an integrated framework for analysis of stochastic models of biochemical reactions

Post on 01-Jul-2015

1.343 Views

Category:

Education

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

An integrated framework for analysis of stochasticmodels of biochemical reactions

Michał Komorowski

Imperial College LondonTheoretical Systems Biology Group

21/03/11

Michał Komorowski Stochastic biochemical reactions 21/03/11 1 / 31

Outline

1 Motivation: models and data

2 Modeling framework

3 Inference: examples

4 Sensitivity, Fisher Information, statistical model analysis

Michał Komorowski Stochastic biochemical reactions 21/03/11 2 / 31

Fluorescent reporter genes

Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 3 / 31

Fluorescent reporter genes

Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 3 / 31

Fluorescent microscopy and flow cytometry

0 5 10 15 20 25

200

225

250

275

300 A

0 5 10 15 20 25

100

200

300

B

fluo

resc

ence

(a.

u.)

0 5 10 15 20 25

100

150

200

250

300

C

0 5 10 15 20 25

100

150

200

250

300

time (hours)

D

Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31

Fluorescent microscopy and flow cytometry

0 5 10 15 20 25

200

225

250

275

300 A

0 5 10 15 20 25

100

200

300

B

fluo

resc

ence

(a.

u.)

0 5 10 15 20 25

100

150

200

250

300

C

0 5 10 15 20 25

100

150

200

250

300

time (hours)

D

Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31

Fluorescent microscopy and flow cytometry

0 5 10 15 20 25

200

225

250

275

300 A

0 5 10 15 20 25

100

200

300

B

fluo

resc

ence

(a.

u.)

0 5 10 15 20 25

100

150

200

250

300

C

0 5 10 15 20 25

100

150

200

250

300

time (hours)

D

Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31

Fluorescent microscopy and flow cytometry

0 5 10 15 20 25

200

225

250

275

300 A

0 5 10 15 20 25

100

200

300

B

fluo

resc

ence

(a.

u.)

0 5 10 15 20 25

100

150

200

250

300

C

0 5 10 15 20 25

100

150

200

250

300

time (hours)

D

Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31

Chemical kinetics model

System’s state

x = (x1, . . . , xN)T

Stoichiometry matrix

S = {Sij}i=1,2...N; j=1,2...l

(x1, ...., xN)→ (x1 + S1j, ...., xN + SNj)

Reaction rates

F(x,Θ) = (f1(x,Θ), ..., fl(x,Θ))

ParametersΘ = (θ1, ..., θr)

x is a Poisson birth and death process

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31

Chemical kinetics model

System’s state

x = (x1, . . . , xN)T

Stoichiometry matrix

S = {Sij}i=1,2...N; j=1,2...l

(x1, ...., xN)→ (x1 + S1j, ...., xN + SNj)

Reaction rates

F(x,Θ) = (f1(x,Θ), ..., fl(x,Θ))

ParametersΘ = (θ1, ..., θr)

x is a Poisson birth and death process

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31

Chemical kinetics model

System’s state

x = (x1, . . . , xN)T

Stoichiometry matrix

S = {Sij}i=1,2...N; j=1,2...l

(x1, ...., xN)→ (x1 + S1j, ...., xN + SNj)

Reaction rates

F(x,Θ) = (f1(x,Θ), ..., fl(x,Θ))

ParametersΘ = (θ1, ..., θr)

x is a Poisson birth and death process

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31

Chemical kinetics model

System’s state

x = (x1, . . . , xN)T

Stoichiometry matrix

S = {Sij}i=1,2...N; j=1,2...l

(x1, ...., xN)→ (x1 + S1j, ...., xN + SNj)

Reaction rates

F(x,Θ) = (f1(x,Θ), ..., fl(x,Θ))

ParametersΘ = (θ1, ..., θr)

x is a Poisson birth and death process

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31

Chemical kinetics model

System’s state

x = (x1, . . . , xN)T

Stoichiometry matrix

S = {Sij}i=1,2...N; j=1,2...l

(x1, ...., xN)→ (x1 + S1j, ...., xN + SNj)

Reaction rates

F(x,Θ) = (f1(x,Θ), ..., fl(x,Θ))

ParametersΘ = (θ1, ..., θr)

x is a Poisson birth and death process

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Modelling chemical kineticsChemical master equation

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31

Modelling chemical kineticsChemical master equation

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31

Modelling chemical kineticsChemical master equation

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31

Modelling chemical kineticsChemical master equation

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31

How about inference ?

