benchmarks of breakup models...benchmarks of breakup models prog. part. nucl. phys. 101 (2018) 154,...

Post on 13-Sep-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Benchmarks of breakup modelsProg. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019

Jin Lei and AB, in preparation

Angela Bonaccorso

INFNSezione di Pisa

https://reactionseminar.github.io/30th April 2020

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 1 / 33

Plan of the Presentation1 Breakup mechanisms

A very versatile reactionExamplesMotivation

2 TC mechanism and FormalismKnockoutQM TCSemiclassical TCEikonal

3 Case study14O(9Be,X)13OAsymmetric spectra

4 PeripheralityL or b-dependenceAngular distribution

5 Implementationn-target optical potential, AB, F. Carstoiu, PRC61.034605Incident energy dependenceResonancesCore-Target S-matrix

6 Kinematics and its effectsKinematicsPhase space effect

7 TC vs eikonalA.B. G.F.Bertsch PRC63.044604

8 More Examples13Be

9 CONCLUSIONS and OUTLOOK

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 2 / 33

Breakup mechanisms A very versatile reaction

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 3 / 33

Breakup mechanisms Examples

Examples of reactions

TC: n+target interaction

• T(d,p)T+n→surrogate,TrojanHorse

• 9Li(d,p)10Li→ Mario Gomez

• 9Be(18O,17O)10Be

• 9Be(18O,16O)11Be

• 9Be(14O,13O)X(9Be+n )

Fragmentation: n+core interaction

• 11Li(12C,X)9Li+n→ A.Corsi ,M.Gomez

• 14Be(12C,X)12Be+n → A.C .

•••

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 4 / 33

Breakup mechanisms Motivation

Structure study motivation for exotic nuclei at the drip lineand beyond (unbound).

• Check the limits of validity ofstructure models such as theSHELL MODEL or ”ab initio”models, understanding of theresidual nuclear force.

• Challenges in breakup reactiontheories.

For normal nuclei: study of low lying resonance properties and/or dampingof high L single particle states in the continuum.

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 5 / 33

TC mechanism and Formalism Knockout

bc

11Beà10Be

10Be

n.n.11Be

T: 9Be, 12C, 208Pb,…p

bnz

R(t)

• Peripheral reaction

• How important is theinternal part of the initialand final n wave function

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 6 / 33

TC mechanism and Formalism QM TC

Theoretical models for inclusive (nonelastic) breakup 20

• Requires inclusion of all possible processes through which the breakup fragment can interact with the target. Impractical in most cases.

Goals

• Find a suitable model for inclusive breakup

• Explore relations between these models

Challenges

• Numerically difficult

• No numerical implementation in 1980s-2000s even for Finite Range DWBA

In 1980s

• Ichimura, Austern, and Vincent developed a spectator-participant model (post-form)

• Udagawa and Tamura suggested a breakup-fusion model (prior-form)

Phys. Rev. C 23, 1847 (1981) Phys. Rev. C 32, 431 (1985)

Phys. Rev. C 24, 1348 (1981) Phys. Lett. B 135, 333(1984)

• Hussein and McVoy adopted a spectator model with the Feshbach projection method

Nucl. Phys. A 445, 124 (1985)

• Three different approaches with different predictions

Semiclassical methods proposed: W. Baur et al., D.M. Brink and A.B.

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 7 / 33

TC mechanism and Formalism QM TC

The Ichimura, Austern, Vincent (IAV) model• Inclusive breakup :

• a + A ⟶ b + anything

b+x

(x+A)*

• Project all degrees of freedom into three body model space

d2σdEbdΩb NEB

= − 2ℏva

ρb(Eb)⟨φx( k b) |Wx |φx( k b)⟩

Any possible states between x and A (including all nucleons

degree of freedom)

Elastic Breakup

Nonelastic Breakup

Inclusive Breakup

Imaginary part of x-A effective interaction

Jin Lei and A. M. Moro, PRC.92.044616, PRL 123, 232501 (2019); cf. Eq. (2.21) of IAV

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 8 / 33

TC mechanism and Formalism QM TC

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 9 / 33

TC mechanism and Formalism Semiclassical TC

A consistent formalism for all breakup reaction mechanismsThe core-target movement is treated in a semiclassical way, butneutron-target and/or neutron-core with a full QM method.AB and DM Brink, PRC38, 1776 (1988), PRC43, 299 (1991), PRC44, 1559 (1991).

