a brief summary of thermodynamic properties of various ternary systems investigated by emf and...

Post on 15-Jan-2016

239 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

A brief summary of thermodynamic properties of

various ternary systems investigated by EMF and

Calorimetric method

Sabine Knott and Adolf MikulaInstitute of Inorganic Chemistry-Materials Chemistry

Währingerstr. 42, A-1090 Vienna, Austria

Investigated Systems

EMF and Calorimetry

EMF

Calorimetry

AlSnZnAgSnZnCuSnZnBiInZn

BiSnAgBiSnCuInZnPdSnZn

CuInBiInSnCuInSn

AgAuSn AuCuSnAgAlSn 14 binary and ternary systems

EMF Measurements

Partial Quantities__ΔG = -zFE

= exp (ΔG/RT)

Gibbs Helmholtz Equation•

__ΔH = -z(∂E/∂T)F-zFE__ΔS = z(∂E/∂T)F

STHG

T [K]

850 900 950 1000 1050 1100

EM

F [m

V]

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

FTE

zS

zFEFTE

zH

EMF Apparatus

Electrodes: Mo or W wire

Quartz container

Valve for evacuation

sample

Liquid electrolyte LiCl/KCl/XCly (X= Al, Zn, Sn), (y=2,3)

EMF Measurements

Integral Quantities

Gibbs-Duhem Equation x

ΔGEM=(1-xx)[ΔGE

M,x=0+∫dxx]y/z 0

__ΔGE

x = RT lnx

= lnx / (1-xx)2

21 )( x

x

x

H

Drop Calorimetry

SetaramMicrocalorimeter

200-1000°C, automatic sample device (max. 30 drops/measurement) controller/data aquisition with LabView, evaluation with HiQCalibration with NIST-sapphire

Calorimetry

HSignal = ni. (Hsample,FT-Hsample,DT) + HReaction

__

ΔHi = (HSignal/ni) – (Hsample,FT-Hsample,DT)

ΔHMIX =Hbin + ΣHReaction /(n+Σni)

Redlich Kister Muggianu Polynom

CCBABCBAACBACBAji ij

ijijimix xMxMxMxxxxxLxxH )(::

)(::

)(::

)(: )( 210

Isoenthalpy lines of the ternary Cu-In-Sn systemat 1073 K

Lν i,j binary interaction parameter

M ternary interaction parameter

Pd─Sn─Zn

Sn0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Zn

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Pd

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Bi─In─Zn

In0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Zn

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Bi

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Calorimetry, 500°C EMF, 600°C

Bi─In─Zn

Bi:In=1:1

xZn

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

H (

J/m

ol)

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

EMFCalorimetry

Enthalpy of mixing measured by EMF and Calorimetry

Y Djaballah, L Bennour, F Bouharkat and A Belgacem-BouzidaModelling Simul. Mater. Sci. Eng. 13 (2005) 361–369

BiInZn

at.%Zn

0 20 40 60 80 100

EM

K (

mV

)0

20

40

60

80

BiIn21BiIn21 (600°C)

Calorimetric measurementEMF measurement

Bi─In─Zn

Y Djaballah, L Bennour, F Bouharkat and A Belgacem-BouzidaModelling Simul. Mater. Sci. Eng. 13 (2005) 361–369

Ternary AgAuSn System

• Verschiedene Modelle:

• Extrapolationsmodelle nach Toop, Muggianu und Kohler

• Chou Modell

0.0 0.2 0.4 0.6 0.8 1.0-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

4000HM, J/mol

xAu

section with Sn:Ag 1:1 1:9 3:7 7:3 9:1

Ag:Sn=1:1

xAu

0,0 0,1 0,2 0,3 0,4 0,5 0,6 H

(J/

mol

)

-12000

-10000

-8000

-6000

-4000

-2000

0

exp. 1023 KKohlerMuggianuToop

Dragana Živković, Dragan Manasijević, Živan Živković, J. of the University of Chemical Technology and Metallurgy, (2004) 39(1), 63-76

Z.Li, M.Dallegri, S.Knott, ccepted for publication in J. of Alloys and Compounds

Ag-Bi-Sn vertical cross section Ag:Bi = 1:1

Δ-heating curve-cooling curve

Calcs based on [01Oht]Calcs based on [94Kat]

Cu-In

xIn

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

H [J

/mo

l]

-8000

-6000

-4000

-2000

0

Kang, 973 KHultgren, 1073 KItagaki, 1373 K

xIn

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

H [

J/m

ol]

-8000

-6000

-4000

-2000

0

973 K1073 K1073 K1173 K1273 K

973K

1073K, 1373K

xIn

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

H [J

/mo

l]

-8000

-6000

-4000

-2000

0

Kang, 973 KHultgren, 1073 KItagaki, 1373 K973 K1073 K1073 K1173 K1273 K

CuInSn

Phase Diagram at different temperaturesLiu et al., J. Electronic Materials, 30(9), 2001, 1093

Experimental Procedure: Calorimetric Measurements at 1073 K and 973 K

Comparison Cu-In-Sn Kalorimetrie vs. Knudsen

A. Popovic, L. Bencze,International Journal of Mass Spectrometry 255 (2006) 41–49

Wetting angles

Systems: CuInSn, 5 at.%Cu

AgCuSn

0

20

40

60

80

100

120

We

ttin

g A

ng

le (

°)

Sn-

0.5A

g4C

uS

n-2A

g1.5

Cu

Sn-

2Ag0

.5C

uS

n-2.

5Ag0

.9C

uS

n-3A

g4C

uS

n-3A

g0.5

Cu

Sn-

3.2A

g0.8

Cu

Sn-

3.4A

g0.9

Cu

Sn-

03.5

Ag2

Cu

Sn-

3.5A

g0.7

Cu

Sn-

3.6A

g1C

uS

n-3.

8Ag2

.3C

uS

n-3.

8Ag0

.7C

uS

n-3.

9Ag0

.6C

uS

n-4A

g1C

uS

n-4A

g0.5

Cu

Sn-

4.7A

g1.7

Cu

Alloy

Cu Substrate

Ni Substrate

17 different alloysCopper and Nickel substrateCollophonium flux

Acknowledgements

• Dr. Zuoan Li

• FWF P16491–N11

• FWF P19469–N19

• COST 531

Thank you for your attention

top related