Chemical master equation

(likelihood-free methods, e.g. ABC)

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation

(least squares)

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

(data augmentation)

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

(explicite likelihood)

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31

How about inference ?Chemical master equation

(likelihood-free methods, e.g. ABC)

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation

(least squares)

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

(data augmentation)

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

(explicite likelihood)

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31

How about inference ?Chemical master equation (likelihood-free methods, e.g. ABC)

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation

(least squares)

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

(data augmentation)

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

(explicite likelihood)

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31

How about inference ?Chemical master equation (likelihood-free methods, e.g. ABC)

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation (least squares)

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

(data augmentation)

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

(explicite likelihood)

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31

How about inference ?Chemical master equation (likelihood-free methods, e.g. ABC)

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation (least squares)

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation (data augmentation)

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

(explicite likelihood)

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31

How about inference ?Chemical master equation (likelihood-free methods, e.g. ABC)

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation (least squares)

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation (data augmentation)

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation (explicite likelihood)

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31

Model equations

LNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31

Model equations

LNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31

Model equations

LNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31

Model equations

LNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31

Distribution of dataVector of measurements

xQ ≡ (xt1 , . . . , xtn) for Q ∈ {TS,TP,DT}

time-series (TS) e.g. fluorescent microscopyend-time-point (TP) e.g. fluorescent cytometrydeterministic (DT) e.g. population data

xQ ∼ MVN(µ(Θ),ΣQ(Θ))

µ(Θ) = (ϕ(t1), ..., ϕ(tn))

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31

Distribution of dataVector of measurements

xQ ≡ (xt1 , . . . , xtn) for Q ∈ {TS,TP,DT}

time-series (TS) e.g. fluorescent microscopyend-time-point (TP) e.g. fluorescent cytometrydeterministic (DT) e.g. population data

xQ ∼ MVN(µ(Θ),ΣQ(Θ))

µ(Θ) = (ϕ(t1), ..., ϕ(tn))

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31

Distribution of dataVector of measurements

xQ ≡ (xt1 , . . . , xtn) for Q ∈ {TS,TP,DT}

time-series (TS) e.g. fluorescent microscopyend-time-point (TP) e.g. fluorescent cytometrydeterministic (DT) e.g. population data

xQ ∼ MVN(µ(Θ),ΣQ(Θ))

µ(Θ) = (ϕ(t1), ..., ϕ(tn))

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31

Distribution of dataVector of measurements

xQ ≡ (xt1 , . . . , xtn) for Q ∈ {TS,TP,DT}

time-series (TS) e.g. fluorescent microscopyend-time-point (TP) e.g. fluorescent cytometrydeterministic (DT) e.g. population data

xQ ∼ MVN(µ(Θ),ΣQ(Θ))

µ(Θ) = (ϕ(t1), ..., ϕ(tn))

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31

Distribution of dataVector of measurements

xQ ≡ (xt1 , . . . , xtn) for Q ∈ {TS,TP,DT}

time-series (TS) e.g. fluorescent microscopyend-time-point (TP) e.g. fluorescent cytometrydeterministic (DT) e.g. population data

xQ ∼ MVN(µ(Θ),ΣQ(Θ))

µ(Θ) = (ϕ(t1), ..., ϕ(tn))

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31

Distribution of dataVector of measurements

xQ ≡ (xt1 , . . . , xtn) for Q ∈ {TS,TP,DT}

time-series (TS) e.g. fluorescent microscopyend-time-point (TP) e.g. fluorescent cytometrydeterministic (DT) e.g. population data

xQ ∼ MVN(µ(Θ),ΣQ(Θ))

µ(Θ) = (ϕ(t1), ..., ϕ(tn))

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31

Distribution of dataVector of measurements

xQ ≡ (xt1 , . . . , xtn) for Q ∈ {TS,TP,DT}

time-series (TS) e.g. fluorescent microscopyend-time-point (TP) e.g. fluorescent cytometrydeterministic (DT) e.g. population data

xQ ∼ MVN(µ(Θ),ΣQ(Θ))

