley

gear

box

[8] i

s sho

wn

in F

igur

e 12

and

the

shaf

t is s

how

n in

Fig

ures

13

and

14.

Fig.

10.

Influ

ence

of c

orre

ctiv

e ac

tions

on

fatig

ue li

fe

Fig.

11.

Ove

rhea

d cr

ane

for t

rans

port

of la

dle

with

liqu

id s

teel

Fig.

12.

Ove

rhea

d cr

ane

trolle

y ge

arbo

x

18

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

– En

gine

erin

g Po

wer

3.1.

Fra

ctur

e su

rfac

e in

vest

igat

ion

The

shaf

t was

mad

e of

con

stru

ctio

n st

eel S

t 52-

3 ac

cord

-in

g to

DIN

[9].

The

frac

ture

occ

urre

d on

a fi

llet d

ue to

ch

ange

bet

wee

n tw

o di

ffere

nt d

iam

eter

s of

the

shaf

t ap-

prox

imat

ely

110

mm

from

one

end

. The

con

tour

of t

he

frac

ture

sur

face

was

con

vex

with

res

pect

to th

e sm

all-

er-s

ectio

n si

de.

Ther

e w

ere

four

fra

ctur

e re

gion

s, Fi

gure

15.

Num

erou

s ra

tche

t mar

ks (a

t A),

on th

e ou

ter e

dge

of th

e su

rface

and

th

e da

rk b

and

at th

is ed

ge in

dica

te f

atig

ue c

rack

s in

itia-

tion,

wha

t is a

cha

ract

erist

ic o

f rot

atio

nal-b

endi

ng fa

tigue

. Tw

o cr

acks

(at

B)

from

the

key

way

cor

ners

sug

geste

d to

rsio

nal s

tress

es. T

he cr

acks

prop

agat

ed ci

rcum

fere

ntia

lly

arou

nd th

e sh

aft (

at C

). Th

e fin

al f

ract

ure

was

a m

ixed

du

ctile

and

brit

tle fr

actu

re in

the

mid

dle

of th

e el

liptic

al

cont

our (

at D

). Th

e be

ach

mar

ks w

ere

not v

isibl

e be

caus

e th

ey w

ere

oblit

erat

ed b

y ru

bbin

g.

In th

is ca

se th

ere w

ere t

wo

stre

ss ra

iser

s in

the s

ame a

rea:

a

shar

p co

rner

in th

e ke

yway

and

a c

hang

e in

the

shaf

t di

amet

er. A

dditi

onal

ly, t

he e

nd o

f th

e ke

yway

was

due

to

chan

ge in

the s

haft

diam

eter

, fra

ctur

e sec

tion

in F

igur

e 13

, cau

sing

hig

h co

ncen

tratio

n of

stre

sses

.

The c

oncl

usio

n fro

m th

e sur

face

inve

stiga

tion

was

that

the

shaf

t fra

ctur

ed as

a re

sult

of th

e rot

atio

nal-b

endi

ng fa

tigue

du

e to

high

stre

ss co

ncen

tratio

n. T

he cr

acks

wer

e ini

tiate

d

in th

e int

erse

ctio

n of

two

stres

s rai

sers

, on

the s

harp

corn

er

in th

e ke

yway

and

on

the

radi

us o

f the

fille

t due

to c

hang

e in

the

shaf

t dia

met

er, d

etai

l B in

Fig

ure

13.

3.2.

Str

ess

anal

ysis

3.2.

1. B

endi

ng s

tress

es

A s

plit

muf

f co

uplin

g w

as u

sed

to t

rans

mit

pow

er b

e-tw

een

the

shaf

ts, F

ig.1

2.

The

split

muf

f co

uplin

g is

a ty

pe o

f rig

id c

oupl

ing

and

shou

ld b

e us

ed w

hen

the

alig

nmen

t of t

he tw

o sh

afts

can

be

mai

ntai

ned

very

acc

urat

ely.

