comparative limnology

Post on 17-Jan-2018

224 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

DESCRIPTION

Spatial – Temporal Variability in Surface Meteorology

TRANSCRIPT

Comparative Limnology

African Great Lakes –

VictoriaTanganyika

Kivu

17 18 19 20 21 22 23Longitude (m in o f 33°)

15

16

17

18

19

20

21

Latit

ude

(min

of O

°N)

32° 33° 34°

100 km

Entebbe

Jinja

K isum u

M usom a

M w anza

Bukoba

KageraR iver

N ileR iver

N zoiaR iver

60 m

10 km

0°30'

33° 33° 30 '

NileR iver

BUG 0 1 2kmN

BuvumaIsland

0 km

8 kmBuvuma Channel Hannington

Bay

10 km

LingiraIsland

Napoleon G ulf

Buga ia Island

Thruston Bay

Hann ington B ay

Buvum a Is land

1500

900 (Apr-Aug)

900 (Sep-Apr)

5 m s

B

A

CJinja

N 1500

1500

1500

1500

1500

Fig. 1 - Rom ero, M acIntyre and K ling (Phys. L im n. V ic.)

MET

MET

900(Apr.-M ay)

900(Jun.-M ar.)

AB

C

D

E

F

G

H

S

T

R

Q

M

N

P

O

Apr. 13, 1957 (A -B )

Jun . 23, 195 7 (C-D )

Au g. 24-25, 1957 (M -N-O -P )

Sep . 5-7 , 1957 (Q -R -S -T)

N ov. 9-10 , 1957 (E -F)

Feb. 17 -18, 1958 (G -H )

M ay 20-24, 1995Apr. 5-9 , 1996

Lake Transect Legend

-1

2250

1750

1250

750

mm

yr-1

R ain Evap

2250

1750

1250

750

mm

yr-1

Rain Evap2250

1750

1250

750

mm

yr-1

R ain Evap

2250

1750

1250

750

mm

yr-1

Rain Evap

2250

1750

1250

750

mm

yr-1

R ain Evap

2250

1750

1250

750

mm

yr-1

Rain Evap

31°La

titud

eLongitude

YalaR iver

M araR iver

900 (N ov.-M ay)

900(Jun.-O ct.)

Spatial – Temporal Variability in Surface Meteorology

T @

090

0 (°

C)

19

22

25

28

31

RH

@ 1

500

(%)

40

60

80

100

Pre

ssur

e @

900

(mb)

886

887

888

889

890

Clo

ud @

900

(fra

c)

0.2

0.4

0.6

0.8

1.0

Rai

n (m

m m

onth

-1)

0100200300400500

Sho

rtwav

e ( W

m-2

)

300330360390420450480510540

KisumuEntebbeBukobaMwanzaJinjaMusoma

WS

@ 0

900

(m s

-1)

0

2

4

6

8

WS

@ 1

500

(m s

-1)

0

2

4

6

8

WD

@ 0

900

(°)

0

90

180

270

360

WD

@ 1

500

(°)

0

90

180

270

360

T @

150

0 (°

C)

19

22

25

28

31

RH

@ 0

900

(%)

40

60

80

100

A

B

C

D

E

F

G

J

K

H

I

L

J F M A M J J A S O N D

Net

Lon

gwav

e 09

00 (W

m-2

)

-100

-75

-50

-25

0

Late

nt H

eat F

lux

0900

(W m

-2)

-400

-300

-200

-100

0

J F M A M J J A S O N D

Late

nt H

eat F

lux

1500

(W m

-2)

-400

-300

-200

-100

0

MJ F M A M J J A S O N DN O

Spatial Variability in Surface Meteorology

Fig. 6 - R om ero, M acIntyre and K ling (Phys. L im n. Vic.)

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60J J A S O N D J F M A M J J A S O N D J F M A M J

1994 1995 1996

1960 1961

1952 1953 1954

Dep

th (m

)

M onth o f 1994-1996

A

B

C

D

23

23.25

23.5

23.75

24

24.25

24.5

24.75

25

25.25

25.5

25.75

26

26.25

26.5

26.75

27

Thermal Structure in northern waters of Lake Victoria

1952-1954; 1960-1961; 1994-1996

Fish

Talling

Romero, MacIntyre and Kling

ToC

Oxygen, ppm

Lake Temperatures have Increased!

Increase occurred at end of long, dry season.