µ(Θ) = (ϕ(t1), ..., ϕ(tn))

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31

Advantages of the framework

Inference

Explicit likelihoodTime-series, end-time-point dataVery low computational cost, compared to other methodsHidden variablesMeasurement error

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31

Advantages of the framework

Inference

Explicit likelihoodTime-series, end-time-point dataVery low computational cost, compared to other methodsHidden variablesMeasurement error

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31

Advantages of the framework

Inference

Explicit likelihoodTime-series, end-time-point dataVery low computational cost, compared to other methodsHidden variablesMeasurement error

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31

Advantages of the framework

Inference

Explicit likelihoodTime-series, end-time-point dataVery low computational cost, compared to other methodsHidden variablesMeasurement error

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31

Advantages of the framework

Inference

Explicit likelihoodTime-series, end-time-point dataVery low computational cost, compared to other methodsHidden variablesMeasurement error

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31

Advantages of the framework

Inference

Explicit likelihoodTime-series, end-time-point dataVery low computational cost, compared to other methodsHidden variablesMeasurement error

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31

Advantages of the framework

Inference

Explicit likelihoodTime-series, end-time-point dataVery low computational cost, compared to other methodsHidden variablesMeasurement error

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31

Hierarchical model for degradation rates: CHXexperiment

0 2 4 6 8 10

010

2030

40

time (h)

fluor

esce

nce

leve

l

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

degradation rate

dens

ity

Model:dp = (kp − γpp)dt+

√kp + γpφp(t)dW

Rates differ between cells

γP ∼ Gamma(µγp , σ2γp)

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31

Hierarchical model for degradation rates: CHXexperiment

0 2 4 6 8 10

010

2030

40

time (h)

fluor

esce

nce

leve

l

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

degradation rate

dens

ity

Model:dp = (kp − γpp)dt+

√kp + γpφp(t)dW

Rates differ between cells

γP ∼ Gamma(µγp , σ2γp)

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31

Hierarchical model for degradation rates: CHXexperiment

0 2 4 6 8 10

010

2030

40

time (h)

fluor

esce

nce

leve

l

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

degradation rate

dens

ity

Model:dp = (kp − γpp)dt+

√kp + γpφp(t)dW

Rates differ between cells

γP ∼ Gamma(µγp , σ2γp)

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31

Hierarchical model for degradation rates: CHXexperiment

0 2 4 6 8 10

010

2030

40

time (h)

fluor

esce

nce

leve

l

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

degradation rate

dens

ity

Model:dp = (kp − γpp)dt+

√kp + γpφp(t)dW

Rates differ between cells

γP ∼ Gamma(µγp , σ2γp)

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31

Hierarchical model for degradation rates: CHXexperiment

0 2 4 6 8 10

010

2030

40

time (h)

fluor

esce

nce

leve

l

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

degradation rate

dens

ity

Model:dp = (kp − γpp)dt+

√kp + γpφp(t)dW

Rates differ between cells

γP ∼ Gamma(µγp , σ2γp)

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31

Hierarchical model for degradation rates: CHXexperiment

0 2 4 6 8 10

010

2030

40

time (h)

fluor

esce

nce

leve

l

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

degradation rate

dens

ity

Model:dp = (kp − γpp)dt+

√kp + γpφp(t)dW

Rates differ between cells

γP ∼ Gamma(µγp , σ2γp)

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31

DRB experiment

0 2 4 6 8 10 12 14 160

50

100

150

200

250

300

350

400

450

GFP

Flu

ores

cenc

e

Time (hours)

Model:

dr = (kr − γrr)dt+√

kr + γrφr(t)dWr

dp = (kpr − γpp)dt +√

kpφr(t) + γpφr(t)dWp

We can estimate

γr ∼ Gamma(µγr , σ2γr )

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31

DRB experiment

0 2 4 6 8 10 12 14 160

50

100

150

200

250

300

350

400

450

GFP

Flu

ores

cenc

e

Time (hours)