A s

mal

l m

issa

lignm

ent

betw

een

two

shaf

ts c

an c

ause

hig

h st

ress

es. P

ost-f

ailu

re

verif

icat

ion

reve

aled

par

alle

l m

isal

ignm

ent

of 0

.8 m

m

betw

een

the

gear

box

shaf

t axi

s an

d th

e dr

ive

shaf

t axi

s of

the

whe

el, F

igur

e 16

.

The

num

eric

al a

naly

sis o

f loc

al st

ress

es w

as d

one

by th

e fin

ite e

lem

ent m

etho

d us

ing

AD

INA

sof

twar

e. T

he a

p-pl

ied

forc

e of

F=1

5000

N w

as e

stim

ated

from

the

para

l-le

l mis

alig

nmen

t of

d=0.

8 m

m a

ccor

ding

to e

xpre

ssio

n (1

), Fi

gure

17,

whe

re l

= 7

20 m

m a

nd a

= 1

80 m

m,

Figu

re 1

6.

Fig.

13.

Ste

pped

driv

e sh

aft [

8]

Fig.

14.

Ste

pped

driv

e br

oken

sha

ft

Fig.

15.

Fra

ctur

e su

rfac

es

Fig.

16.

Mis

alig

nmen

t bet

wee

n th

e ge

arbo

x sh

aft a

xis

and

driv

e sh

aft a

xis

of th

e w

heel

Fig.

17.

Def

lect

ion

Vol.

15(1

) 202

0 ––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

19

d

Fa EIla

=−

()

2

63�

(1

)

The

linea

r el

astic

mod

el w

ith 3

D s

olid

ele

men

ts w

ith

eigh

t DO

F pe

r nod

es w

as u

sed,

Fig

ure 1

8. E

ach

node

had

3

degr

ees o

f fre

edom

, tra

nsla

tion

in X

, Y a

nd Z

dire

ctio

n.

The

mod

el is

fixe

d in

the

back

side

face

and

load

ed w

ith

conc

entra

ted

forc

es in

the

node

on

the

front

sid

e.

The

FEM

ana

lysi

s of

loc

al s

tress

es r

evea

led

that

the

m

axim

um st

ress

217

MPa

was

in th

e sh

arp

corn

er o

f the

ke

yway

and

the

stre

ss o

n th

e fil

let d

ue to

cha

nge

in th

e sh

aft d

iam

eter

nea

r the

key

way

was

154

MPa

, Fig

ure

18.

Stre

ss c

once

ntra

tion

fact

ors

in c

ritic

al a

reas

had

a g

ood

agre

emen

t with

lite

ratu

re [4

] and

[5].

3.2.

2. T

orsi

onal

stre

sses

The m

axim

um ap

plie

d to

rque

of 1

458

Nm

in th

e gea

rbox

ou

tput

shaf

t was

est

imat

ed fr

om th

e el

ectri

c m

otor

pow

-er

ratin

g of

5.5

kW

with

an

outp

ut sp

eed

of 9

40 rp

m a

nd

the

gear

box

trans

mis

sion

ratio

26.

The

cal

cula

ted

shea

r st

ress

for

the

shaf

t dia

met

er o

f 65

mm

was

26.

5 M

Pa.

The s

tress

conc

entra

tion

fact

or d

ue to

tors

iona

l stre

ss d

ue

to c

hang

e of

the

shaf

t dia

met

er w

as 1

.5 a

nd d

ue to

the

keyw

ay it

was

1.7

[4].

The

max

imum

loca

l stre

ss d

ue to

ch

ange

in th

e sha

ft di

amet

er an

d th

e key

way

due

to st

ress

co

ncen

tratio

n w

as 6

7.6

MPa

.

3.3.

