an integrated framework for analysis of stochastic models of biochemical reactions

125
An integrated framework for analysis of stochastic models of biochemical reactions Michal Komorowski Imperial College London Theoretical Systems Biology Group 21/03/11 Michal Komorowski Stochastic biochemical reactions 21/03/11 1 / 31

Upload: michal-komorowski

Post on 01-Jul-2015

1.343 views

Category:

Education


0 download

TRANSCRIPT

Page 1: An integrated framework for analysis of stochastic models of biochemical reactions

An integrated framework for analysis of stochasticmodels of biochemical reactions

Michał Komorowski

Imperial College LondonTheoretical Systems Biology Group

21/03/11

Michał Komorowski Stochastic biochemical reactions 21/03/11 1 / 31

Page 2: An integrated framework for analysis of stochastic models of biochemical reactions

Outline

1 Motivation: models and data

2 Modeling framework

3 Inference: examples

4 Sensitivity, Fisher Information, statistical model analysis

Michał Komorowski Stochastic biochemical reactions 21/03/11 2 / 31

Page 3: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent reporter genes

Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 3 / 31

Page 4: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent reporter genes

Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 3 / 31

Page 5: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent microscopy and flow cytometry

0 5 10 15 20 25

200

225

250

275

300 A

0 5 10 15 20 25

100

200

300

B

fluo

resc

ence

(a.

u.)

0 5 10 15 20 25

100

150

200

250

300

C

0 5 10 15 20 25

100

150

200

250

300

time (hours)

D

Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31

Page 6: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent microscopy and flow cytometry

0 5 10 15 20 25

200

225

250

275

300 A

0 5 10 15 20 25

100

200

300

B

fluo

resc

ence

(a.

u.)

0 5 10 15 20 25

100

150

200

250

300

C

0 5 10 15 20 25

100

150

200

250

300

time (hours)

D

Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31

Page 7: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent microscopy and flow cytometry

0 5 10 15 20 25

200

225

250

275

300 A

0 5 10 15 20 25

100

200

300

B

fluo

resc

ence

(a.

u.)

0 5 10 15 20 25

100

150

200

250

300

C

0 5 10 15 20 25

100

150

200

250

300

time (hours)

D

Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31

Page 8: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent microscopy and flow cytometry

0 5 10 15 20 25

200

225

250

275

300 A

0 5 10 15 20 25

100

200

300

B

fluo

resc

ence

(a.

u.)

0 5 10 15 20 25

100

150

200

250

300

C

0 5 10 15 20 25

100

150

200

250

300

time (hours)

D

Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31

Page 9: An integrated framework for analysis of stochastic models of biochemical reactions

Chemical kinetics model

System’s state

x = (x1, . . . , xN)T

Stoichiometry matrix

S = {Sij}i=1,2...N; j=1,2...l

(x1, ...., xN)→ (x1 + S1j, ...., xN + SNj)

Reaction rates

F(x,Θ) = (f1(x,Θ), ..., fl(x,Θ))

ParametersΘ = (θ1, ..., θr)

x is a Poisson birth and death process

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31

Page 10: An integrated framework for analysis of stochastic models of biochemical reactions

Chemical kinetics model

System’s state

x = (x1, . . . , xN)T

Stoichiometry matrix

S = {Sij}i=1,2...N; j=1,2...l

(x1, ...., xN)→ (x1 + S1j, ...., xN + SNj)

Reaction rates

F(x,Θ) = (f1(x,Θ), ..., fl(x,Θ))

ParametersΘ = (θ1, ..., θr)

x is a Poisson birth and death process

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31

Page 11: An integrated framework for analysis of stochastic models of biochemical reactions

Chemical kinetics model

System’s state

x = (x1, . . . , xN)T

Stoichiometry matrix

S = {Sij}i=1,2...N; j=1,2...l

(x1, ...., xN)→ (x1 + S1j, ...., xN + SNj)

Reaction rates

F(x,Θ) = (f1(x,Θ), ..., fl(x,Θ))

ParametersΘ = (θ1, ..., θr)

x is a Poisson birth and death process

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31

Page 12: An integrated framework for analysis of stochastic models of biochemical reactions

Chemical kinetics model

System’s state

x = (x1, . . . , xN)T

Stoichiometry matrix

S = {Sij}i=1,2...N; j=1,2...l

(x1, ...., xN)→ (x1 + S1j, ...., xN + SNj)

Reaction rates

F(x,Θ) = (f1(x,Θ), ..., fl(x,Θ))

ParametersΘ = (θ1, ..., θr)

x is a Poisson birth and death process

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31

Page 13: An integrated framework for analysis of stochastic models of biochemical reactions

Chemical kinetics model

System’s state

x = (x1, . . . , xN)T

Stoichiometry matrix

S = {Sij}i=1,2...N; j=1,2...l

(x1, ...., xN)→ (x1 + S1j, ...., xN + SNj)

Reaction rates

F(x,Θ) = (f1(x,Θ), ..., fl(x,Θ))

ParametersΘ = (θ1, ..., θr)

x is a Poisson birth and death process

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31

Page 14: An integrated framework for analysis of stochastic models of biochemical reactions

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Page 15: An integrated framework for analysis of stochastic models of biochemical reactions

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Page 16: An integrated framework for analysis of stochastic models of biochemical reactions

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Page 17: An integrated framework for analysis of stochastic models of biochemical reactions

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Page 18: An integrated framework for analysis of stochastic models of biochemical reactions