Model:

dr = (kr − γrr)dt+√

kr + γrφr(t)dWr

dp = (kpr − γpp)dt +√

kpφr(t) + γpφr(t)dWp

We can estimate

γr ∼ Gamma(µγr , σ2γr )

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31

DRB experiment

0 2 4 6 8 10 12 14 160

50

100

150

200

250

300

350

400

450

GFP

Flu

ores

cenc

e

Time (hours)

Model:

dr = (kr − γrr)dt+√

kr + γrφr(t)dWr

dp = (kpr − γpp)dt +√

kpφr(t) + γpφr(t)dWp

We can estimate

γr ∼ Gamma(µγr , σ2γr )

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31

DRB experiment

0 2 4 6 8 10 12 14 160

50

100

150

200

250

300

350

400

450

GFP

Flu

ores

cenc

e

Time (hours)

Model:

dr = (kr − γrr)dt+√

kr + γrφr(t)dWr

dp = (kpr − γpp)dt +√

kpφr(t) + γpφr(t)dWp

We can estimate

γr ∼ Gamma(µγr , σ2γr )

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31

DRB experiment

0 2 4 6 8 10 12 14 160

50

100

150

200

250

300

350

400

450

GFP

Flu

ores

cenc

e

Time (hours)

Model:

dr = (kr − γrr)dt+√

kr + γrφr(t)dWr

dp = (kpr − γpp)dt +√

kpφr(t) + γpφr(t)dWp

We can estimate

γr ∼ Gamma(µγr , σ2γr )

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31

Fluorescent proteins as transcriptional reporters insingle cells

0 5 10 15 20 25

020

040

060

080

0

time (hours)

fluor

esce

nce

inte

nsity

(a.

u.)

Experiment: Claire Harper, Mike White;Department of Biology, University of Liverpool

Observed fluorescence andtime-course of endogenous proteindifferGH3 rat pituitary cells with EGFPlinked to prolactin gene promoterTrascription is triggered at the start ofthe experimentNo data on mRNA levelInformative prior on mRNA andprotein degradation rate

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31

Fluorescent proteins as transcriptional reporters insingle cells

0 5 10 15 20 25

020

040

060

080

0

time (hours)

fluor

esce

nce

inte

nsity

(a.

u.)

Experiment: Claire Harper, Mike White;Department of Biology, University of Liverpool

Observed fluorescence andtime-course of endogenous proteindifferGH3 rat pituitary cells with EGFPlinked to prolactin gene promoterTrascription is triggered at the start ofthe experimentNo data on mRNA levelInformative prior on mRNA andprotein degradation rate

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31

Fluorescent proteins as transcriptional reporters insingle cells

0 5 10 15 20 25

020

040

060

080

0

time (hours)

fluor

esce

nce

inte

nsity

(a.

u.)

Experiment: Claire Harper, Mike White;Department of Biology, University of Liverpool

Observed fluorescence andtime-course of endogenous proteindifferGH3 rat pituitary cells with EGFPlinked to prolactin gene promoterTrascription is triggered at the start ofthe experimentNo data on mRNA levelInformative prior on mRNA andprotein degradation rate

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31

Fluorescent proteins as transcriptional reporters insingle cells

0 5 10 15 20 25

020

040

060

080

0

time (hours)

fluor

esce

nce

inte

nsity

(a.

u.)

Experiment: Claire Harper, Mike White;Department of Biology, University of Liverpool

Observed fluorescence andtime-course of endogenous proteindifferGH3 rat pituitary cells with EGFPlinked to prolactin gene promoterTrascription is triggered at the start ofthe experimentNo data on mRNA levelInformative prior on mRNA andprotein degradation rate

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31

Fluorescent proteins as transcriptional reporters insingle cells

0 5 10 15 20 25

020

040

060

080

0

time (hours)

fluor

esce

nce

inte

nsity

(a.

u.)

