attenuation (db/km) frequency (hz) technology and market trends in ...€¦ · big antenna –...

Post on 29-Jul-2021

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Technology and Market Trends in Millimeter Waves

Doug Lockie

President, Endgate Associates

April 27, 2012

IEEE PHoenix

Atmospheric Attenuation vs. Altitude for US Std Conditions

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

0.00E+00 1.00E+11 2.00E+11 3.00E+11 4.00E+11 5.00E+11 6.00E+11 7.00E+11 8.00E+11 9.00E+11 1.00E+12

Frequency (Hz)

Att

enua

tion

(dB

/km

)

0 ft

5000 ft

10000 ft

15000 ft

20000 ft

25000 ft

30000 ft

35000 ft

40000 ft

45000 ft

50000 ft

55000 ft

60000 ft

Presenters Background

Atmospheric Attenuation Defines Applications for Millimeter Waves

Atmospheric Attenuation vs. Altitude for US Std Conditions

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

0.00E+00 1.00E+11 2.00E+11 3.00E+11 4.00E+11 5.00E+11 6.00E+11 7.00E+11 8.00E+11 9.00E+11 1.00E+12

Frequency (Hz)

Att

enua

tion

(dB

/km

)

0 ft

5000 ft

10000 ft

15000 ft

20000 ft

25000 ft

30000 ft

35000 ft

40000 ft

45000 ft

50000 ft

55000 ft

60000 ftLoss to 100 dB/Km Provides Terrestrial Value

Antenna Size Vs Frequency

1 Inch Antenna 8 Degrees - 26 dBi

Size for a 1 Degree Beam

Link Margin

Transmit Power

(10 - 40 dBm)

Transmit Antenna Gain (40 to 56 dB)

Path Loss (134 dB, one mile)

Path Loss With Rain (50 dB, one mile)

Rx Antenna (40-56dB)

Noise Floor

Link Margin

1 Gbit

3 Gbit

10 Gbit

Noise Figure

(W Band) Path Loss at 50

feet is 97 dB

Overview

Technology

Spectrum

Markets

Millimeter Wave Technology Drivers

• GaN Power@ 100 GHz

• Silicon @ Millimeter Wave

• Massive Spaceborne Antennas

• Next Generation Electronic Steering

• Progress Driven by Cell Phones • 2 Billion Units/Year

• Now A Computer

• Millimeter Waves Draft

18 Inch Silicon

Intel 14 nm Fab

($5 Billion Investment

Millimeter Wave Spectrum Activity White Space Pulling Backhaul Data Rate

Automotive Radar 77 GHz,120 GHz and 170 GHz

28 GHz, 38 GHz Area Licenses For Backhaul and Millimeter Wave Mobility

Above 100 GHz Rulemaking Efforts

(Buy A Radio Astronomer Coffee)

Android, iPhone Driving Gb/s Data Rate on Handheld Platforms

Millimeter Wave Markets

• Terrestrial Point to Point • Long Haul - Backhaul

» Ericsson 300,000 radios/year » Huawei/NEC 200,000 radio/year

• Micro Cell Interconnect – 200 Meter » 1-2 Million Links/year

Radar • 77 GHz, 120 GHz, 170 GHz – 5-15 Million/yr

• Millimeter Wave Mobility • 60 GHz , Above 100 GHz, 28 GHz, 38 GHz • Cell Access Growing 20X to 180X Within 5 Years • Lower Frequency Bits/Hz Limit (10 b/Hz – 20 b/Hz) • MMWave Practical for 100 Ft Mobile Range

Satellite Market Impact

Early Satellite Market

Introduction Of Fiber Optics

Introduction Of Millimeter Waves

(W Band, Projected) Time

Value

W Band FCC Ruling Opened Market Segment

Progress For Satellite Applications • 2003: FCC authorized 13 GHz of Spectrum

• 71-76 GHz

• 81-86 GHz

• 92-95 GHz

• Dual Use – Government/Commercial

• Dual Use – Terrestrial/Space

• 7000 links Deployed Worldwide (Terrestrial)

• Link Cost @ 1 Gb/s 2004: $85K 2012: $15K

• Spectrum 5 Plans Spacecraft Use

Millimeter Wave Satellite Market

Just Possibly The Largest Growth “New

Segment” In Millimeter Waves !!