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Page 19: An integrated framework for analysis of stochastic models of biochemical reactions

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Page 20: An integrated framework for analysis of stochastic models of biochemical reactions

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Page 21: An integrated framework for analysis of stochastic models of biochemical reactions

Example: gene expression

State x = (r, p)

Stoichiometry

S =

(1 −1 0 00 0 1 −1

)Rates

F(x,Θ) = (kr, γrr, kpr, γpp)

ParametersΘ = (kr, γr, kp, γp)

Macroscopic rate equation

φR = kR(t)− γRφR

φP = kPφR − γPφP

Diffusion approximation

dR = (kR(t)− γRR)dt +√

kR + γRRdWR

dP = (kPR− γPP)dt +√

kPR + γPPdWP

Linear noise approximationR(t) = φR(t) + ξR(t) P(t) = φP(t) + ξP(t)

dξR = (−γRξR)dt +√

kR(t) + γRφRdWξR ,

dξP = (kPξR − γPξP)dt +√

kPφP + γPφPdWξP

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31

Page 22: An integrated framework for analysis of stochastic models of biochemical reactions

Modelling chemical kineticsChemical master equation

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31

Page 23: An integrated framework for analysis of stochastic models of biochemical reactions

Modelling chemical kineticsChemical master equation

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31

Page 24: An integrated framework for analysis of stochastic models of biochemical reactions

Modelling chemical kineticsChemical master equation

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31

Page 25: An integrated framework for analysis of stochastic models of biochemical reactions

Modelling chemical kineticsChemical master equation

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31

Page 26: An integrated framework for analysis of stochastic models of biochemical reactions

How about inference ?

Chemical master equation

(likelihood-free methods, e.g. ABC)

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation

(least squares)

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

(data augmentation)

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

(explicite likelihood)

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31

Page 27: An integrated framework for analysis of stochastic models of biochemical reactions

How about inference ?Chemical master equation

(likelihood-free methods, e.g. ABC)

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation

(least squares)

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

(data augmentation)

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

(explicite likelihood)

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31

Page 28: An integrated framework for analysis of stochastic models of biochemical reactions

How about inference ?Chemical master equation (likelihood-free methods, e.g. ABC)

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation

(least squares)

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

(data augmentation)

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

(explicite likelihood)

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31

Page 29: An integrated framework for analysis of stochastic models of biochemical reactions

How about inference ?Chemical master equation (likelihood-free methods, e.g. ABC)

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation (least squares)

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation

(data augmentation)

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

(explicite likelihood)

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31

Page 30: An integrated framework for analysis of stochastic models of biochemical reactions

How about inference ?Chemical master equation (likelihood-free methods, e.g. ABC)

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation (least squares)

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation (data augmentation)

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation

(explicite likelihood)

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31

Page 31: An integrated framework for analysis of stochastic models of biochemical reactions

How about inference ?Chemical master equation (likelihood-free methods, e.g. ABC)

dPt(x)

dt=

l∑j=1

Pt(x− S·j)fj(x− S·j)− Pt(x)fj(x)

Macroscopic rate equation (least squares)

dϕdt

= S F(ϕ) F(ϕ) = (f1(ϕ), ..., fk(ϕ))

Diffusion approximation (data augmentation)

dx = S F(x)dt + S(

diag{√

F(x)})

dW

Linear noise approximation (explicite likelihood)

x(t) = ϕ(t) + ξ(t)

dξ = SOϕF(ϕ)ξdt + S(

diag{√

F(ϕ)})

dW

Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31

Page 32: An integrated framework for analysis of stochastic models of biochemical reactions

Model equations

LNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31

Page 33: An integrated framework for analysis of stochastic models of biochemical reactions

Model equations

LNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31

Page 34: An integrated framework for analysis of stochastic models of biochemical reactions

Model equations

LNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31

Page 35: An integrated framework for analysis of stochastic models of biochemical reactions

Model equations

LNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31

Page 36: An integrated framework for analysis of stochastic models of biochemical reactions

Distribution of dataVector of measurements

xQ ≡ (xt1 , . . . , xtn) for Q ∈ {TS,TP,DT}

time-series (TS) e.g. fluorescent microscopyend-time-point (TP) e.g. fluorescent cytometrydeterministic (DT) e.g. population data

xQ ∼ MVN(µ(Θ),ΣQ(Θ))

µ(Θ) = (ϕ(t1), ..., ϕ(tn))

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31

Page 37: An integrated framework for analysis of stochastic models of biochemical reactions

Distribution of dataVector of measurements

xQ ≡ (xt1 , . . . , xtn) for Q ∈ {TS,TP,DT}

time-series (TS) e.g. fluorescent microscopyend-time-point (TP) e.g. fluorescent cytometrydeterministic (DT) e.g. population data

xQ ∼ MVN(µ(Θ),ΣQ(Θ))

µ(Θ) = (ϕ(t1), ..., ϕ(tn))

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31

Page 38: An integrated framework for analysis of stochastic models of biochemical reactions

Distribution of dataVector of measurements

xQ ≡ (xt1 , . . . , xtn) for Q ∈ {TS,TP,DT}

time-series (TS) e.g. fluorescent microscopyend-time-point (TP) e.g. fluorescent cytometrydeterministic (DT) e.g. population data

xQ ∼ MVN(µ(Θ),ΣQ(Θ))

µ(Θ) = (ϕ(t1), ..., ϕ(tn))

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31

Page 39: An integrated framework for analysis of stochastic models of biochemical reactions