Cor

rect

ive

actio

n

Cor

rect

ive

actio

n w

ere

cons

ider

ed in

bot

h cr

itica

l are

as:

a) In

crea

sing

the

fille

t rad

ius

due

to c

hang

e in

the

shaf

t di

amet

er fr

om 2

.5 m

m to

4 m

m, F

ig. 1

9.

b) In

crea

sing

the r

adiu

s in

the k

eyw

ay co

rner

of t

he m

ax-

imum

siz

e. T

he m

axim

um r

adiu

s si

ze i

n th

e ke

yway

co

rner

for

the

shaf

t dia

met

er 6

5 m

m a

ccor

ding

to D

IN

[10]

was

0.6

mm

, Fig

. 19.

c) R

educ

ing

the

influ

ence

of

para

llel m

isal

ignm

ent b

e-tw

een

the

shaf

t axi

s an

d co

uplin

g ax

is o

n lo

cal s

tress

es

by c

hang

ing

the

type

of c

oupl

ing

whi

ch p

erm

its p

aral

lel

mis

alig

nmen

t bet

wee

n ax

es.

3.3.

1. In

crea

sing

bot

h th

e ra

dius

in th

e ke

yway

co

rner

and

the

radi

us d

ue to

cha

nge

in th

e sh

aft d

iam

eter

.

The

FEM

ana

lysis

of

loca

l stre

sses

afte

r th

e re

desig

n re

-ve

aled

dec

reas

ing

the m

axim

um b

endi

ng st

ress

in th

e sha

rp

corn

er o

f the

key

way

from

217

MPa

to 1

45 M

Pa a

s w

ell

as d

ecre

asin

g str

esse

s of

the

fille

t rad

ius

due

to c

hang

e in

th

e sh

aft d

iam

eter

from

154

MPa

to 8

6 M

Pa, F

igur

e 20

.

Fig.

18.

Num

eric

al a

naly

sis

Fig.

19.

Orig

inal

and

impr

oved

des

ign

of th

e fil

let r

adiu

s

Fig.

20.

Num

eric

al a

naly

sis

20

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

– En

gine

erin

g Po

wer

3.3.

2. C

hang

e of

the

coup

ling

type

A g

ear

coup

ling

was

con

side

red

to s

ubst

itute

the

spl

it m

uff

coup

ling

sinc

e po

st-f

ailu

re v

erifi

catio

n re

veal

ed

para

llel m

isal

ignm

ent o

f 0,8

mm

bet

wee

n tw

o sh

aft a

xes.

The

appl

icat

ion

of g

ear c

oupl

ings

can

elim

inat

e fo

rce

on

the

shaf

t due

to m

isal

ignm

ent a

nd c

an a

lso

redu

ce lo

cal

stre

sses

on

the

criti

cal a

rea.

Figu

re 2

1 sh

ows

the

influ

ence

of

cons

ider

ed c

orre

ctiv

e ac

tions

on

the

fatig

ue li

fe. T

he fa

tigue

stre

ngth

cur

ve o

f th

e m

ater

ial i

s us

ed fr

om li

tera

ture

[11]

.

The

actu

al s

ervi

ce li

fe w

as e

stim

ated

from

the

wor

king

tim

e of

the

cran

e, th

e nu

mbe

r of

lifti

ngs

and

the

whe

el

diam

eter

. The

cra

ne w

as in

ser

vice

for a

bout

800

wor

k-in

g da

ys d

urin

g a

thre

e ye

ar p

erio

d. T

he a

vera

ge n

umbe

r of

tran

spor

ts p

er d

ay w

as 2

0 w

ith th

e tra

vel o

f the

trol

ley

12 m

per

eac

h tra

nspo

rt. F

or th

e w

heel

dia

met

er o

f 630

m

m a

nd th

e co

rres

pond

ing

shaf

t, th

e ac

tual

ser

vice

life

w

as 3

.5·1

05 cyc

les.

The

estim

ated

ser

vice

life

fro

m th

e nu

mer

ical

mod

el w

as a

bout

3·1

05 cyc

les,

Figu

re 1

0.

