direct radiative forcing of aerosol 1)model simulation: a. rinke, k. dethloff, m. fortmann 2)thermal...

Post on 13-Jan-2016

216 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Direct radiative forcing of aerosol

1) Model simulation: A. Rinke, K. Dethloff, M. Fortmann

2) Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

3) Challenges for remote sensing retrieval: A. Kirsche, C. Böckmann, (C. Ritter)

A modeling study with the regional climate model HIRHAM

1) Specification of aerosol from Global Aerosol Data Set (GADS)

2) Input from GADS into climate model: for each grid point in each vertical level: aerosol mass mixing ratio

(0.5 º, 19 vertical) optical aerosol properties for short- and longwave spectral intervals f(RH)

aerosol was distributed homogeneously between 300 – 2700m altitude, no transport

3) Climate model run with and without aerosol aerosol radiative forcingmonths March (1989 – 1995)

Global Aerosol Data Set (GADS); Koepke et al., 1997

Arctic Haze: WASO, SOOT, SSAM

Properties taken from ASTAR 2000 case (local), so overestimation of aerosol effect

New effective aerosol distributiondue to 8 humidity classes in the aerosol block

Dynamical changes: Δu(x,y,z) Δv (x,y,z) Δps(x,y) ΔT(x,y,z) Δq(x,y,z) Δqw(x,y,z)

Additional diabatic heating source Qadd = Qsolar + QIR

Effective aerosol distribution as function of (x,y,z)

u(x,y,z) v(x,y,z) ps(x,y) T(x,y,z) q(x,y,z) qw(x,y,z) α(x,y) μ(x,y)

Direct climatic effect of Arctic aerosols in climate model HIRHAM via specified aerosol from GADS

Direct aerosol forcing in the vertical column

Aerosol – Radiation -

Circulation - Feedback

2m temperature change

[°C]

x C1x W1

x W2

x C2

Geographical latitude

5

4

3

2

1

0

He

igh

t [k

m]

65 70 75 80 85

Temperature change [˚C]

He

igh

t [k

m]

-3 -2 -1 0 1 2 3

W1

C1

C2

W2

Height-latitudetemperature change

Temperature profilesat selected points

1990[°C]

Direct effectof Arctic Haze

“Aerosol run minus Control run”, March ensemble

Fortmann, 2004

ΔFsrfc= 5 to –3 W/m2

1d radiative model studies:ΔFsrfc=-0.2 to -6 W/m2

[hPa]

(“Aerosol run minus Control run”)direct+indirect

[K]

2m temperaturechange

Sea level pressurechange

(“Aerosol run minus Control run”)direct

Rinke et al., 2004

March 1990

Direct+indirect effectof Arctic Haze

Conclusion modeling:

• Critical parameters are:

Surface albedo, rel. humidity, aerosol height (especially in comparison to clouds) (indirect: liquid water)

But aerosol properties were prescribed here – so no direct statement on sensitivity of aerosol properties (single scat. albedo…) according to GADS,

however: chemical composition, concentration and size distribution of aerosol did show strong influence on results (surface temperature)

• aerosol has the potential to modify global-scale circulation via affected teleconnection patterns

12.5μ 8.0μ

Rathke, Fischer 2000

Note: deviation is “grey”

FTIR:

Easier: radiance flux

Flux (aerosol) - flux (clear)

Height, temperature and opt. depth of aerosol required

significant

For TOA:

Assumption: purely absorbing (!)

Note similar spectral shape

AOD from spectrum of radiance residuals

Radiosonde launch: 11UT (RS82)

11. Mar: cold and wet: diamond dust possible

For 30. Oct, 17. Nov: ΔT of 1.5 C needed for saturation

Conclusion FTIR observation:• Observational facts:

grey excess radiance was found for some days where back trajectories suggest pollutiondiamond dust unlikely for 30 Oct, 17 Nov.

• So IR forcing by small (0.2μm) Arctic aerosol?

Consider: complex index of refraction at 10μm for sulfate, water-soluble, sea-salt and soot (much) higher than for visible light! (“Atmospheric Aerosols”)example λ \ specimen sulfate water-solu. soot oceanic0.5 μ 1.43+1e-8i 1.53+5e-3i 1.75+0.45i 1.382+6.14e-9i10μ 1.89+4.55e-1i 1.82+9e-2i 2.21+0.72i 1.31+4.06e-2i

Mie calculation (spheres 0.2μm, sulfate): vis: no absorption, ω=1 IR: almost no scat. ω=0so: ω, n, phase function are all (λ)

Scattering properties by remote sensing?

• Have seen: single scattering very important, depend on index of refraction.

• Multi wavelengths Raman lidars can principally calculate / estimate size distribution & refractive index (n) => scattering characteristics.

• One difficulty: estimation of n:

dvMtruendvM

kk vn

v

minmin

d: data; v: coefficients of volume distribution function

M: matrix of scattering efficiencies (λ, k ), depend on n

forward problem:

algorithm

)(3

4)( 3 rsdrrvd

drrvdmrQr

backextr

r

aeraer )();,(1

4

3/ /max_

min_

drrvdrQr

vdK backextn

r

r

backextn )(),(

1

4

3: /max_

min_

/

to solve Fredholm Integ. Eq. of first kind: integral operator:

so: vdK backextn

aeraer //

vd shall be element of a finite dimen. subspace of L2(r_min, r_max) so :

)()(:...,,11

rvrvdki i

k

iii

)())(()(1

jiextn

k

iij

aer rKv

),,,,(32121

aeraeraeraeraer

),...,,,( 321 kvvvvvd

so:

let d (data) be: d=T

T

)()(

...

)(

)(

)(......)()(

331

11

21

11211

kbackn

backn

backn

extn

kextn

extn

extn

n

KK

K

K

KKK

M

dvdM n

Laser wavelengths 355nm, 532 nm, 1064 nm

Laser pulse energy 200mJ (@355), 300mJ (@532),

500 mJ (@1064) (new! Since Dec. 2006)

Laser pulse rep. rate 50 Hz

Laser beam divergence 0.6 mrad

Telescope diameter 30cm far (2,0km – 20km)

10.5 cm near (500m – 4km)

Telescope FoV 0.83 mrad / 2.25 mrad

Detection channels

(elastic)

355 nm, unpol.

532 nm, normal polar. + perpend. polar.

1064 nm, unpol.

Detection channels

(inelastic)

N2 – Raman: 387nm, 607nm

H2O – Raman: 407nm

Range + Resolution Max. 7.5m / 100 sec typical: 60m / 10 min

Raman: 100m / 30 min: 8km

Detection limit Extinction round 2e-7

KARL specs

2m temperature change (mean)

[°C]

x C1x W1

x W2

x C2

Geographical latitude

5

4

3

2

1

0

He

igh

t [k

m]

65 70 75 80 85

Temperature change [˚C]

He

igh

t [k

m]

-3 -2 -1 0 1 2 3

W1

C1

C2

W2

Height-latitudetemperature change

Temperature profilesat selected points

1990[°C]

Direct effectof Arctic Haze

“Aerosol run minus Control run”, March ensemble

Fortmann, 2004

ΔFsrfc= 5 to –3 W/m2

1d radiative model studies:ΔFsrfc=-0.2 to -6 W/m2

top related