Distribution of dataVector of measurements

xQ ≡ (xt1 , . . . , xtn) for Q ∈ {TS,TP,DT}

time-series (TS) e.g. fluorescent microscopyend-time-point (TP) e.g. fluorescent cytometrydeterministic (DT) e.g. population data

xQ ∼ MVN(µ(Θ),ΣQ(Θ))

µ(Θ) = (ϕ(t1), ..., ϕ(tn))

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31

Page 40: An integrated framework for analysis of stochastic models of biochemical reactions

Distribution of dataVector of measurements

xQ ≡ (xt1 , . . . , xtn) for Q ∈ {TS,TP,DT}

time-series (TS) e.g. fluorescent microscopyend-time-point (TP) e.g. fluorescent cytometrydeterministic (DT) e.g. population data

xQ ∼ MVN(µ(Θ),ΣQ(Θ))

µ(Θ) = (ϕ(t1), ..., ϕ(tn))

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31

Page 41: An integrated framework for analysis of stochastic models of biochemical reactions

Distribution of dataVector of measurements

xQ ≡ (xt1 , . . . , xtn) for Q ∈ {TS,TP,DT}

time-series (TS) e.g. fluorescent microscopyend-time-point (TP) e.g. fluorescent cytometrydeterministic (DT) e.g. population data

xQ ∼ MVN(µ(Θ),ΣQ(Θ))

µ(Θ) = (ϕ(t1), ..., ϕ(tn))

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31

Page 42: An integrated framework for analysis of stochastic models of biochemical reactions

Distribution of dataVector of measurements

xQ ≡ (xt1 , . . . , xtn) for Q ∈ {TS,TP,DT}

time-series (TS) e.g. fluorescent microscopyend-time-point (TP) e.g. fluorescent cytometrydeterministic (DT) e.g. population data

xQ ∼ MVN(µ(Θ),ΣQ(Θ))

µ(Θ) = (ϕ(t1), ..., ϕ(tn))

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31

Page 43: An integrated framework for analysis of stochastic models of biochemical reactions

Advantages of the framework

Inference

Explicit likelihoodTime-series, end-time-point dataVery low computational cost, compared to other methodsHidden variablesMeasurement error

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31

Page 44: An integrated framework for analysis of stochastic models of biochemical reactions

Advantages of the framework

Inference

Explicit likelihoodTime-series, end-time-point dataVery low computational cost, compared to other methodsHidden variablesMeasurement error

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31

Page 45: An integrated framework for analysis of stochastic models of biochemical reactions

Advantages of the framework

Inference

Explicit likelihoodTime-series, end-time-point dataVery low computational cost, compared to other methodsHidden variablesMeasurement error

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31

Page 46: An integrated framework for analysis of stochastic models of biochemical reactions

Advantages of the framework

Inference

Explicit likelihoodTime-series, end-time-point dataVery low computational cost, compared to other methodsHidden variablesMeasurement error

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31

Page 47: An integrated framework for analysis of stochastic models of biochemical reactions

Advantages of the framework

Inference

Explicit likelihoodTime-series, end-time-point dataVery low computational cost, compared to other methodsHidden variablesMeasurement error

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31

Page 48: An integrated framework for analysis of stochastic models of biochemical reactions

Advantages of the framework

Inference

Explicit likelihoodTime-series, end-time-point dataVery low computational cost, compared to other methodsHidden variablesMeasurement error

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31

Page 49: An integrated framework for analysis of stochastic models of biochemical reactions

Advantages of the framework

Inference

Explicit likelihoodTime-series, end-time-point dataVery low computational cost, compared to other methodsHidden variablesMeasurement error

Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31

Page 50: An integrated framework for analysis of stochastic models of biochemical reactions

Hierarchical model for degradation rates: CHXexperiment

0 2 4 6 8 10

010

2030

40

time (h)

fluor

esce

nce

leve

l

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

degradation rate

dens

ity

Model:dp = (kp − γpp)dt+

√kp + γpφp(t)dW

Rates differ between cells

γP ∼ Gamma(µγp , σ2γp)

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31

Page 51: An integrated framework for analysis of stochastic models of biochemical reactions

Hierarchical model for degradation rates: CHXexperiment

0 2 4 6 8 10

010

2030

40

time (h)

fluor

esce

nce

leve

l

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

degradation rate

dens

ity

Model:dp = (kp − γpp)dt+

√kp + γpφp(t)dW

Rates differ between cells

γP ∼ Gamma(µγp , σ2γp)

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31

Page 52: An integrated framework for analysis of stochastic models of biochemical reactions

Hierarchical model for degradation rates: CHXexperiment

0 2 4 6 8 10

010

2030

40

time (h)

fluor

esce

nce

leve

l

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

degradation rate

dens

ity

Model:dp = (kp − γpp)dt+

√kp + γpφp(t)dW

Rates differ between cells

γP ∼ Gamma(µγp , σ2γp)

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31

Page 53: An integrated framework for analysis of stochastic models of biochemical reactions

Hierarchical model for degradation rates: CHXexperiment

0 2 4 6 8 10

010

2030

40

time (h)

fluor

esce

nce

leve

l

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

degradation rate

dens

ity

Model:dp = (kp − γpp)dt+

√kp + γpφp(t)dW

Rates differ between cells

γP ∼ Gamma(µγp , σ2γp)

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31

Page 54: An integrated framework for analysis of stochastic models of biochemical reactions