The

rede

sign

of th

e sh

aft f

illet

radi

us re

duce

d th

e m

axi-

mum

loca

l stre

ss a

nd th

e es

timat

ed fa

tigue

life

was

abo

ut

two

times

long

er a

ccor

ding

to a

ctua

l fat

igue

life

, Fig

ure

21. T

he a

pplic

atio

n of

a g

ear

coup

ling

to a

ccom

mod

ate

para

llel m

isalig

nmen

t elim

inat

ed f

orce

due

to m

isalig

n-m

ent,

and

bend

ing

stres

ses

beca

me

negl

igib

le. A

com

bi-

natio

n of

the

fille

t rad

ius

rede

sign

and

appl

icat

ion

of th

e ge

ar c

oupl

ing

addi

tiona

lly im

prov

ed fa

tigue

life

.

Bas

ed o

n th

is a

naly

sis,

the

actu

al s

ervi

ce li

fe o

f a s

haft

can

be im

prov

ed fr

om fi

nite

(3.5

·105 c

ycle

s) to

infin

ite

lifet

ime.

3.3.

3. C

orre

ctio

n

New

sha

fts w

ere

mad

e w

ith th

e ra

dius

siz

e du

e to

cha

nge

in th

e sha

ft di

amet

er 4

mm

and

the r

adiu

s siz

e in

the k

eyw

ay

corn

er 0

.6 m

m, m

inim

izin

g str

ess

conc

entra

tion

in b

oth

criti

cal a

reas

and

pre

vent

ing

recu

rrenc

e of

the

failu

re.

Split

muf

f co

uplin

gs w

ere

repl

aced

by

gear

cou

plin

gs

to r

educ

e th

e in

fluen

ce o

f pa

ralle

l m

isalig

nmen

t be

-tw

een

the s

haft

axis

and

the c

oupl

ing

axis

on lo

cal s

tress

es.

4. C

oncl

usio

n

The

failu

re a

naly

sis o

f tw

o ov

erhe

ad c

rane

shaf

ts sh

owed

th

at th

e ov

erhe

ad c

rane

driv

e sh

aft a

nd th

e ge

arbo

x sh

aft

fract

ured

as a

resu

lt of

rota

tiona

l-ben

ding

fatig

ue. I

n bo

th

case

s th

e fra

ctur

e oc

curre

d on

the

plac

es w

ith h

igh

stres

s co

ncen

tratio

n. T

he f

ract

ure

of th

e ov

erhe

ad c

rane

driv

e sh

aft o

rigin

ated

in th

e sm

all r

adiu

s fill

et b

etw

een

two

dif-

fere

nt d

iam

eter

s of t

he sh

aft.

The

fract

ure

of th

e ov

erhe

ad

cran

e gea

rbox

shaf

t was

initi

ated

in th

e int

erse

ctio

n of

two

stres

s rai

sers

on

the s

harp

corn

er in

the k

eyw

ay an

d on

the

radi

us o

f the

fille

t due

to ch

ange

in th

e sha

ft di

amet

er. T

he

failu

re a

naly

sis r

evea

led

that

the

desig

n lo

ad s

houl

d no

t ha

ve le

d to

shaf

t fra

ctur

e an

d th

at th

ere

also

exi

sted

addi

-tio

nal l

oad

unfo

rese

en b

y th

e de

sign.

The

pos

t-fai

lure

ver

-ifi

catio

n in

bot

h ca

ses

reve

aled

par

alle

l m

isalig

nmen

t be

twee

n tw

o sh

aft a

xes.

Corre

ctiv

e ac

tions

wer

e co

nsid

-er

ed i

n tw

o w

ays:

to i

mpr

ove

serv

ice

life

by a

sm

all

chan

ge in

the

desig

n an

d to

rem

ove

the

unfo

rese

en a

ddi-

tiona

l loa

d du

e to

misa

lignm

ent b

etw

een

two

shaf

t axe

s.