Satellite Market Drivers • Direct Broadcast

• $45 Billion US Market (DirecTV, Dish Networks)

• Presently Receive 5 Satellites to Satisfy HD Demand

• Spectrum 5 New Entrant

• Commercial Two Way Telecom • Internet Access (DircectPC, ViaSat)

• Point to Point Telecom

• Military • Demands Higher Data Rate-Anti Jam

• Note: Lots of applications – Question “Who Will Put Up $7 Billion For Development?”

For Antenna Performance – Bigger is Better

• Telstar – 0.5 Foot Antenna

• Ground Station – 85 Feet (230,000 lbs)

Satellite Antenna Size History

Telstar 0.5 ft

Syncom 1 ft

ViaSat 1 12 ft

Inmarsat 4 60 ft

300 ft Antenna – 25X Area Increase

Large Antenna 300 ft

Performance Above 20 GHz For Unfurlable Antenna

Large Spaceborne Antenna

• Huge Technology Advantage

• Problem: Launch of a “Radio Telescope” • Conventional Rocket Launch – Deployed Antenna at top

of Rocket Potentially Aerodynamic Instability in Wind Shear

• Aerodynamic Drag at High Q Conditions Enroute to Altitude

Big Antenna – Small Earth Footprint W-Band Example

• 100 Meter Satellite Antenna – 0.5 Meter Earth Terminal Antenna 95 dB Gain Spaceborne Antenna – 50 dB Gain Earth Terminal

• 0.003 Degree Beamwidth (3 dB)

• 1 Watt Transmitter Power (W Band)

• 1.2 Mile Earth Footprint

• Nominal 400 Spot Beams/NFL City

• Interesting Anti-Jam Capability

Spectrum Five 1-A Satellite

Downlink Spot Beam Antennas

CONUS Beam Antenna

Uplink Antenna

^

Spectrum 5 Throughput

Band Sat Slots

Bandwidth Number Spots

System Throughput

Ku BSS (12 GHz)

1 1 GHz 20 10 Gbps

Reverse (17 GHz)

5 800 MHz 50 50 Gbps

E-Band (71-76 GHz) (81-86 GHz)

TBD 10 GHz 100-1000

2-25 Tbps

Note : Viasat-1 (just announced) has 100 Gbps throughput

Large Antenna Impact On Spacecraft

^

Large Spaceborne Antenna Concept

300 ft

40 – 50 ft

Antenna Reflector Sperical - Parabaloid

Fairing

Stowed Feed/Electronics In Folded Position

Large Spaceborne Antenna Concept

Payload

Main Rocket – 3rd Stage

1st and 2nd Stage Rockets

Large Spaceborne Antenna Concept

Deployed Feed/Electronics Structure

Reflector

Large Spaceborne Antenna Concept

Reflector

Deployed Feed/Electronics Structure

80,000 Simultaneous Beams

1.5 Mile Spot Beam

Up to 20 Gb/s Per Beam

Enables Next Generation Internet Access

Enables Next Generation Anti Jam

Enables Hand Held High Data Rate Space Access

Fly Assembled Antenna to Atmosphere Edge

Design Aircraft to Fly Assembled 100 Meter Antenna To 100K -150K Feet Ascent Phase at Low Speed, Drag Effects Are Minimized At High Altitude And Low Air Mass, Rocket Inititiation To High Speed (Mach 25-Mach 27) Experiences Insignificant Drag Proteus Aircraft is Purpose Built Custom Aircraft Example

Limitations of Conventional Aircraft Architecture

• 300 Foot Antenna Payload Drives 1,200 Foot Wingspan

• For Example, Stratolaunch

Limitations of Conventional Aircraft Architecture

• 300 Foot Antenna Payload Drives 1,200 Foot Wingspan

• For Example, Stratolaunch

New Aircraft Concept Ideal For Airborne Segment

Radical Blended Canard Design

Unprecedented Stability

Circular Aircraft Body

Aerobat Architecture Appears Ideal for Large Spaceborne Antenna Payload Fit

• 300 Foot Antenna

• 400- 450 Foot Airframe

• Compare with 1200 Foot Wingspan Conventional A/C

Rocket

Antenna

top related