Hierarchical model for degradation rates: CHXexperiment

0 2 4 6 8 10

010

2030

40

time (h)

fluor

esce

nce

leve

l

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

degradation rate

dens

ity

Model:dp = (kp − γpp)dt+

√kp + γpφp(t)dW

Rates differ between cells

γP ∼ Gamma(µγp , σ2γp)

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31

Page 55: An integrated framework for analysis of stochastic models of biochemical reactions

Hierarchical model for degradation rates: CHXexperiment

0 2 4 6 8 10

010

2030

40

time (h)

fluor

esce

nce

leve

l

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

degradation rate

dens

ity

Model:dp = (kp − γpp)dt+

√kp + γpφp(t)dW

Rates differ between cells

γP ∼ Gamma(µγp , σ2γp)

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31

Page 56: An integrated framework for analysis of stochastic models of biochemical reactions

DRB experiment

0 2 4 6 8 10 12 14 160

50

100

150

200

250

300

350

400

450

GFP

Flu

ores

cenc

e

Time (hours)

Model:

dr = (kr − γrr)dt+√

kr + γrφr(t)dWr

dp = (kpr − γpp)dt +√

kpφr(t) + γpφr(t)dWp

We can estimate

γr ∼ Gamma(µγr , σ2γr )

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31

Page 57: An integrated framework for analysis of stochastic models of biochemical reactions

DRB experiment

0 2 4 6 8 10 12 14 160

50

100

150

200

250

300

350

400

450

GFP

Flu

ores

cenc

e

Time (hours)

Model:

dr = (kr − γrr)dt+√

kr + γrφr(t)dWr

dp = (kpr − γpp)dt +√

kpφr(t) + γpφr(t)dWp

We can estimate

γr ∼ Gamma(µγr , σ2γr )

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31

Page 58: An integrated framework for analysis of stochastic models of biochemical reactions

DRB experiment

0 2 4 6 8 10 12 14 160

50

100

150

200

250

300

350

400

450

GFP

Flu

ores

cenc

e

Time (hours)

Model:

dr = (kr − γrr)dt+√

kr + γrφr(t)dWr

dp = (kpr − γpp)dt +√

kpφr(t) + γpφr(t)dWp

We can estimate

γr ∼ Gamma(µγr , σ2γr )

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31

Page 59: An integrated framework for analysis of stochastic models of biochemical reactions

DRB experiment

0 2 4 6 8 10 12 14 160

50

100

150

200

250

300

350

400

450

GFP

Flu

ores

cenc

e

Time (hours)

Model:

dr = (kr − γrr)dt+√

kr + γrφr(t)dWr

dp = (kpr − γpp)dt +√

kpφr(t) + γpφr(t)dWp

We can estimate

γr ∼ Gamma(µγr , σ2γr )

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31

Page 60: An integrated framework for analysis of stochastic models of biochemical reactions

DRB experiment

0 2 4 6 8 10 12 14 160

50

100

150

200

250

300

350

400

450

GFP

Flu

ores

cenc

e

Time (hours)

Model:

dr = (kr − γrr)dt+√

kr + γrφr(t)dWr

dp = (kpr − γpp)dt +√

kpφr(t) + γpφr(t)dWp

We can estimate

γr ∼ Gamma(µγr , σ2γr )

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31

Page 61: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent proteins as transcriptional reporters insingle cells

0 5 10 15 20 25

020

040

060

080

0

time (hours)

fluor

esce

nce

inte

nsity

(a.

u.)

Experiment: Claire Harper, Mike White;Department of Biology, University of Liverpool

Observed fluorescence andtime-course of endogenous proteindifferGH3 rat pituitary cells with EGFPlinked to prolactin gene promoterTrascription is triggered at the start ofthe experimentNo data on mRNA levelInformative prior on mRNA andprotein degradation rate

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31

Page 62: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent proteins as transcriptional reporters insingle cells

0 5 10 15 20 25

020

040

060

080

0

time (hours)

fluor

esce

nce

inte

nsity

(a.

u.)

Experiment: Claire Harper, Mike White;Department of Biology, University of Liverpool

Observed fluorescence andtime-course of endogenous proteindifferGH3 rat pituitary cells with EGFPlinked to prolactin gene promoterTrascription is triggered at the start ofthe experimentNo data on mRNA levelInformative prior on mRNA andprotein degradation rate

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31

Page 63: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent proteins as transcriptional reporters insingle cells

0 5 10 15 20 25

020

040

060

080

0

time (hours)

fluor

esce

nce

inte

nsity

(a.

u.)

Experiment: Claire Harper, Mike White;Department of Biology, University of Liverpool

Observed fluorescence andtime-course of endogenous proteindifferGH3 rat pituitary cells with EGFPlinked to prolactin gene promoterTrascription is triggered at the start ofthe experimentNo data on mRNA levelInformative prior on mRNA andprotein degradation rate

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31

Page 64: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent proteins as transcriptional reporters insingle cells

0 5 10 15 20 25

020

040

060

080

0

time (hours)

fluor

esce

nce

inte

nsity

(a.

u.)

Experiment: Claire Harper, Mike White;Department of Biology, University of Liverpool

Observed fluorescence andtime-course of endogenous proteindifferGH3 rat pituitary cells with EGFPlinked to prolactin gene promoterTrascription is triggered at the start ofthe experimentNo data on mRNA levelInformative prior on mRNA andprotein degradation rate

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31

Page 65: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent proteins as transcriptional reporters insingle cells

0 5 10 15 20 25

020

040

060

080

0

time (hours)

fluor

esce

nce

inte

nsity

(a.

u.)