Experiment: Claire Harper, Mike White;Department of Biology, University of Liverpool

Observed fluorescence andtime-course of endogenous proteindifferGH3 rat pituitary cells with EGFPlinked to prolactin gene promoterTrascription is triggered at the start ofthe experimentNo data on mRNA levelInformative prior on mRNA andprotein degradation rate

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31

Fluorescent proteins as transcriptional reporters insingle cells

Calculating back to the transcription level

Model:

dr = (kr(t)− γrr)dt+√

kr(t) + γrr dWr

dp = (kpr − γpp)dt +√

kpr + γppdWp

p(obs) = λp

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31

Fluorescent proteins as transcriptional reporters insingle cells

Calculating back to the transcription level

Model:

dr = (kr(t)− γrr)dt+√

kr(t) + γrr dWr

dp = (kpr − γpp)dt +√

kpr + γppdWp

p(obs) = λp

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31

Fluorescent proteins as transcriptional reporters insingle cells

Calculating back to the transcription level

Model:

dr = (kr(t)− γrr)dt+√

kr(t) + γrr dWr

dp = (kpr − γpp)dt +√

kpr + γppdWp

p(obs) = λp

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31

Fluorescent proteins as transcriptional reporters insingle cells

Calculating back to the transcription level

Model:

dr = (kr(t)− γrr)dt

+√

kr(t) + γrr dWr

dp = (kpr − γpp)dt

+√

kpr + γppdWp

p(obs) = λp

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31

Fluorescent proteins as transcriptional reporters insingle cells

Calculating back to the transcription level

Model:

dr = (kr(t)− γrr)dt+√

kr(t) + γrr dWr

dp = (kpr − γpp)dt +√

kpr + γppdWp

p(obs) = λp

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31

Fluorescent proteins as transcriptional reporters insingle cells

Calculating back to the transcription level

Model:

dr = (kr(t)− γrr)dt+√

kr(t) + γrr dWr

dp = (kpr − γpp)dt +√

kpr + γppdWp

p(obs) = λp

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31

Fluorescent proteins as transcriptional reporters insingle cells

Calculating back to the transcription level

Model:

dr = (kr(t)− γrr)dt+√

kr(t) + γrr dWr

dp = (kpr − γpp)dt +√

kpr + γppdWp

p(obs) = λp

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31

Inference results

We estimated scaling factor λ = 2.11 (1.24 - 3.56)Translation in absolute units kp =0.46 (0.14 - 1.51)Transcription profile in absolute units

Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 16 / 31

Inference results

We estimated scaling factor λ = 2.11 (1.24 - 3.56)Translation in absolute units kp =0.46 (0.14 - 1.51)Transcription profile in absolute units

Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 16 / 31

Inference results

We estimated scaling factor λ = 2.11 (1.24 - 3.56)Translation in absolute units kp =0.46 (0.14 - 1.51)Transcription profile in absolute units

Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 16 / 31

Sensitivity for stochastic systems: motivation

Difference in response to perturbations in parametersDeterministic model ( DT) e.g. population averageTime-series stochastic model (TS) e.g. fluorescent microscopyTime-point stochastic model (TP) e.g. flow cytometry

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31

Sensitivity for stochastic systems: motivation

Difference in response to perturbations in parametersDeterministic model ( DT) e.g. population averageTime-series stochastic model (TS) e.g. fluorescent microscopyTime-point stochastic model (TP) e.g. flow cytometry

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31

Sensitivity for stochastic systems: motivation

Difference in response to perturbations in parametersDeterministic model ( DT) e.g. population averageTime-series stochastic model (TS) e.g. fluorescent microscopyTime-point stochastic model (TP) e.g. flow cytometry

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31

Sensitivity for stochastic systems: motivation

Difference in response to perturbations in parametersDeterministic model ( DT) e.g. population averageTime-series stochastic model (TS) e.g. fluorescent microscopyTime-point stochastic model (TP) e.g. flow cytometry

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31

Implications

SensitivityRobustness - global sensitivity analysisInformation content of data

Optimal experimental design

Idetifiability

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31

Implications

SensitivityRobustness - global sensitivity analysisInformation content of data

Optimal experimental design

Idetifiability

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31

Implications

SensitivityRobustness - global sensitivity analysisInformation content of data

Optimal experimental design

Idetifiability

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31

Implications

SensitivityRobustness - global sensitivity analysisInformation content of data

Optimal experimental design

Idetifiability

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31

Implications

SensitivityRobustness - global sensitivity analysisInformation content of data

Optimal experimental design

Idetifiability

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31

Sensitivity and Fisher Information

Classical sensitivity coefficients for an observable X andparameter θ

∂X∂θ

Stochastic case: observable X is drawn from a distribution ψ

I(θ) = E(∂ logψ(X, θ)

