compressed air storage - eurosolar · compressed air storage fritz crotogino kbb underground...

Post on 28-Jul-2018

219 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Compressed Air Storage Fritz Crotogino

KBB Underground Technologies GmbH, Hannover

Internationale Konferenz "Energieautonomie durch Speicherung Erneuerbarer Energien", 30.-31. Oktober 2006

Compressed air energy storage

1. Demand for energy storage (power plant scale)2. Concept3. Salt cavern storage4. Existing and planned storages5. Applications

18 000 MW40 000 MW

6 210 MW

North Americainstalled wind power: 9 100 MW

Europe40 000 MW

Germany19 000 MW

Germany #1 in installed wind power capacity

Typical features:

Fluctuating generation

No correlation with demand

High output peaks andslumps

(increasingly) decentralisedgeneration in north

Priority ahead of conventionalpower sources

Tage

New factor: Wind energy

grid load

Wind power feed in

Mo Di Mi Do Fr Sa So

2

0

6

4

8GW

base load generation

Out

put

Time

Wind power feed-in creates add. demand for balance and reserve power

medium & peak load

Missmatch between generation and demand

Idea: Prof LeonhardTU Braunschweit

Grid load

Windeinspeisung

Mo Di Mi Do Fr Sa So

2

0

6

4

8GW

Base load generation

Out

put

Time

Need for reserve powerin case of calms

Idea: Prof LeonhardTU Braunschweit

Wind power feed in

Reserve

Need for balance power for balancingdeviations between forecast and actual state

Idea: Prof LeonhardTU Braunschweit

Grid load

Mo

2

Di Mi Do Fr Sa So0

6

4

8GW

Base load generation

Out

put

Time

Excess = storage

Extra demand = withdrawal

Future wind energy feed in will require large scale energy storage

large scale150 ... 3000 MW ouput1 .. 7 d storage capacity

storage options1. pumped hydro2 hydrogen3 compressed air energy storage (CAES)

Pumped hydro plant GoldisthalP = 1 060 MW / W = 8h * 1 060 MW / eta > 80%

1000m

upper pond12 mio m³

lower pond

Compressed air energy storage

η = 55 %

Fuel consumption & CO2 emissions:minus 40 .. 60 %

compressormotorgas turbinecaverns

Hydrogen Storage: wind power – hydrogen -H2 gas turbine produces power

Compressed air energy storage

1. Demand for energy storage (power plant scale)2. Concept3. Salt cavern storage4. Existing and planned storages5. Applications

ambient air

compressors

cooler cooler

Expansions-Gasturbinen

M

AbgasBrennkammern

motor/ generator

CAES plant (Huntorf)

Erdgas

air storage

heatInput:0,83 kWh elektr. energy1,56 kWh fossil energyOutput:1 kWh elektr. energyefficiencyη = 42 %

CAES GT-Kraftwerk w/ heat recuperator (McIntosh)

compressors

cooler cooler nat. gas

gasturbine

G

exaust gas

motor/generator

air storage

recuperator

heatInput:0,69 kWh elektr. energy1,17 kWh fossil energyOutput:1 kWh elektr. energyefficiency:η = 54 %

Advanced Adiabatic CAES (EU-funded R&D project)

expansionturbine

Mmotor/generator

heatstorage

ambient air

compressor

air storage

Input:1,42 kWh elektr. energy0,00 kWh fossil energyOutput:1 kWh elektr. energyefficiency:η = 70 %

Compressed air energy storage

1. Demand for energy storage (power plant scale)2. Concept3. Salt cavern storage4. Existing and planned storages5. Applications

Aquifer-Speicher

Compressed air storage in salt caverns

3D view of salt dome

Compressed air energy storage

1. Demand for energy storage (power plant scale)2. Concept3. Salt cavern storage4. Existing and planned storages5. Applications

EON 290 MW CAES power plant in Huntorf

Cavern NK1

Cavern NK2

Power plant

•output 290 MW * 2h•input 60 MW * 8h•2 caverns à 150 000 m³•pressure range 50..70 bar

AEC 110 MW CAES Plant, McIntosh USA

•output 110 MW * 26h•input 60 MW•1 cavern à 540 000 m³

Planned 2 700 MW CAES plant,Norton, Ohio, USA

P = 2 700 MWΔt = 8 d

V = 10 000 000 m³l = 700 m

Former limestone mine

Interior view of EON Huntorf CAES

27

hp compressor

motor / generator

gas turbine

gear box

coolernot visible

lp compressor

Compressed air energy storage

1. Demand for energy storage (power plant scale)2. Concept3. Salt cavern storage4. Existing and planned storages5. Applications

General areas of application

copyright for background graphics: E.ON Netz

option 1

option 2

Option I: CAES power plant as part of a wind farm

0

500

1000

1500

2000

2500

0 4 8 12 16 20 24 28

Time/Days

Win

d ou

tput

[M

W]

Expected benefits:

better grid utilisation

not laid out for peak loads

WEA equivalent of normalpower plant

WEA not switched offwhen there is over capacity

Expected benefits:

better grid utilisation

not laid out for peak loads

WEA equivalent of normalpower plant

WEA not switched offwhen there is over capacity

semi-constant output

wind power (Input)

Option II: Generation and storage of balance power

Copyright: E.ON Netz

Time / h

Out

put /

MW

+ 800 MWDemand for

positive balancepower

Demand fornegative balance

power

actual feed in

prognosis

Summary (1)

1. Wind energy will require in future moreregulating power (minute reserve)reserve power in case of calms

2. Options for regulating power production:- conventional gas turbine plants- CAES plants

3. Advantage of CAES plants40..60% less or 0%* fuel consumption + CO2

- disposal of regulating power in case of excess power (base laod or wind energy)

* in case of pumped hydro or AA CAES plants

Summary (2)

CAES plants

4. can balance fluctuating wind power for a limited period of time

5. limit the need for fossil reserve power plants

6. avoid shut down of wind converters in case of grid low load and high wind

7. reduce need for additional grid capacity

top related