Experiment: Claire Harper, Mike White;Department of Biology, University of Liverpool

Observed fluorescence andtime-course of endogenous proteindifferGH3 rat pituitary cells with EGFPlinked to prolactin gene promoterTrascription is triggered at the start ofthe experimentNo data on mRNA levelInformative prior on mRNA andprotein degradation rate

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31

Page 66: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent proteins as transcriptional reporters insingle cells

Calculating back to the transcription level

Model:

dr = (kr(t)− γrr)dt+√

kr(t) + γrr dWr

dp = (kpr − γpp)dt +√

kpr + γppdWp

p(obs) = λp

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31

Page 67: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent proteins as transcriptional reporters insingle cells

Calculating back to the transcription level

Model:

dr = (kr(t)− γrr)dt+√

kr(t) + γrr dWr

dp = (kpr − γpp)dt +√

kpr + γppdWp

p(obs) = λp

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31

Page 68: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent proteins as transcriptional reporters insingle cells

Calculating back to the transcription level

Model:

dr = (kr(t)− γrr)dt+√

kr(t) + γrr dWr

dp = (kpr − γpp)dt +√

kpr + γppdWp

p(obs) = λp

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31

Page 69: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent proteins as transcriptional reporters insingle cells

Calculating back to the transcription level

Model:

dr = (kr(t)− γrr)dt

+√

kr(t) + γrr dWr

dp = (kpr − γpp)dt

+√

kpr + γppdWp

p(obs) = λp

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31

Page 70: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent proteins as transcriptional reporters insingle cells

Calculating back to the transcription level

Model:

dr = (kr(t)− γrr)dt+√

kr(t) + γrr dWr

dp = (kpr − γpp)dt +√

kpr + γppdWp

p(obs) = λp

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31

Page 71: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent proteins as transcriptional reporters insingle cells

Calculating back to the transcription level

Model:

dr = (kr(t)− γrr)dt+√

kr(t) + γrr dWr

dp = (kpr − γpp)dt +√

kpr + γppdWp

p(obs) = λp

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31

Page 72: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent proteins as transcriptional reporters insingle cells

Calculating back to the transcription level

Model:

dr = (kr(t)− γrr)dt+√

kr(t) + γrr dWr

dp = (kpr − γpp)dt +√

kpr + γppdWp

p(obs) = λp

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31

Page 73: An integrated framework for analysis of stochastic models of biochemical reactions

Inference results

We estimated scaling factor λ = 2.11 (1.24 - 3.56)Translation in absolute units kp =0.46 (0.14 - 1.51)Transcription profile in absolute units

Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 16 / 31

Page 74: An integrated framework for analysis of stochastic models of biochemical reactions

Inference results

We estimated scaling factor λ = 2.11 (1.24 - 3.56)Translation in absolute units kp =0.46 (0.14 - 1.51)Transcription profile in absolute units

Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 16 / 31

Page 75: An integrated framework for analysis of stochastic models of biochemical reactions

Inference results

We estimated scaling factor λ = 2.11 (1.24 - 3.56)Translation in absolute units kp =0.46 (0.14 - 1.51)Transcription profile in absolute units

Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 16 / 31

Page 76: An integrated framework for analysis of stochastic models of biochemical reactions

Sensitivity for stochastic systems: motivation

Difference in response to perturbations in parametersDeterministic model ( DT) e.g. population averageTime-series stochastic model (TS) e.g. fluorescent microscopyTime-point stochastic model (TP) e.g. flow cytometry

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31

Page 77: An integrated framework for analysis of stochastic models of biochemical reactions

Sensitivity for stochastic systems: motivation

Difference in response to perturbations in parametersDeterministic model ( DT) e.g. population averageTime-series stochastic model (TS) e.g. fluorescent microscopyTime-point stochastic model (TP) e.g. flow cytometry

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31

Page 78: An integrated framework for analysis of stochastic models of biochemical reactions

Sensitivity for stochastic systems: motivation

Difference in response to perturbations in parametersDeterministic model ( DT) e.g. population averageTime-series stochastic model (TS) e.g. fluorescent microscopyTime-point stochastic model (TP) e.g. flow cytometry

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31

Page 79: An integrated framework for analysis of stochastic models of biochemical reactions

Sensitivity for stochastic systems: motivation

Difference in response to perturbations in parametersDeterministic model ( DT) e.g. population averageTime-series stochastic model (TS) e.g. fluorescent microscopyTime-point stochastic model (TP) e.g. flow cytometry

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31

Page 80: An integrated framework for analysis of stochastic models of biochemical reactions

Implications

SensitivityRobustness - global sensitivity analysisInformation content of data

Optimal experimental design

Idetifiability

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31

Page 81: An integrated framework for analysis of stochastic models of biochemical reactions

Implications

SensitivityRobustness - global sensitivity analysisInformation content of data

Optimal experimental design

Idetifiability

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31

Page 82: An integrated framework for analysis of stochastic models of biochemical reactions

Implications

SensitivityRobustness - global sensitivity analysisInformation content of data

Optimal experimental design

Idetifiability

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31

Page 83: An integrated framework for analysis of stochastic models of biochemical reactions

Implications

SensitivityRobustness - global sensitivity analysisInformation content of data

Optimal experimental design

Idetifiability

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31

Page 84: An integrated framework for analysis of stochastic models of biochemical reactions

Implications

SensitivityRobustness - global sensitivity analysisInformation content of data

Optimal experimental design

Idetifiability

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31

Page 85: An integrated framework for analysis of stochastic models of biochemical reactions