∂θ

)2

For stochastic model of chemical reactions evaluated using MonteCarlo simulationsCan be evaluated via numerical integration of ODEs

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31

Sensitivity and Fisher Information

Classical sensitivity coefficients for an observable X andparameter θ

∂X∂θ

Stochastic case: observable X is drawn from a distribution ψ

I(θ) = E(∂ logψ(X, θ)

∂θ

)2

For stochastic model of chemical reactions evaluated using MonteCarlo simulationsCan be evaluated via numerical integration of ODEs

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31

Sensitivity and Fisher Information

Classical sensitivity coefficients for an observable X andparameter θ

∂X∂θ

Stochastic case: observable X is drawn from a distribution ψ

I(θ) = E(∂ logψ(X, θ)

∂θ

)2

For stochastic model of chemical reactions evaluated using MonteCarlo simulationsCan be evaluated via numerical integration of ODEs

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31

Sensitivity and Fisher Information

Classical sensitivity coefficients for an observable X andparameter θ

∂X∂θ

Stochastic case: observable X is drawn from a distribution ψ

I(θ) = E(∂ logψ(X, θ)

∂θ

)2

For stochastic model of chemical reactions evaluated using MonteCarlo simulationsCan be evaluated via numerical integration of ODEs

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31

Model equations - reminderLNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Fisher information

I(θ) =∂µ

∂θ

TΣ(θ)

∂µ

∂θ+

12

trace(Σ−1∂Σ

∂θΣ−1∂Σ

∂θ)

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31

Model equations - reminderLNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Fisher information

I(θ) =∂µ

∂θ

TΣ(θ)

∂µ

∂θ+

12

trace(Σ−1∂Σ

∂θΣ−1∂Σ

∂θ)

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31

Model equations - reminderLNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Fisher information

I(θ) =∂µ

∂θ

TΣ(θ)

∂µ

∂θ+

12

trace(Σ−1∂Σ

∂θΣ−1∂Σ

∂θ)

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31

Model equations - reminderLNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Fisher information

I(θ) =∂µ

∂θ

TΣ(θ)

∂µ

∂θ+

12

trace(Σ−1∂Σ

∂θΣ−1∂Σ

∂θ)

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31

Model equations - reminderLNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Fisher information

I(θ) =∂µ

∂θ

TΣ(θ)

∂µ

∂θ+

12

trace(Σ−1∂Σ

∂θΣ−1∂Σ

∂θ)

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31

Model equations - reminder

Fisher information

I(θ) =∂µ

∂θ

TΣ(θ)

∂µ

∂θ+

12

trace(Σ−1∂Σ

∂θΣ−1∂Σ

∂θ)

Covariance matrix

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 21 / 31

Example: expression of a gene

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 22 / 31

Response to parameter perturbations:stochastic vs deterministic case

Influence of correlation between RNA and protein

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

correlation=0.24218

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31

Response to parameter perturbations:stochastic vs deterministic case

Influence of correlation between RNA and protein

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

correlation=0.24218

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31

Response to parameter perturbations:stochastic vs deterministic case

Influence of correlation between RNA and protein

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

correlation=0.53838

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31

Response to parameter perturbations:stochastic vs deterministic case

Influence of correlation between RNA and protein

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

correlation=0.92828

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31

Response to parameter perturbations:stochastic vs deterministic case

Influence of temporal correlations

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

=30

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31

Response to parameter perturbations:stochastic vs deterministic case

Influence of temporal correlations

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

=30

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31

Response to parameter perturbations:stochastic vs deterministic case

Influence of temporal correlations

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

=3

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31

Response to parameter perturbations:stochastic vs deterministic case

Influance of temporal correlations

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

=0.3

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31

Amount of information in the data

Only protein level is measuredMeasurements are taken from a stationary state

# of identifiable parameters(non-zero eigenvalues)

optimal sampling frequency

Type TS TP DTStationary 4 2 1Perturbation 4 4 3

Perturbation: 5-fold increased initial conditions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

det(

FIM

)