In th

e cas

e of t

he o

verh

ead

cran

e driv

e sha

ft, in

crea

sing

the

size o

f the

fille

t rad

ius f

rom

1.5

mm

to 5

mm

dec

reas

ed th

e m

axim

um lo

cal s

tress

bel

ow th

e en

dura

nce

limit,

resu

lting

in

sig

nific

ant i

ncre

asin

g of

the

fatig

ue li

fe. I

n th

e ca

se o

f th

e ove

rhea

d cr

ane g

earb

ox sh

aft,

incr

easin

g th

e rad

ius s

ize

due

to c

hang

e in

the

shaf

t dia

met

er fr

om 2

.5 m

m to

4 m

m

and

the

incr

easin

g of

the

radi

us s

ize

in th

e ke

yway

cor

ner

from

0.2

to 0

.6 m

m ex

tend

s the

fatig

ue li

fe m

ore t

han

twic

e.

The

gear

cou

plin

g, c

ompa

red

to th

e ro

ller c

hain

cou

plin

g an

d es

peci

ally

to sp

lit m

uff c

oupl

ing,

allo

ws m

ore

angu

lar

and

para

llel

misa

lignm

ent,

prol

ongi

ng s

igni

fican

tly s

haft

serv

ice

life.

Base

d on

this

anal

ysis,

the

actu

al s

ervi

ce li

fe

of th

e sha

ft ca

n be

impr

oved

from

fini

te to

infin

ite li

fetim

e.

Ref

eren

ces

[1]

Deu

tsch

es I

nstit

ut f

ür N

orm

ung.

DIN

172

00,

1987

(D

IN,

Ber

lin)

[2]

Cra

ne d

esig

n an

d m

anua

l boo

k of

bill

et o

verh

ead

cran

e in

“S

teel

wor

ks S

plit”

[3]

D.I.

D.,

“Pow

er t

rans

mis

sion

& c

onve

yor

chai

n”,

cata

log,

D

aido

Kog

yo c

o, K

umas

aka-

Cho

, Kag

a-C

ity, I

shik

awa

Pref

, 92

2-86

86, J

apan

, 200

7.[4

] W

.D. P

ilkey

, D.F

. Pilk

ey, “

Stre

ss c

once

ntra

tion

fact

ors”

, 3rd

ed.,

Hob

oken

, Joh

n W

iley

& S

ons,

New

Yor

k, 2

008.

[5]

E. H

eiba

ch, “

Bet

riebf

estig

keit“

, VD

I Ver

lag

Gm

bh, D

üsel

-do

rf, 1

989.

[6]

V. G

rubi

šić,

G.

Jaco

by,

“Fra

ctur

e an

alys

is,

valid

atio

n an

d te

chno

logi

es to

incr

ease

the

stre

ngth

of m

ater

ials

”, S

emin

ar,

Fire

nze,

Mar

ch 1

995.

[7]

SEIS

A, “

Gea

r cou

plin

g”, c

atal

og, S

eisa

Gea

r Ltd

., K

aizu

ka,

Osa

ka, J

apan

, 201

1.[8

] C

rane

des

ign

and

man

ual b

ook

of la

dle

over

head

cra

ne in

“S

teel

wor

ks S

plit”

[9]

Deu

tsch

es I

nstit

ut f

ür N

orm

ung.

DIN

171

00,

1980

(D

IN,

Ber

lin)

[10]

Deu

tsch

es I

nstit

ut f

ür N

orm

ung.

DIN

688

5-1,

Paß

fede

rn

nute

n, 1

968

(DIN

, Ber

lin)

[11]

Ž. D

omaz

et, “

Fatig

ue s

tress

con

cent

ratio

n fa

ctor

for

sha

ft w

ith d

iffer

ent k

eyw

ays

in b

endi

ng ”

, Ost

erre

ichi

sche

Ing

e-ni

eur u

nd A

rchi

tekt

en Z

eits

chrif

t, 14

2. J

g., H

eft 6

/199

7

Fig.

21.

Influ

ence

of c

orre

ctiv

e ac

tions

on

the

fatig

ue li

fe

top related