Sensitivity and Fisher Information

Classical sensitivity coefficients for an observable X andparameter θ

∂X∂θ

Stochastic case: observable X is drawn from a distribution ψ

I(θ) = E(∂ logψ(X, θ)

∂θ

)2

For stochastic model of chemical reactions evaluated using MonteCarlo simulationsCan be evaluated via numerical integration of ODEs

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31

Page 86: An integrated framework for analysis of stochastic models of biochemical reactions

Sensitivity and Fisher Information

Classical sensitivity coefficients for an observable X andparameter θ

∂X∂θ

Stochastic case: observable X is drawn from a distribution ψ

I(θ) = E(∂ logψ(X, θ)

∂θ

)2

For stochastic model of chemical reactions evaluated using MonteCarlo simulationsCan be evaluated via numerical integration of ODEs

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31

Page 87: An integrated framework for analysis of stochastic models of biochemical reactions

Sensitivity and Fisher Information

Classical sensitivity coefficients for an observable X andparameter θ

∂X∂θ

Stochastic case: observable X is drawn from a distribution ψ

I(θ) = E(∂ logψ(X, θ)

∂θ

)2

For stochastic model of chemical reactions evaluated using MonteCarlo simulationsCan be evaluated via numerical integration of ODEs

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31

Page 88: An integrated framework for analysis of stochastic models of biochemical reactions

Sensitivity and Fisher Information

Classical sensitivity coefficients for an observable X andparameter θ

∂X∂θ

Stochastic case: observable X is drawn from a distribution ψ

I(θ) = E(∂ logψ(X, θ)

∂θ

)2

For stochastic model of chemical reactions evaluated using MonteCarlo simulationsCan be evaluated via numerical integration of ODEs

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31

Page 89: An integrated framework for analysis of stochastic models of biochemical reactions

Model equations - reminderLNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Fisher information

I(θ) =∂µ

∂θ

TΣ(θ)

∂µ

∂θ+

12

trace(Σ−1∂Σ

∂θΣ−1∂Σ

∂θ)

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31

Page 90: An integrated framework for analysis of stochastic models of biochemical reactions

Model equations - reminderLNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Fisher information

I(θ) =∂µ

∂θ

TΣ(θ)

∂µ

∂θ+

12

trace(Σ−1∂Σ

∂θΣ−1∂Σ

∂θ)

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31

Page 91: An integrated framework for analysis of stochastic models of biochemical reactions

Model equations - reminderLNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Fisher information

I(θ) =∂µ

∂θ

TΣ(θ)

∂µ

∂θ+

12

trace(Σ−1∂Σ

∂θΣ−1∂Σ

∂θ)

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31

Page 92: An integrated framework for analysis of stochastic models of biochemical reactions

Model equations - reminderLNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Fisher information

I(θ) =∂µ

∂θ

TΣ(θ)

∂µ

∂θ+

12

trace(Σ−1∂Σ

∂θΣ−1∂Σ

∂θ)

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31

Page 93: An integrated framework for analysis of stochastic models of biochemical reactions

Model equations - reminderLNA implies Gaussian distribution

x(t) ∼ MVN(ϕ(t),V(t))

Mean ϕ(t) given as s solution of the rate equationVariances

dV(t)dt

= A(ϕ,Θ, t)V + VA(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T

Covariances

cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t

dΦ(ti, s)ds

= A(ϕ,Θ, s)Φ(ti, s), Φ(ti, ti) = I

Fisher information

I(θ) =∂µ

∂θ

TΣ(θ)

∂µ

∂θ+

12

trace(Σ−1∂Σ

∂θΣ−1∂Σ

∂θ)

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31

Page 94: An integrated framework for analysis of stochastic models of biochemical reactions

Model equations - reminder

Fisher information

I(θ) =∂µ

∂θ

TΣ(θ)

∂µ

∂θ+

12

trace(Σ−1∂Σ

∂θΣ−1∂Σ

∂θ)

Covariance matrix

ΣQ(Θ)(i,j) =

V(ti) for i = j Q ∈ {TS,TP}σ2ε I for i = j Q ∈ {DT}0 for i < j Q ∈ {TP,DT}

V(ti)Φ(ti, tj)T for i < j Q ∈ {TS}

Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 21 / 31

Page 95: An integrated framework for analysis of stochastic models of biochemical reactions

Example: expression of a gene

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 22 / 31

Page 96: An integrated framework for analysis of stochastic models of biochemical reactions

Response to parameter perturbations:stochastic vs deterministic case

Influence of correlation between RNA and protein

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

correlation=0.24218

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31

Page 97: An integrated framework for analysis of stochastic models of biochemical reactions

Response to parameter perturbations:stochastic vs deterministic case

Influence of correlation between RNA and protein

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

correlation=0.24218

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31

Page 98: An integrated framework for analysis of stochastic models of biochemical reactions

Response to parameter perturbations:stochastic vs deterministic case

Influence of correlation between RNA and protein

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

correlation=0.53838

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31

Page 99: An integrated framework for analysis of stochastic models of biochemical reactions

Response to parameter perturbations:stochastic vs deterministic case

Influence of correlation between RNA and protein

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

correlation=0.92828

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31

Page 100: An integrated framework for analysis of stochastic models of biochemical reactions

Response to parameter perturbations:stochastic vs deterministic case

Influence of temporal correlations

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

=30

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31

Page 101: An integrated framework for analysis of stochastic models of biochemical reactions