February 2000

Surface

August 2000

Spatial Variability in Surface Temperatures

0

20

40

60

B

North SouthIn /O ffshoreTransects M w anza

Speke G ulfB

North SouthIn /O ffshoreTransects M w anza

Speke G ulf

Dep

th (m

)

N orth-South D istance (km )

M ay 20-24 1995 Apr 5-9 1996

0

20

40

60

0 50 100 150 200 250 3000 50 100 150 200 250 300

A B

E F

F ig. 9 - R om ero, M acIntyre and K ling (Phys. L im n. V ic.)

20

40

60

0

4

8

12

16

chla (ug/l)

G

24.0

24.5

25.0

25.5

26.0

26.5

T (°C)

H

0123456789 D

O (m

g/L)

Secchi2m

0

20

40

60 C D109.0

111.0

113.0

115.0 SC

(uS/cm

)

0

Upwelling Early in the Long, Dry Season

0

20

40

60

B

North SouthIn/O ffshoreTransects M wanza

Speke G ulfB

North SouthIn/O ffshoreTransects M wanza

Speke G ulf

De

pth

(m

)

N orth-South D istance (km )

M ay 20-24 1995 Apr 5-9 1996

0

20

40

60

0 50 100 150 200 250 3000 50 100 150 200 250 300

A B

E F

Fig. 9 - R om ero, M acIntyre and K ling (Phys. L im n. V ic.)

20

40

60

0

4

8

12

16

ch

la (u

g/l)

G

24.0

24.5

25.0

25.5

26.0

26.5

T (°C

)

H

0123456789

DO

(mg

/L)

Secchi2m

0

20

40

60 C D109.0

111.0

113.0

115.0 SC

(uS

/cm

)

0

Strong wind events induce upwelling at the end of the wet season, but mixing during the long, dry season leads to isothermal waters.

Fig. 6 - R om ero, M acIntyre and K ling (Phys. L im n. Vic.)

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60J J A S O N D J F M A M J J A S O N D J F M A M J

1994 1995 1996

1960 1961

1952 1953 1954

Dep

th (m

)

M onth o f 1994-1996

A

B

C

D

23

23.25

23.5

23.75

24

24.25

24.5

24.75

25

25.25

25.5

25.75

26

26.25

26.5

26.75

27

Thermal Structure in northern waters of Lake Victoria

1952-1954; 1960-1961; 1994-1996

Fish

Talling

Romero, MacIntyre and Kling

ToC

Oxygen, ppm

What is the source of the cold water in August?

Causes of Increased Temperatures

• Land use changes– Higher attenuation coefficient in northern,

inshore waters – warmer temperatures– Inshore waters flow offshore - transported

southward by cyclonic flow – warms the southern waters

• Climate induced changes– Reduced latent heat fluxes in the south– Possible warming of Kagera River

