1d-a01 大型冷凍機 - csj

Post on 06-Jan-2022

9 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Re-examination of refrigeration power of the LHD cryogenic system and the 19th operation in 2017

MITO Toshiyuki, IWAMOTO Akifumi, HAMAGUCHI Shinji, MORIUCHI Sadatomo, OOBA Kouki, TAKAMI Shigeyuki, NOGUCHI Hiroki, TAKAHATA Kazuya, YANAGI Nagato, IMAGAWA Shinsaku NIFS ; KUMAKI Takuya, OBARA Kouji,

NOBUTOKI Minoru (Taiyo Nippon Sanso Corporation) E-mail: mito@nifs.ac.jp

LHD

80 K 5.76 kW at 4.4 K20.6 kW at 80 K 650 L/h

1

Fig. 1. Layout of LHD superconducting and cryogenic system

Fig. 2. Equipment layout in the LHD He refrigeration room

Fig. 3. Operation history of the LHD cryogenic system

1. T. Mito, “Long-term operational performance of the LHD cryogenic system,” 2015 TEION KOGAKU J. Cryo. Super. Soc. Jpn. Vol. 50, No. 12, pp. 565-5

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1/19

97-8

2/19

983/

1999

4/20

005/

2001

6/20

027/

2003

8/20

049/

2005

10/2

006

11/2

007

12/2

008

13/2

009

14/2

010

15/2

011

16/2

012

17/2

013

18/2

014

19/2

016-

7

Stop time (h)Purification / Cool-down/ Warm-up (h)Steady state operation time (h)

Oper

ation

time (

h)

LHD cryostat / superconducting coils

He refrigerator

Superconducting Bus-lines

Power supplies

He compressors

He gas storage tanks

Cold box A

p gCold box B

LN2 storage tank

Fire accident

Position of outer cylinder during maintenance

LHe Dewar 20,000 L ,

He purifier /

Table 1. Comparison of measured refrigeration power

Refrigeration power Measurement on August 5, 2016

Measurement on June 17, 1995

4.4 K refrigeration power (Measured by heater input

in LHe Dewar) 5.67 kW 5.67 kW

4.4 K liquefaction ability (Measured by He level sensor in LHe Dewar)

606 L/h 704 L/h

80 K refrigeration power (Measured by heater input

of LTIC2023) 23.35 kW 20.7 kW

4.4 k equivalent refrigeration power 9.19 kW 9.38 kW

―59― 第95回 2017年度秋季低温工学・超電導学会

大型冷凍機1D-a01

0 2 4 6 8 10 122.90

3.00

3.10

3.20

3.30

3.40

3.50

12

13

14

15

16

17

18

Time [hour]

Tem

pera

ture

[K]

Mas

s flo

w ra

te [g

/s]

―60― 第95回 2017年度秋季低温工学・超電導学会

大型冷凍機1D-a02

3

―61― 第95回 2017年度秋季低温工学・超電導学会

大型冷凍機1D-a03

Compressor

He bu er tank

Turbine

HX1

HX2

HX3

Cold box

ADS

Safety box

LN2 tank

OS-5

LP line 0.2MPa

1.6MPa

H2 pump

Moderators

ADS: Adsorber HX: Heat exchanger

Oilseparators

―62― 第95回 2017年度秋季低温工学・超電導学会

大型冷凍機1D-a04

―63― 第95回 2017年度秋季低温工学・超電導学会

大型冷凍機1D-a05

―64― 第95回 2017年度秋季低温工学・超電導学会

大型冷凍機1D-a06

(,

(

Fig. 1 Cooling power vs heat capacity of regenerator materials in second regenerator column.

―65― 第95回 2017年度秋季低温工学・超電導学会

小型冷凍機1D-a07

―66― 第95回 2017年度秋季低温工学・超電導学会

小型冷凍機1D-a08

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

a-axis//Hb-axis//Hc-axis//H

Magnetization

[B/G

d]

Heff [T]

5K

GdTiO3

-14

-12

-10

-8

-6

-4

-2

00 10 20 30 40 50 60 70

5T3T1T

dS [J

/kg

K]

Temperature [K]

GdTiO3

―67― 第95回 2017年度秋季低温工学・超電導学会

小型冷凍機1D-a09

( )

MIYAZAKI Yoshiki, IKEDA Kazuya, WAKI Koichiro (RTRI) E-mail: miyazaki.yoshiki.23@rtri.or.jp

kW

AMR(Active magnetic regenerator)

60%[1, 2]

[3]

Fig. 1 5 W

(Gd) 23 AMR

11 mm 60 mm (AMR 26 g)100 ~ 150 min-1

5 W/ 26 g = 192 W/kg ( 30 K)

Fig. 2 kW (7.2 kg) kW

30 KkW

2

Fig. 3 25 kW350 kg [4]

Gd 2

MnFe LaFeSi 1

kW

21

290 kg

Fig. 1 Temperature span as a function of the number of

rotation.