Early eikonal model: I. Tanihata, Prog. Part. Nucl. Phys. 35, 505 (1995), halo-core decoupling.

dξ= C 2S

∫ ∞0

dbcdP−n(bc )

dξPct(bc ),

⊗ξ → εf , kz ,P// also ANC =

√C 2SC 2

i

Use of the simple parametrizationPct(bc ) = |Sct |2 = e(− ln 2exp[(Rs−bc )/a]),

Rs ≈ rs(A1/3p + A

1/3t ) rs ≈ 1.4fm

’strong absorption radius’

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 10 / 33

TC mechanism and Formalism Semiclassical TC

Transfer to the continuum: from resonances to knockoutreactionsFirst order time dependent perturbation theory amplitude: ∗∗

Afi =1

i~

∫ ∞−∞

dt < φf (r)|V (r)|φi (r − R(t)) > e−i(ωt−mvz/~) (1)

ω = εi − εf + 12mv2 R(t) = bc + vt

dP−n(bc )

dεf=

1

8π3

m

~2kf

1

2li + 1Σmi |Afi |2

≈ 4π

2k2f

Σjf (2jf + 1)(|1− Sjf |2 + 1− |Sjf |

2)F ,

φf see (∗)

F = (1 + Flf ,li ,jf ,ji )Blf ,li Blf ,li =1

[kf

mv2

]|Ci |2

e−2ηbc

2ηbcMlf li

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 11 / 33

TC mechanism and Formalism Semiclassical TC

Neutron wave functions

Final continuum state:

φlf (r) = Cf ki

2(h

(+)lf

(kr)− Slf h(−)lf

(kr))Ylf ,mf(Ωf ),

Slf (εf ) is an optical model (n-core in fragmentation reactions, n-target inknockout reactions) S-matrix.

Initial state:

φli (r) = −Ci ilγh

(1)li

(iγr)Yli ,mi(Ωi ).

Surface approximation: G. Baur & Co., NPA311 (1978) 141,PRC.28, 946, PR111(1984)333; A. Winter & Co.,

L. Lo Monaco and D.M. Brink JPG11, 935, 1985; A. Mukhamedzhanov PRC 84, 044616, 2011; I. Thomposon talk at

DREB2012 (Pisa).

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 12 / 33

TC mechanism and Formalism Eikonal

Eikonal limit

Small neutron scattering angles

Mlf li ≈ Pli (Xi )Plf (Xf ); Plf (Xf )→ I0(2ηbv)

large n-t angular momenta

2k2f

Σjf (2jf + 1)→∫ ∞

0dbv

both conditions might not be well satisfied for stripping of deeply bound nucleons unless

the core-target scattering is very peripheral. Verify core angular distributions.

P−n(bc) =∫∞

0 dbv(|1− S(bv )|2 + 1− |S(bv )|2)|φi (|bv − bc|, k1)|2Notice k1 → −∞ not strictly necessary.

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 13 / 33

Case study 14O(9Be,X)13O

3200 3400 3600 3800 4000 4200P//(MeV/c)

0

0.02

0.04

0.06

0.08

0.1

dσ/d

P //(mb/

MeV

/c)

datatotalelasticabsorptionJin absorptionJin absorption ren.

14O(9Be,X)13O

totabs=9.4mb, totelast=2.3mb

4040

Einc=53A.MeV, Sn=23.2MeV

C2S=3.15

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 14 / 33

Case study Asymmetric spectra

Example ”deformation” effects due to n-target interaction and kinematical cut-off.

F. Flavigny, A. Obertelli, AB et al. PRL 108, 252501 (2012).

J.Enders et al. PRC65.034318Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 15 / 33

Case study Asymmetric spectra

Asymmetries at high incident energy

!"#

$%!

!

Data courtesy of A. Gade Calcula3ons G. Salvioni MSc Thesis in prepara3on. 28S (-­‐1n) 80.7 d5/2+d3/2 28S (-­‐1p) s1/2+d3/2 A.MeV 24Si(-­‐1p) d5/2 85.3 A.MeV 34Ar (-­‐1n) s1/2 gs 70 A.MeV 34Ar (-­‐1n) d3/2+d5/2

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 16 / 33

Case study Asymmetric spectra

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 17 / 33

Peripherality L or b-dependence

M. Hussein, Mc Voy. NPA445(1985)124

40 60 80L

0

0.5

1

σ(L)

(mb)

A.B.J.L. (14O -9Be)J.L. (13O -10Be)

L=b k, k=8.7 fm-1

b=5.75fm

b=5.2fm

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 18 / 33

Peripherality Angular distribution

100 150 200 250 300E(14O -9Be)(MeV)