Response to parameter perturbations:stochastic vs deterministic case

Influence of temporal correlations

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

=30

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31

Page 102: An integrated framework for analysis of stochastic models of biochemical reactions

Response to parameter perturbations:stochastic vs deterministic case

Influence of temporal correlations

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

=3

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31

Page 103: An integrated framework for analysis of stochastic models of biochemical reactions

Response to parameter perturbations:stochastic vs deterministic case

Influance of temporal correlations

k r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

k p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

p

kr

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

kp

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

r0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

=0.3

p

0.1 0.05 0 0.05 0.10.1

0.05

0

0.05

0.1

StochasticDeterministic

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31

Page 104: An integrated framework for analysis of stochastic models of biochemical reactions

Amount of information in the data

Only protein level is measuredMeasurements are taken from a stationary state

# of identifiable parameters(non-zero eigenvalues)

optimal sampling frequency

Type TS TP DTStationary 4 2 1Perturbation 4 4 3

Perturbation: 5-fold increased initial conditions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

det(

FIM

)

set 1set 2set 3set 4

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31

Page 105: An integrated framework for analysis of stochastic models of biochemical reactions

Amount of information in the data

Only protein level is measuredMeasurements are taken from a stationary state

# of identifiable parameters(non-zero eigenvalues)

optimal sampling frequency

Type TS TP DTStationary 4 2 1Perturbation 4 4 3

Perturbation: 5-fold increased initial conditions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

det(

FIM

)

set 1set 2set 3set 4

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31

Page 106: An integrated framework for analysis of stochastic models of biochemical reactions

Amount of information in the data

Only protein level is measuredMeasurements are taken from a stationary state

# of identifiable parameters(non-zero eigenvalues)

optimal sampling frequency

Type TS TP DTStationary 4 2 1Perturbation 4 4 3

Perturbation: 5-fold increased initial conditions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

det(

FIM

)

set 1set 2set 3set 4

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31

Page 107: An integrated framework for analysis of stochastic models of biochemical reactions

Amount of information in the data

Only protein level is measuredMeasurements are taken from a stationary state

# of identifiable parameters(non-zero eigenvalues)

optimal sampling frequency

Type TS TP DTStationary 4 2 1Perturbation 4 4 3

Perturbation: 5-fold increased initial conditions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

det(

FIM

)

set 1set 2set 3set 4

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31

Page 108: An integrated framework for analysis of stochastic models of biochemical reactions

Amount of information in the data

Only protein level is measuredMeasurements are taken from a stationary state

# of identifiable parameters(non-zero eigenvalues)

optimal sampling frequency

Type TS TP DTStationary 4 2 1Perturbation 4 4 3

Perturbation: 5-fold increased initial conditions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

det(

FIM

)

set 1set 2set 3set 4

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31

Page 109: An integrated framework for analysis of stochastic models of biochemical reactions

Amount of information in the data

Only protein level is measuredMeasurements are taken from a stationary state

# of identifiable parameters(non-zero eigenvalues)

optimal sampling frequency

Type TS TP DTStationary 4 2 1Perturbation 4 4 3

Perturbation: 5-fold increased initial conditions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

det(

FIM

)

set 1set 2set 3set 4

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31

Page 110: An integrated framework for analysis of stochastic models of biochemical reactions

Amount of information in the data

Only protein level is measuredMeasurements are taken from a stationary state

# of identifiable parameters(non-zero eigenvalues)

optimal sampling frequency

Type TS TP DTStationary 4 2 1Perturbation 4 4 3

Perturbation: 5-fold increased initial conditions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

det(

FIM

)

set 1set 2set 3set 4

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31

Page 111: An integrated framework for analysis of stochastic models of biochemical reactions

p53 systemp53 protein regulates cell cycle, response to DNA damage and it is atumour repressor.

x = (p, y0, y).

p - p53y0 - mdm2 precursory - mdm2

Deterministic version:

φp = βx − αxφp − αkφyφp

φp + k

φy0 = βyφp − α0φy0

φy = α0φy0 − αyφy.

Parameter vector

Θ = (βx, αx, αk, k, βy, α0, αy).

Role of parameters: which parameters control stochastic effects inthe model?Fluorescent microscopy or flow cytometry?

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31

Page 112: An integrated framework for analysis of stochastic models of biochemical reactions

p53 systemp53 protein regulates cell cycle, response to DNA damage and it is atumour repressor.

x = (p, y0, y).

p - p53y0 - mdm2 precursory - mdm2

Deterministic version:

φp = βx − αxφp − αkφyφp

φp + k

φy0 = βyφp − α0φy0

φy = α0φy0 − αyφy.

Parameter vector

Θ = (βx, αx, αk, k, βy, α0, αy).

Role of parameters: which parameters control stochastic effects inthe model?Fluorescent microscopy or flow cytometry?

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31

Page 113: An integrated framework for analysis of stochastic models of biochemical reactions

p53 systemp53 protein regulates cell cycle, response to DNA damage and it is atumour repressor.

x = (p, y0, y).

p - p53y0 - mdm2 precursory - mdm2

Deterministic version:

φp = βx − αxφp − αkφyφp

φp + k

φy0 = βyφp − α0φy0

φy = α0φy0 − αyφy.

Parameter vector

Θ = (βx, αx, αk, k, βy, α0, αy).

Role of parameters: which parameters control stochastic effects inthe model?Fluorescent microscopy or flow cytometry?