February 2000

Year to Year Variability in near bottom Oxygen Concentrations

February 2001

Greg Silsbe

Spatial Patterns: Maximum Chlorophyll

9 . 22 1 . 03 1 . 46 . 27 . 0

3 . 93 . 6

4 . 51 3 . 5

4 . 8

7 . 11 8 . 0

4 . 3

3 . 1 1 4 . 8

2 . 12 . 1

9 . 8

3 . 99 . 5

2 2 . 16 . 8

9 . 0

3 1 . 5

8 . 94 . 2

1 1 . 41 4 . 9 1 0 . 2 4 . 5

1 4 . 9

1 5 . 51 4 . 5

1 3 . 31 5 . 3

7 . 5

2 4 . 1

1 0 . 49 . 9 1 7 . 1

8 . 3

2 0 . 5

1 2 . 15 . 2

3 . 63 . 5

2 . 6 6 . 09 . 9

28.4

16.1

5.5

8.3

35.6

3.6

50.1

23.8

15.6

6.4

27.9

5.0

4.7

10.529.2

28.1

34.7

14.5

41.8

36.1

7.3

12.4

30.3

30.8

15.3

3.5

28.0

33.4

20.8

34.8

27.6

22.2

45.7

25.3

10.4

34.5

12.7

33.1

63.7

7.6

56.1

42.2

38.5

71.0

4.6

72.6

18.348.046.7

25.23.7

Feb 2000

Aug 2000

Max Chlorophyll (mg/m3) – Feb 2000

9 . 22 1 . 03 1 . 46 . 27 . 0

3 . 93 . 6

4 . 51 3 . 5

4 . 8

7 . 11 8 . 0

4 . 3

3 . 1 1 4 . 8

2 . 12 . 1

9 . 8

3 . 99 . 5

2 2 . 16 . 8

9 . 0

3 1 . 5

8 . 94 . 2

1 1 . 41 4 . 9 1 0 . 2 4 . 5

1 4 . 9

1 5 . 51 4 . 5

1 3 . 31 5 . 3

7 . 5

2 4 . 1

1 0 . 49 . 9 1 7 . 1

8 . 3

2 0 . 5

1 2 . 15 . 2

3 . 63 . 5

2 . 6 6 . 09 . 9

Spatial Patterns: Maximum Chlorophyll

9 . 22 1 . 03 1 . 46 . 27 . 0

3 . 93 . 6

4 . 51 3 . 5

4 . 8

7 . 11 8 . 0

4 . 3

3 . 1 1 4 . 8

2 . 12 . 1

9 . 8

3 . 99 . 5

2 2 . 16 . 8

9 . 0

3 1 . 5

8 . 94 . 2

1 1 . 41 4 . 9 1 0 . 2 4 . 5

1 4 . 9

1 5 . 51 4 . 5

1 3 . 31 5 . 3

7 . 5

2 4 . 1

1 0 . 49 . 9 1 7 . 1

8 . 3

2 0 . 5

1 2 . 15 . 2

3 . 63 . 5

2 . 6 6 . 09 . 9

28.4

16.1

5.5

8.3

35.6

3.6

50.1

23.8

15.6

6.4

27.9

5.0

4.7

10.529.2

28.1

34.7

14.5

41.8

36.1

7.3

12.4

30.3

30.8

15.3

3.5

28.0

33.4

20.8

34.8

27.6

22.2

45.7

25.3

10.4

34.5

12.7

33.1

63.7

7.6

56.1

42.2

38.5

71.0

4.6

72.6

18.348.046.7

25.23.7

Feb 2000

Aug 2000

Max Chlorophyll (mg/m3) – Aug 2000

28.4

16.1

5.5

8.3

35.6

3.6

50.1

23.8

15.6

6.4

27.9

5.0

4.7

10.529.2

28.1

34.7

14.5

41.8

36.1

7.3

12.4

30.3

30.8

15.3

3.5

28.0

33.4

20.8

34.8

27.6

22.2

45.7

25.3

10.4

34.5

12.7

33.1

63.7

7.6

56.1

42.2

38.5

71.0

4.6

72.6

18.348.046.7

25.23.7

What factors cause the spatial-temporal variability in

chlorophyll distributions?

How does climate warming affect deep, tropical lakes?

Climate warming effect on stratification in Lake Tanganyika:

Loss of productivity

Verburg et al. Science 2003

Lake Tanganyika

World’s longest lake.2nd oldest – Baikal is older. 2 – 20 million years

Graben lake.Oligotrophic – chlorophyll concentrations 1-5 ug/l

214 species of native fish, 176 of which are endemic

Upwelling during the long, dry season provides nutrients that support the productivity of the lake.

23.023.223.423.623.824.024.2

1900 1920 1940 1960 1980 2000Year

Tem

pera

ture

(°C

)

110 m150 m200 mdeep minima

Mean Global Temperature-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1900

1906

1912

1918

1924

1930

1936

1942

1948

1954

1960

1966

1972

1978

1984

1990

1996

Dev

iatio

n fr

om m

ean

(° C

)

Climatic Research Unit (Jones et al. 2001)

North basin Verburg et al. 2003

Why would warming of a lake or ocean cause a decrease in growth

of phytoplankton?

• How does the stratification of the lake or ocean change?

Stratification becomes more stable!

Greater density difference between upper and lower water column.

More work will be required to mix nutrients at depth into the well lit regions where phytoplankton grow.

What is the evidence for such change in Lake Tanganyika?

High visibility a new development in the lake

0

5

10

15

20

25

30

35

40

45

1900 1950 2000

Dep

th o

f 1 %

of l

ight

at s

urfa

ce

Irradiance (% PAR)

0 50 100

Depth (m

)

0

10

20

30

40

1913

1975

1996

Dissolved Silica north basin

0

20

40

60

80

100

120

140

0 20 40 60 80 100Si (uM)

Dep

th (m

)

Jul/Sep 1938Apr/Nov 1947Feb-73Apr 1975Oct-75Jul-Sep 2000Mar-Apr 2001

Global Warming

• Consequences vary in different locations.

• In Lake Tanganyika, the evidence indicates:– Increased Heat Gain and Stratification– Vertical mixing is reduced– Primary Production is reduced– Consequences for Fish Production are unknown

Upwelling

Thermocline during upwelling

South North

U

What other process during the long, dry season could contribute to nutrient flux?

How could climate change moderate this process?

