direct radiative forcing of aerosol 1)model simulation: a. rinke, k. dethloff, m. fortmann 2)thermal...

20
Direct radiative forcing of aerosol 1) Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2) Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter) 3) Challenges for remote sensing retrieval: A. Kirsche, C. Böckmann, (C. Ritter)

Upload: edmund-thomas

Post on 13-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

Direct radiative forcing of aerosol

1) Model simulation: A. Rinke, K. Dethloff, M. Fortmann

2) Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

3) Challenges for remote sensing retrieval: A. Kirsche, C. Böckmann, (C. Ritter)

Page 2: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

A modeling study with the regional climate model HIRHAM

1) Specification of aerosol from Global Aerosol Data Set (GADS)

2) Input from GADS into climate model: for each grid point in each vertical level: aerosol mass mixing ratio

(0.5 º, 19 vertical) optical aerosol properties for short- and longwave spectral intervals f(RH)

aerosol was distributed homogeneously between 300 – 2700m altitude, no transport

3) Climate model run with and without aerosol aerosol radiative forcingmonths March (1989 – 1995)

Page 3: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

Global Aerosol Data Set (GADS); Koepke et al., 1997

Arctic Haze: WASO, SOOT, SSAM

Properties taken from ASTAR 2000 case (local), so overestimation of aerosol effect

Page 4: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

New effective aerosol distributiondue to 8 humidity classes in the aerosol block

Dynamical changes: Δu(x,y,z) Δv (x,y,z) Δps(x,y) ΔT(x,y,z) Δq(x,y,z) Δqw(x,y,z)

Additional diabatic heating source Qadd = Qsolar + QIR

Effective aerosol distribution as function of (x,y,z)

u(x,y,z) v(x,y,z) ps(x,y) T(x,y,z) q(x,y,z) qw(x,y,z) α(x,y) μ(x,y)

Direct climatic effect of Arctic aerosols in climate model HIRHAM via specified aerosol from GADS

Direct aerosol forcing in the vertical column

Aerosol – Radiation -

Circulation - Feedback

Page 5: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

2m temperature change

[°C]

x C1x W1

x W2

x C2

Geographical latitude

5

4

3

2

1

0

He

igh

t [k

m]

65 70 75 80 85

Temperature change [˚C]

He

igh

t [k

m]

-3 -2 -1 0 1 2 3

W1

C1

C2

W2

Height-latitudetemperature change

Temperature profilesat selected points

1990[°C]

Direct effectof Arctic Haze

“Aerosol run minus Control run”, March ensemble

Fortmann, 2004

ΔFsrfc= 5 to –3 W/m2

1d radiative model studies:ΔFsrfc=-0.2 to -6 W/m2

Page 6: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

[hPa]

(“Aerosol run minus Control run”)direct+indirect

[K]

2m temperaturechange

Sea level pressurechange

(“Aerosol run minus Control run”)direct

Rinke et al., 2004

March 1990

Direct+indirect effectof Arctic Haze

Page 7: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

Conclusion modeling:

• Critical parameters are:

Surface albedo, rel. humidity, aerosol height (especially in comparison to clouds) (indirect: liquid water)

But aerosol properties were prescribed here – so no direct statement on sensitivity of aerosol properties (single scat. albedo…) according to GADS,

however: chemical composition, concentration and size distribution of aerosol did show strong influence on results (surface temperature)

• aerosol has the potential to modify global-scale circulation via affected teleconnection patterns

Page 8: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

12.5μ 8.0μ

Rathke, Fischer 2000

Note: deviation is “grey”

FTIR:

Page 9: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

Easier: radiance flux

Flux (aerosol) - flux (clear)

Height, temperature and opt. depth of aerosol required

significant

Page 10: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

For TOA:

Assumption: purely absorbing (!)

Note similar spectral shape

AOD from spectrum of radiance residuals

Page 11: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

Radiosonde launch: 11UT (RS82)

11. Mar: cold and wet: diamond dust possible

For 30. Oct, 17. Nov: ΔT of 1.5 C needed for saturation

Page 12: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)
Page 13: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

Conclusion FTIR observation:• Observational facts:

grey excess radiance was found for some days where back trajectories suggest pollutiondiamond dust unlikely for 30 Oct, 17 Nov.