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31

Page 114: An integrated framework for analysis of stochastic models of biochemical reactions

p53 systemp53 protein regulates cell cycle, response to DNA damage and it is atumour repressor.

x = (p, y0, y).

p - p53y0 - mdm2 precursory - mdm2

Deterministic version:

φp = βx − αxφp − αkφyφp

φp + k

φy0 = βyφp − α0φy0

φy = α0φy0 − αyφy.

Parameter vector

Θ = (βx, αx, αk, k, βy, α0, αy).

Role of parameters: which parameters control stochastic effects inthe model?Fluorescent microscopy or flow cytometry?

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31

Page 115: An integrated framework for analysis of stochastic models of biochemical reactions

p53 systemp53 protein regulates cell cycle, response to DNA damage and it is atumour repressor.

x = (p, y0, y).

p - p53y0 - mdm2 precursory - mdm2

Deterministic version:

φp = βx − αxφp − αkφyφp

φp + k

φy0 = βyφp − α0φy0

φy = α0φy0 − αyφy.

Parameter vector

Θ = (βx, αx, αk, k, βy, α0, αy).

Role of parameters: which parameters control stochastic effects inthe model?Fluorescent microscopy or flow cytometry?

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31

Page 116: An integrated framework for analysis of stochastic models of biochemical reactions

Role of parameters

1 2 3 4 5 6 70

0.2

0.4

0.6

0.8

1Eigen values normalized against model maximum

TSTPDT

1 2 3 4 5 6 70

0.2

0.4

0.6

0.8

1Eigen values normalized against total maximum

TSTPDT

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 27 / 31

Page 117: An integrated framework for analysis of stochastic models of biochemical reactions

Which parameters are involved in controllingstochastic effects?

TS - heatmap, DT - contour plot

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 28 / 31

Page 118: An integrated framework for analysis of stochastic models of biochemical reactions

Fluorescent microscopy vs flow cytometry

0 1 2 3 4 5 6 7 8 9 10x 104

0

2

4

6

8

10

12x 1023

Number of TP measurements per time point

det(

FIM

)

TPTS

Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 29 / 31

Page 119: An integrated framework for analysis of stochastic models of biochemical reactions

Summary

Efficient and simple inference framework for stochastic systemsFisher Information Matrix for stochastic models can berepresented as solutions of ODEsSubstantial differences is sensitivities between stochastic anddeterministic models may existApplicability experimental designMatlab package for sensitivity of stochastic systems availablewww.theosysbio.bio.ic.ac.uk/resources/stns/

Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemicalkinetics models, PNAS in press, 2011.

Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise andother parameters of gene expression, Biophysical J., 98, 2010.

Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using thelinear noise approximation, BMC Bioinformatics, 10, 2009;

Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31

Page 120: An integrated framework for analysis of stochastic models of biochemical reactions

Summary

Efficient and simple inference framework for stochastic systemsFisher Information Matrix for stochastic models can berepresented as solutions of ODEsSubstantial differences is sensitivities between stochastic anddeterministic models may existApplicability experimental designMatlab package for sensitivity of stochastic systems availablewww.theosysbio.bio.ic.ac.uk/resources/stns/

Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemicalkinetics models, PNAS in press, 2011.

Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise andother parameters of gene expression, Biophysical J., 98, 2010.

Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using thelinear noise approximation, BMC Bioinformatics, 10, 2009;

Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31

Page 121: An integrated framework for analysis of stochastic models of biochemical reactions

Summary

Efficient and simple inference framework for stochastic systemsFisher Information Matrix for stochastic models can berepresented as solutions of ODEsSubstantial differences is sensitivities between stochastic anddeterministic models may existApplicability experimental designMatlab package for sensitivity of stochastic systems availablewww.theosysbio.bio.ic.ac.uk/resources/stns/

Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemicalkinetics models, PNAS in press, 2011.

Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise andother parameters of gene expression, Biophysical J., 98, 2010.

Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using thelinear noise approximation, BMC Bioinformatics, 10, 2009;

Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31

Page 122: An integrated framework for analysis of stochastic models of biochemical reactions

Summary

Efficient and simple inference framework for stochastic systemsFisher Information Matrix for stochastic models can berepresented as solutions of ODEsSubstantial differences is sensitivities between stochastic anddeterministic models may existApplicability experimental designMatlab package for sensitivity of stochastic systems availablewww.theosysbio.bio.ic.ac.uk/resources/stns/

Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemicalkinetics models, PNAS in press, 2011.

Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise andother parameters of gene expression, Biophysical J., 98, 2010.

Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using thelinear noise approximation, BMC Bioinformatics, 10, 2009;

Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31

Page 123: An integrated framework for analysis of stochastic models of biochemical reactions

Summary

Efficient and simple inference framework for stochastic systemsFisher Information Matrix for stochastic models can berepresented as solutions of ODEsSubstantial differences is sensitivities between stochastic anddeterministic models may existApplicability experimental designMatlab package for sensitivity of stochastic systems availablewww.theosysbio.bio.ic.ac.uk/resources/stns/

Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemicalkinetics models, PNAS in press, 2011.

Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise andother parameters of gene expression, Biophysical J., 98, 2010.

Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using thelinear noise approximation, BMC Bioinformatics, 10, 2009;

Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31

Page 124: An integrated framework for analysis of stochastic models of biochemical reactions

Acknowledgement

Michael StumpfImperial College London

Barbel FinkenstadWarwick University

Dan WoodcockWarwick University

David RandWarwick University

Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 31 / 31

Page 125: An integrated framework for analysis of stochastic models of biochemical reactions

Thank you!

Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 31 / 31