Lake Tanganyika (South Basin) - Long Dry Season

0.5 0.1Wedderburn no.

Upwelling co-occurs with non-linear waves Horizontal Transport is predicted and may supply nutrients to the North Basin

2nd vertical mode internal wave

Non-linearwaves

Mixing

While Verburg et al. (2003) show that the waters of Lake Tanganyika are warmer now than 100 years ago, and provide evidence for a reduced depth of vertical mixing,

What mechanistic hypotheses can we develop to explain the changes?

Lake Kivu – a small (70 km long) but deep (500 m) African Great Lake

Schematic cross section through Lake Kivu and Lake Tanganyika showing the mode of influx and infiltration of fresh and saline water into Lake Kivu (after Tietze, 2005).

depth

[m]

1.00510.0

0

4850.9950.0

density without pressure effect [g/cm³] -- in-situ density [g/cm³]electrical conductivity [mS/cm]

0.021.0

1000.031.0

pressure [dbar]temperature [°C]

L A K E K I V U– main basin –

© Dr. Klaus TIETZE

HL1

GL3HL4

GL4

HL5

GL5

HL6GL6HL7

GL1

HL2

GL2

HL3

HL1

GL3HL4

GL4

HL5

GL5

HL6GL6HL7

GL1

HL2

GL2

HL3

Thermal, conductivity and density structure

0 1 2x 10

-4

-400

-300

-200

-100

0

Stability

Dep

th (m

)

0 5 10 15 20 25 30

-400

-300

-200

-100

0

Buoyancy frequency (cph)

Stratification in Lake KivuBuoyancy Frequency –

A measure of the stability of density structure in lakes and oceans

N2 = g / ρ (d ρ /dz)

g = gravity 9.8 m s-2

ρ = densityd ρ /dz is density gradient, that is, the change in density with depth

Units of N are s-1 or, by recalling that there are 2 pi radians in a cycle, we convert to cycles per hour (cph).

Density Structure and Internal Waves

• Internal waves occur in stratified waters.• They look like waves we see on the sea

surface.• They are initiated when a disturbance

causes a pycnocline to tilt. • For Lake Kivu, the disturbance could be

wind, an earthquake, or a volcano.• We do not know how high the amplitude of

the waves will be.

Density Structure and Internal Waves

• Internal waves occur in stratified waters.• They look like waves we see on the sea

surface.• They are initiated when a disturbance

causes a pycnocline to tilt. • For Lake Kivu, the disturbance could be

wind, an earthquake, or a volcano.• We do not know how high the amplitude of

the waves will be.

Density Structure and Internal Waves

• Internal waves occur in stratified waters.• They look like waves we see on the sea

surface.• They are initiated when a disturbance

causes a pycnocline to tilt. • For Lake Kivu, the disturbance could be

wind, an earthquake, or a volcano.• We do not know how high the amplitude of

the waves will be.

Density Structure and Internal Waves

• Internal waves occur in stratified waters.• They look like waves we see on the sea

surface.• They are initiated when a disturbance

causes a pycnocline to tilt. • For Lake Kivu, the disturbance could be

wind, an earthquake, or a volcano.• We do not know how high the amplitude of

the waves will be.

Density Structure and Internal Waves

• Internal waves occur in stratified waters.• They look like waves we see on the sea

surface.• They are initiated when a disturbance

causes a pycnocline to tilt. • For Lake Kivu, the disturbance could be

wind, an earthquake, or a volcano.• We do not know how high the amplitude of

the waves will be.

Measured methane concentration from 1974/75 and perceived saturation risk (after Tietze 2005).

Estimated gas pressures based on 2003/2004 measurements and perceived saturation risks (after Schmid et al. 2004).

Bottom topography of the northern part of Lake Kivu showing numerous clearly visible volcanic cones (after Schmid et al. 2004).

Earthquakes in the Kivu region.

Lake Nyos in 1985 before and in 1986 after the catastrophic eruption (photos by G. Kling)

Operation of the ‘soda straw’ syphon.

Lake Monoun - Total Gas Pressure (bar)

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8

Dep

th (

m)

20032006saturation line

Pipe Inlet

Illustration of changes in gas content and layering in Lake Monoun, Cameroon as water is removed from 73 m depth during controlled degassing. A similar effect of lowering the stratification layers while maintaining their integrity is predicted for Lake Kivu (data from Kling et al. 2005 and Kling and W.C. Evans, unpublished.

DANGER WAS IMMINENT but FORESTALLED!

Gas Extraction has begun.

Lake Kivu Region

What factors control primary productivity in this lake?

top related