set 1set 2set 3set 4

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31

Amount of information in the data

Only protein level is measuredMeasurements are taken from a stationary state

# of identifiable parameters(non-zero eigenvalues)

optimal sampling frequency

Type TS TP DTStationary 4 2 1Perturbation 4 4 3

Perturbation: 5-fold increased initial conditions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

det(

FIM

)

set 1set 2set 3set 4

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31

Amount of information in the data

Only protein level is measuredMeasurements are taken from a stationary state

# of identifiable parameters(non-zero eigenvalues)

optimal sampling frequency

Type TS TP DTStationary 4 2 1Perturbation 4 4 3

Perturbation: 5-fold increased initial conditions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

det(

FIM

)

set 1set 2set 3set 4

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31

Amount of information in the data

Only protein level is measuredMeasurements are taken from a stationary state

# of identifiable parameters(non-zero eigenvalues)

optimal sampling frequency

Type TS TP DTStationary 4 2 1Perturbation 4 4 3

Perturbation: 5-fold increased initial conditions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

det(

FIM

)

set 1set 2set 3set 4

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31

Amount of information in the data

Only protein level is measuredMeasurements are taken from a stationary state

# of identifiable parameters(non-zero eigenvalues)

optimal sampling frequency

Type TS TP DTStationary 4 2 1Perturbation 4 4 3

Perturbation: 5-fold increased initial conditions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

det(

FIM

)

set 1set 2set 3set 4

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31

Amount of information in the data

Only protein level is measuredMeasurements are taken from a stationary state

# of identifiable parameters(non-zero eigenvalues)

optimal sampling frequency

Type TS TP DTStationary 4 2 1Perturbation 4 4 3

Perturbation: 5-fold increased initial conditions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

det(

FIM

)

set 1set 2set 3set 4

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31

Amount of information in the data

Only protein level is measuredMeasurements are taken from a stationary state

# of identifiable parameters(non-zero eigenvalues)

optimal sampling frequency

Type TS TP DTStationary 4 2 1Perturbation 4 4 3

Perturbation: 5-fold increased initial conditions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

det(

FIM

)

set 1set 2set 3set 4

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31

p53 systemp53 protein regulates cell cycle, response to DNA damage and it is atumour repressor.

x = (p, y0, y).

p - p53y0 - mdm2 precursory - mdm2

Deterministic version:

φp = βx − αxφp − αkφyφp

φp + k

φy0 = βyφp − α0φy0

φy = α0φy0 − αyφy.

Parameter vector

Θ = (βx, αx, αk, k, βy, α0, αy).

Role of parameters: which parameters control stochastic effects inthe model?Fluorescent microscopy or flow cytometry?

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31

p53 systemp53 protein regulates cell cycle, response to DNA damage and it is atumour repressor.

x = (p, y0, y).

p - p53y0 - mdm2 precursory - mdm2

Deterministic version:

φp = βx − αxφp − αkφyφp

φp + k

φy0 = βyφp − α0φy0

φy = α0φy0 − αyφy.

Parameter vector

Θ = (βx, αx, αk, k, βy, α0, αy).

Role of parameters: which parameters control stochastic effects inthe model?Fluorescent microscopy or flow cytometry?

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31

p53 systemp53 protein regulates cell cycle, response to DNA damage and it is atumour repressor.

x = (p, y0, y).

p - p53y0 - mdm2 precursory - mdm2

Deterministic version:

φp = βx − αxφp − αkφyφp

φp + k

φy0 = βyφp − α0φy0

φy = α0φy0 − αyφy.

Parameter vector

Θ = (βx, αx, αk, k, βy, α0, αy).

Role of parameters: which parameters control stochastic effects inthe model?Fluorescent microscopy or flow cytometry?

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31

p53 systemp53 protein regulates cell cycle, response to DNA damage and it is atumour repressor.

x = (p, y0, y).

p - p53y0 - mdm2 precursory - mdm2

Deterministic version:

φp = βx − αxφp − αkφyφp

φp + k

φy0 = βyφp − α0φy0

φy = α0φy0 − αyφy.

Parameter vector

Θ = (βx, αx, αk, k, βy, α0, αy).

Role of parameters: which parameters control stochastic effects inthe model?Fluorescent microscopy or flow cytometry?