• So IR forcing by small (0.2μm) Arctic aerosol?

Consider: complex index of refraction at 10μm for sulfate, water-soluble, sea-salt and soot (much) higher than for visible light! (“Atmospheric Aerosols”)example λ \ specimen sulfate water-solu. soot oceanic0.5 μ 1.43+1e-8i 1.53+5e-3i 1.75+0.45i 1.382+6.14e-9i10μ 1.89+4.55e-1i 1.82+9e-2i 2.21+0.72i 1.31+4.06e-2i

Mie calculation (spheres 0.2μm, sulfate): vis: no absorption, ω=1 IR: almost no scat. ω=0so: ω, n, phase function are all (λ)

Page 14: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

Scattering properties by remote sensing?

• Have seen: single scattering very important, depend on index of refraction.

• Multi wavelengths Raman lidars can principally calculate / estimate size distribution & refractive index (n) => scattering characteristics.

• One difficulty: estimation of n:

dvMtruendvM

kk vn

v

minmin

d: data; v: coefficients of volume distribution function

M: matrix of scattering efficiencies (λ, k ), depend on n

forward problem:

Page 15: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)
Page 16: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

algorithm

)(3

4)( 3 rsdrrvd

drrvdmrQr

backextr

r

aeraer )();,(1

4

3/ /max_

min_

drrvdrQr

vdK backextn

r

r

backextn )(),(

1

4

3: /max_

min_

/

to solve Fredholm Integ. Eq. of first kind: integral operator:

so: vdK backextn

aeraer //

Page 17: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

vd shall be element of a finite dimen. subspace of L2(r_min, r_max) so :

)()(:...,,11

rvrvdki i

k

iii

)())(()(1

jiextn

k

iij

aer rKv

),,,,(32121

aeraeraeraeraer

),...,,,( 321 kvvvvvd

so:

let d (data) be: d=T

T

Page 18: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

)()(

...

)(

)(

)(......)()(

331

11

21

11211

kbackn

backn

backn

extn

kextn

extn

extn

n

KK

K

K

KKK

M

dvdM n

Page 19: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

Laser wavelengths 355nm, 532 nm, 1064 nm

Laser pulse energy 200mJ (@355), 300mJ (@532),

500 mJ (@1064) (new! Since Dec. 2006)

Laser pulse rep. rate 50 Hz

Laser beam divergence 0.6 mrad

Telescope diameter 30cm far (2,0km – 20km)

10.5 cm near (500m – 4km)

Telescope FoV 0.83 mrad / 2.25 mrad

Detection channels

(elastic)

355 nm, unpol.

532 nm, normal polar. + perpend. polar.

1064 nm, unpol.

Detection channels

(inelastic)

N2 – Raman: 387nm, 607nm

H2O – Raman: 407nm

Range + Resolution Max. 7.5m / 100 sec typical: 60m / 10 min

Raman: 100m / 30 min: 8km

Detection limit Extinction round 2e-7

KARL specs

Page 20: Direct radiative forcing of aerosol 1)Model simulation: A. Rinke, K. Dethloff, M. Fortmann 2)Thermal IR forcing - FTIR: J. Notholt, C. Rathke, (C. Ritter)

2m temperature change (mean)

[°C]

x C1x W1

x W2

x C2

Geographical latitude

5

4

3

2

1

0

He

igh

t [k

m]

65 70 75 80 85

Temperature change [˚C]

He

igh

t [k

m]

-3 -2 -1 0 1 2 3

W1

C1

C2

W2

Height-latitudetemperature change

Temperature profilesat selected points

1990[°C]

Direct effectof Arctic Haze

“Aerosol run minus Control run”, March ensemble

Fortmann, 2004

ΔFsrfc= 5 to –3 W/m2

1d radiative model studies:ΔFsrfc=-0.2 to -6 W/m2