Fig. 2 Improvement of the cooling capacity with the

high-speed cycle.

Fig. 3 Weight of air-conditioning facility using magnetic heat

pump

[1] Y. Miyazaki, et al.: Abstracts of CSJ Conference, Vol. 91

(2015) p. 193. [2] Y. Miyazaki, et al.: Abstracts of CSJ Conference, Vol. 92

(2015) p. 238. [3] Y. Miyazaki, et al.: Abstracts of CSJ Conference, Vol. 94

(2017) p. 51. [4] S. Shimada, et al.: Railway Cybernetics Symposium, Vol.

39, No. 1 (2002) pp. 523, 1-4.

Tem

pera

ture

spa

n [K

]

Number of rotation [min-1]

3 layered AMR at 100 min-1

(Calculation)

2 layered AMR at 30 min-1

(2014 prototype)

Coo

ling

capa

city

[W]

Temperature span [K]

Wei

ght [

kg]

Compressor Magnetic Heat pumpWith 2nd order material

Magnetic Heat pumpWith 1st order material

Heat exchanger

Fan

Frame / cover

Electric accessory

Others

―68― 第95回 2017年度秋季低温工学・超電導学会

小型冷凍機1D-a10

0 100 2000

1000

2000

3000

4000SUS pipe6.0-200mmP = 400 kPa TB= 21 K

Tsub= 5 K

Flow Velocity 1.38 m/s 2.23 m/s 2.27 m/s 3.75 m/s

Tsat [ K ]

h [

W/(m

2 K)]

0 100 2000

1000

2000

3000

4000SUS pipe6.0-200mmP = 700 kPa TB= 21 K

Tsub= 8 K

Flow Velocity 1.19 m/s 1.36 m/s 2.11 m/s

Tsat [ K ]

h [

W/(m

2 K)]

0 100 2000

1000

2000

3000

4000

5000SUS pipe6.0-200mmP = 1100 kPa TB= 21 K

Tsub= 11 K

Flow Velocity 0.71 m/s 0.90 m/s 2.36 m/s 4.29 m/s

Tsat [ K ]

h [

W/(m

2 K)]

0 1 2 3 4 50

1000

2000

3000Heat Transfer Coefficient at

Tsat = 150 K

h [

W/(m

2 K)]

Flow Velocity [m/s]

400 kPa 700 kPa 1100 kPa

―69― 第95回 2017年度秋季低温工学・超電導学会

熱伝達1D-p01

―70― 第95回 2017年度秋季低温工学・超電導学会

熱伝達1D-p02

1. S. Takada, M. Murakami, et al.: Cryogenics, 49-10 (2009), pp. 576.

2. M.Nozawa, et al.: Cryogenics, 49-10 (2009), pp. 583. 3. M .Murakami, et al.: Adv. Cryo. Engineering, 61A

(2016) pp. 596.

(B) 25289300

Fig. 1 Planar heater and visualization for PIV application.

Fig. 2 Transient record of radial velocity. T=2.1 K, 4.44×E4 W/m2.

Fig. 3 Variation of radial velocity with r. =0° and -52° for T=1.8 K, =0° and -42° for 1.9 K, 4.44×E4 W/m2. a) Variation of time-averaged radial velocity, b) Logarithmic plot of RMS of fluctuating velocity.

―71― 第95回 2017年度秋季低温工学・超電導学会

熱伝達1D-p03

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Res

ista

nce

()

Temperature (K)

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Res

ista

nce

()

Temperature (K)Temperature (K)

―72― 第95回 2017年度秋季低温工学・超電導学会

極低温流体計測1D-p04

―73― 第95回 2017年度秋季低温工学・超電導学会

極低温流体計測1D-p05

175

180

185

190

195

200

205

210

215

220

225

0 200 400 600 800 1000 1200 1400 1600 1800

CB2B1

A1 A2

―74― 第95回 2017年度秋季低温工学・超電導学会

極低温流体計測1D-p06

Fig.1 Characteristics of Kulite pressure sensor.

Fig. 2 Characteristics of Kyowa pressure sensor.

JST (ALCA)

0 500 1000-3

-2

-1

0

1

2

3

4

5

6

7

8

Out

putV

olta

ge[m

V]

Pressure[kPa]

y=5.154*10-3*x

KYOWA PHL-A-B-2MPB

at 21 K2.5 mV

0 500 10000

20

40

60

80

21K~25K 26K~27K 29K

Pres

sure

Gau

ge V

olta

ge (m

V)

Pressure (kPa)

KULITE CCQ-093

y=0.06*x+2.6

y=0.059*x

―75― 第95回 2017年度秋季低温工学・超電導学会

極低温流体計測1D-p07

top related