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31

p53 systemp53 protein regulates cell cycle, response to DNA damage and it is atumour repressor.

x = (p, y0, y).

p - p53y0 - mdm2 precursory - mdm2

Deterministic version:

φp = βx − αxφp − αkφyφp

φp + k

φy0 = βyφp − α0φy0

φy = α0φy0 − αyφy.

Parameter vector

Θ = (βx, αx, αk, k, βy, α0, αy).

Role of parameters: which parameters control stochastic effects inthe model?Fluorescent microscopy or flow cytometry?

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31

Role of parameters

1 2 3 4 5 6 70

0.2

0.4

0.6

0.8

1Eigen values normalized against model maximum

TSTPDT

1 2 3 4 5 6 70

0.2

0.4

0.6

0.8

1Eigen values normalized against total maximum

TSTPDT

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 27 / 31

Which parameters are involved in controllingstochastic effects?

TS - heatmap, DT - contour plot

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 28 / 31

Fluorescent microscopy vs flow cytometry

0 1 2 3 4 5 6 7 8 9 10x 104

0

2

4

6

8

10

12x 1023

Number of TP measurements per time point

det(

FIM

)

TPTS

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 29 / 31

Summary

Efficient and simple inference framework for stochastic systemsFisher Information Matrix for stochastic models can berepresented as solutions of ODEsSubstantial differences is sensitivities between stochastic anddeterministic models may existApplicability experimental designMatlab package for sensitivity of stochastic systems availablewww.theosysbio.bio.ic.ac.uk/resources/stns/

Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemicalkinetics models, PNAS in press, 2011.

Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise andother parameters of gene expression, Biophysical J., 98, 2010.

Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using thelinear noise approximation, BMC Bioinformatics, 10, 2009;

Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31

Summary

Efficient and simple inference framework for stochastic systemsFisher Information Matrix for stochastic models can berepresented as solutions of ODEsSubstantial differences is sensitivities between stochastic anddeterministic models may existApplicability experimental designMatlab package for sensitivity of stochastic systems availablewww.theosysbio.bio.ic.ac.uk/resources/stns/

Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemicalkinetics models, PNAS in press, 2011.

Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise andother parameters of gene expression, Biophysical J., 98, 2010.

Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using thelinear noise approximation, BMC Bioinformatics, 10, 2009;

Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31

Summary

Efficient and simple inference framework for stochastic systemsFisher Information Matrix for stochastic models can berepresented as solutions of ODEsSubstantial differences is sensitivities between stochastic anddeterministic models may existApplicability experimental designMatlab package for sensitivity of stochastic systems availablewww.theosysbio.bio.ic.ac.uk/resources/stns/

Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemicalkinetics models, PNAS in press, 2011.

Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise andother parameters of gene expression, Biophysical J., 98, 2010.

Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using thelinear noise approximation, BMC Bioinformatics, 10, 2009;

Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31

Summary

Efficient and simple inference framework for stochastic systemsFisher Information Matrix for stochastic models can berepresented as solutions of ODEsSubstantial differences is sensitivities between stochastic anddeterministic models may existApplicability experimental designMatlab package for sensitivity of stochastic systems availablewww.theosysbio.bio.ic.ac.uk/resources/stns/

Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemicalkinetics models, PNAS in press, 2011.

Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise andother parameters of gene expression, Biophysical J., 98, 2010.

Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using thelinear noise approximation, BMC Bioinformatics, 10, 2009;

Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31

Summary

Efficient and simple inference framework for stochastic systemsFisher Information Matrix for stochastic models can berepresented as solutions of ODEsSubstantial differences is sensitivities between stochastic anddeterministic models may existApplicability experimental designMatlab package for sensitivity of stochastic systems availablewww.theosysbio.bio.ic.ac.uk/resources/stns/

Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemicalkinetics models, PNAS in press, 2011.

Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise andother parameters of gene expression, Biophysical J., 98, 2010.

Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using thelinear noise approximation, BMC Bioinformatics, 10, 2009;

Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31

Acknowledgement

Michael StumpfImperial College London

Barbel FinkenstadWarwick University

Dan WoodcockWarwick University

David RandWarwick University

Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 31 / 31

Thank you!

Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 31 / 31

top related