0

0.005

0.01

0.015

0.02

dσ/d

E(m

b/M

eV)

l=40, b=4.6fml=45l=50, b=5.75fmL=53, b=Rs=6fml=55l=60l=65, b=7.5fm

14O+9Be @ 742 MeV

l: angular momentum between 14O-9Be

k (14O-9Be) = 8.73028 fm^-1

Rs=6fm, l_g=53

200 250E(14O -9Be)(MeV)

0.005

0.01

0.015

dσ/d

E(m

b/M

eV)

l=40, b=4.6fml=45l=50, b=5.75fmL=53, b=Rs=6fml=55l=60l=65, b=7.5fm

Origin of the tail

14O+9Be @ 742 MeV

l: angular momentum between 14O-9Be

k (14O-9Be) = 8.73028 fm^-1

Rs=6fm, l_g=53

600 620 640 660 680 700 720E (13O -10Be*) (MeV)

0.001

0.01

0.1

dσ2 /d

EdΩ

(mb/

MeV

)

integratedθ=1θ=2θ=3θ=4θ=5θ=6θ=7

0 5 10θ(deg)

0

1000

2000

3000

4000

dσ/dΩ(mb/srad)

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 19 / 33

Peripherality Angular distribution

Initial wave function

100 150 200 250 300E(13O -10Be*) (MeV)

0

0.1

0.2

0.3

0.4

dσ/d

E (m

b/M

eV)

r=1.4fm ANC=17.74 fm-1/2σ=9.63mb

r=1.0 ANC=10.14 4.59mbr=1.6 ANC=24.14 13.84mb

150 200 250 300E (13O -10Be*) (MeV)

0

0.1

0.2

dσ/d

E (m

b/M

eV)

r=1.4 ANC=17.74r=1.0 ANC=10.14r=1.6 ANC=24.14

0 5 10 15 20r (fm)

0

0.2

0.4

0.6

0.8

Φ(f

m-3

/2)

r=1.4r=1.0 fmr=1.6 fm

40 60 80L

0

0.5

1

σ(L)(mb)

r=1.6r=1.4r=1.0

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 20 / 33

Implementation n-target optical potential, AB, F. Carstoiu, PRC61.034605

n-9Be optical potential: A.B & R.J. Charity, PRC89, 024619 (2014)

0.1 1 10 100Elab(MeV)

0.1

1

σ(ba

rn)

data σtot

data σreact p-9Bedata σreactdata σelAB_elDOM_elDOM_reactAB_reactDOM_totAB_tot

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 21 / 33

Implementation Incident energy dependence

0 20 40 60 80E_lab(MeV)

0

1

2

3

σ(b

arn)

data p reactiondata n reactiondata totaldata elasticreact eikelastic eiktot eik

4 6 8 10

0.2

0.4

0.6

0.8

1.0

35 40 45 50

0.2

0.4

0.6

0.8

1.0

75 80 85 90

0.2

0.4

0.6

0.8

1.0

Resonances, trojan horse knockout

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 22 / 33

Implementation Resonances

Transfer to 10Be, 11Be resonances: missing mass experiment.Phys. Rev. C90, 064621 (2014), Phys. Rev. C100, 024617 (2019).

DianaCarbone,AB,MariangelaBondì,F.Cappuzzello,MCavallaroetal.MAGNEXCollaboration:1nand2ntransferexperimentalcampaign

16Ohasadegenerategs(1d5/2,2s1/2)17Ohas5/2+gsand1/2+firstexcitedstateatE*=0.87MeV

Positionandwidthsofp1/2andd5/2resonancesin10Beperfectlyreproducedd5/2resonancein11BeperfectlyreproducedEvidencefora10Be(2+)+n(d5/2)atEx=5.8MeV

-1 0 1 2 3 4 5 6 7 8 9 10 11 12Ex(MeV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dσ/d

E x(mb/

MeV

)

0.06 σ(n+10Be)(b)TC, P1n

phen=0.01TC * Exp Fold

g.s.

(1/2

+ ) + 0

.320

(1/2

- )

1.78

3 (5

/2+ )

3.40

0 (3

/2,+ 3/

2- )

2.65

4 (3

/2- )

3.88

9 +

3.99

5 (3

/2- )

5.25

5 (5

/2- )

5.84

9 +

5.98

0 +

6.05

0 (9

/2+ )

6.70

5

8.81

3

S n = 0

.512

MeV

S 2n =

7.3

14 M

eV

6.70

5

S n = 0

.5 M

eV

1.78

3(5/

2+ )

6.70

5

A.B,D.Carbone,F.Cappuzzello,MCavallaro,G.Hupin,P.Navrátil,andS.Quaglioni

n-10BeSmatrixfromA.Calcietal.,PRL117.242501

Based on A. Calci et al., PRL .

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 23 / 33

Implementation Core-Target S-matrix

Single folding vs double folding

A target used very often is 9Be à single folding of a n-9Be phenomenological potential with a microscopic projectile density

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 24 / 33

Implementation Core-Target S-matrix

8Li and 8B data from 9C data from Fukuda, Nishimura, private communication

10 20 30 40 50Mass Number

1

1.1

1.2

1.3

1.4

1.5[fm]

sr s.f.d.f.

HFr

0 10 20 30 40 50 60Mass Number

800

1000

1200

1400

1600

1800

2000

[mb]

s.f.d.f.

Imane Moumene,AB in preparation

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 25 / 33

Kinematics and its effects Kinematics

KinematicsFrom Eq.1 ∗∗ by the change of variables dtdxdydz → dxdydzdz ′

e−i(ωt−mvz/~) → e−ik1z ′e ik2z neutron energies to neutron parallel momentawith respect to core

k1 =εf − εi − 1

2mv2

~v;

to target

k2 =εf − εi + 1

2mv2

~v;

to core parallel momentum

P// =√

E 2r −M2

r =√

(Tr + Mr )2 −M2r

=√

(Tp + εi − εf )2 + 2Mr (Tp + εi − εf ), (2)

breakup threshold at εf = 0++∗∗Exact 4-vec conservation, see https://arxiv.org/ftp/arxiv/papers/1011/1011.1943.pdf

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 26 / 33

Kinematics and its effects Phase space effect

Origin of kinematical cut-off (phase space) and deformation effects

PRC60(1999) 054604,PRC44(1991) 1559,AB and GF Bertsch, PRC63(2001) 044604, F. Flavigny, A. Obertelli, AB et al., PRL

108, 252501 (2012). (+)

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 27 / 33

TC vs eikonal A.B. G.F.Bertsch PRC63.044604

12Be(9Be,X)11Be@78A.MeV

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 28 / 33

TC vs eikonal A.B. G.F.Bertsch PRC63.044604

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 29 / 33

TC vs eikonal A.B. G.F.Bertsch PRC63.044604

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 30 / 33

More Examples 13Be

13Be puzzle or of the ”elusive 1/2+ state in Be isotopes

Ourlevelsequence2s1/2a_s=-0.8fm1p1/21d5/2

G.Blanchonetal.PRC82,034313NPAA784(2007)49

A.Corsietal.,PLB.797.1344843

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 31 / 33

CONCLUSIONS and OUTLOOK

• QM TC numerically challenging at high energy (large n of partial waves) andfor small separation energies (DWBA source term), all observables.Semiclassical TC has a large range of validity, numerically easy, accurate.NO core angular distributions. Eikonal valid from ≈ 80A.MeV, onlymomentum distributions and total cross sections for knockout.

• Inclusive breakup reactions are dominated by final state interaction with thetarget at small incident energy: used as surrogate reaction

• At intermediate incident energy: strong interplay between projectile andtarget characteristics: ”deformed’ momentum distributions and cutoffeffects.

• From the valence particle projectile momentum distribution at high incidentenergy: information on angular momentum of the initial state and possibledynamical core-target excitations.

• Coincidence experiments of breakup particle experiments (using invariantmass method ) are more INdependent on incident energy (i.e.13Be) case.

• Elastic scattering experiments and or total reaction cross sectionmeasurements: they can tell us about the typical interaction distances andhelp fixing the optical potentials.

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 32 / 33

CONCLUSIONS and OUTLOOK

Some of my co-authors and collaborators in historicalorder.

D. M. BrinkN. Vinh MauG. BlanchonF. CarstoiuG. F. BertschRavinder KumarF. Flavigny, A. ObertelliR. J. CharityMAGNEX collaboration at INFN-LNS: F. Cappuzzello, D. Carbone, M.Cavallaro,G. Hupin, P. Navratil, S. QuaglioniG. Salvioni... see his talk at DREB2014 in Darmstadt and Master ThesisJin Lei.

Angela Bonaccorso (INFN Sezione di Pisa) Benchmarks of breakup models Prog. Part. Nucl. Phys. 101 (2018) 154, Phys. Scr. T152 (2013) 014019 Jin Lei and AB, in preparation2020 33 / 33

top related