1d-a01 大型冷凍機 - csj

17
㻸㻴㻰 ప 䝅䝇䝔䝮䛾ᛶ⬟☜ㄆヨ㦂䛸 㻞㻜㻝㻣 ᖺ䛾㐠㌿ᡂᯝ Re-examination of refrigeration power of the LHD cryogenic system and the 19th operation in 2017 ᡞ⾜㻘 ᒾᮏ㻘 ℈┿䠈᳃ෆ㈆ᬛ㻘 ሙᜏ㻘 㮚ぢ㔜ᖾ㻘 㔝༤ᇶ㻘 㧗⏿ஓ㻘 ᰗ㛗㛛㻘 ᕝಙస䠄㻺㻵㻲㻿䠅㻧 ⇃ᮌ༟ஓ㻘 ᑠཎᾈ㻘 ಙᐇ䠄㝧᪥㓟䠅 MITO Toshiyuki, IWAMOTO Akifumi, HAMAGUCHI Shinji, MORIUCHI Sadatomo, OOBA Kouki, TAKAMI Shigeyuki, NOGUCHI Hiroki, TAKAHATA Kazuya, YANAGI Nagato, IMAGAWA Shinsaku NIFS; KUMAKI Takuya, OBARA Kouji, NOBUTOKI Minoru (Taiyo Nippon Sanso Corporation) E-mail: [email protected] 㻝䠊㻸㻴㻰 䛾㉸ఏᑟ䞉ప 䝅䝇䝔䝮 㻸㻴㻰 䛿⥲䛶䛾☢ሙ㛢㎸䜑䝁䜲䝹䜢㉸ఏᑟ䛧䛯ୡ⏺䛾 䝦䝸䜹䝹ᆺ᰾⼥䝥䝷䝈䝬ᐇ㦂⨨䛷䛒䜚䚸䝦䝸䜸䝖䝻䞁☢ሙ 㓄䛻䜘䜛↓㟁ὶ䞉ᐃᖖ䝥䝷䝈䝬䛾㛢䛨㎸䜑◊✲䜢⬟䛸䛧䛶 䛔䜛䚹㻸㻴㻰 䛾㉸ఏᑟ䝅䝇䝔䝮ཬ䜃ప 䝅䝇䝔䝮䛾య㓄⨨䜢 ᅗ 㻝 䛻♧䛩䚹LHD ㉸ఏᑟࢸࢫࢩ 㟁☢ຊᨭᣢᵓ㐀≀㉸ఏᑟ80 K ㍽ᑕ ࠊࡣ෭⬟ຊ 5.76 kW at 4.4 K20.6 kW at 80 Kᾮ⬟ຊ 650 L/h Ⓨ⏕ 1 ᾮ෭ᶵ෭㻞䠊㻸㻴㻰 ప 䝅䝇䝔䝮ᛶ⬟☜ㄆヨ㦂 㻝㻥㻥㻤 ᖺ䛾 㻸㻴㻰 䛾㐠㌿㛤ጞ䛛䜙 㻥㻥䠂䜢㉸䛘䜛㧗䛔✌ാ⋡ 䛷䚸Ᏻᐃ䛺᰾⼥䝥䝷䝈䝬䛾ᐇ㦂⎔ቃ䜢ᅜ䛾ඹ⏝◊ ✲⪅䛻ᥦ౪䛧䛶䛝䛯䚹䛧䛛䛧䚸㻞㻜㻝㻡 ᖺ䛾䝯䞁䝔䝘䞁䝇ᮇ㛫୰䛻䚸 ᅗ 㻞 䛻♧䛧䛯䝦䝸䜴䝮ᾮ෭ᶵ䛾䝁䞊䝹䝗䝪䝑䜽䝇㒊䛾ⅆ⅏ ᨾ䛜Ⓨ⏕䛧䚸䝁䞊䝹䝗䝪䝑䜽䝇ෆ䛾ከᒙ⇕ᮦ䜔 ᗘ䝉䞁 䝃䞊➼䛾㒊ᮦཬ䜃ィ ᶵჾ䛜↝ኻ䛧䛯䚹㻞㻜㻝㻡 ᖺ 㻝㻝 ᭶䜘䜚 ᪧᕤ䜢⾜䛔䚸㻞㻜㻝㻢 ᖺ 㻣 ᭶ᮎ䛻䛧䛯䚹ᪧᚋ䛾෭ᾮ ⬟ຊཬ䜃䝉䞁䝃䞊㢮䚸⮬ᘚ➼䛾స≉ᛶ䜢☜ㄆ䛩䜛䛯 䜑䚸㻞㻜㻝㻢 ᖺ 㻤 ᭶䛻䝦䝸䜴䝮ᾮ෭ᶵ䛾༢⊂෭㐠㌿䜢⾜䛔䚸 㻞㻜 ᖺ๓䛻⾜䛳䛯ᛶ⬟ヨ㦂䛾⤖ᯝ䛸ẚ㍑䛧䛯⤖ᯝ䜢⾲ 㻝 䛻♧ 䛩䚹㻠㻚㻠㻷 䛾➼౯෭⬟ຊ䛿䚸㻥㻚㻝㻥 㼗㼃 䛷䛒䜚䚸㻞㻜 ᖺ๓䛻 ᐃ 䛧䛯ᛶ⬟ 㻥㻚㻟㻤 㼗㼃 䛻ᑐ䛧䛶⣙ 㻞䠂䛾෭⬟ຊ䛾పୗ䛜 ᐃ䛥 䜜䛯䚹䛣䛾෭⬟ຊ䛾పୗ䛿ⅆ⅏ᨾ䛾ᙳ㡪䛷䛿䛺䛟䚸㻝㻤 ᖺ 㛫䛾⤒ᖺຎ䛻䜘䜛ഹ䛛䛺ᛶ⬟పୗ䛸⪃䛘䜙䜜䜛䚹 㻟䠊㻞㻜㻝㻣 ᖺ 㻸㻴㻰 ➨ 㻝㻥 䝃䜲䜽䝹㐠㌿ᡂᯝ 㻞㻜㻝㻣 ᖺ 㻝 ᭶䛛䜙 㻸㻴㻰 䛾㐠㌿䜢㛤䛧䚸㻟 ᭶ 㻣 ᪥䛛䜙䛿᪂䛯 䛻㔜Ỉ⣲䝥䝷䝈䝬ᐇ㦂䜢㛤ጞ䛧䛯䚹㻸㻴㻰 䛾㐠㌿ᒚṔ䜢ᅗ 㻟 䛻 ♧䛩䚹➨ 㻝㻥 䝃䜲䜽䝹䛷䛿䛣䜜䜎䛷䛾㛗䛸䛺䜛 㻡㻘㻣㻢㻝 㛫䛾 Ᏻᐃ䛺㐃⥆㐠㌿䜢㐩ᡂ䛧䛶䛔䜛䚹㻸㻴㻰 ㉸ఏᑟ䞉ప 䝅䝇䝔䝮 䛾㐠㌿⤒㐣䚸ᪧ䚸✌ാᚋ䛾≧ἣ䛻䛴䛔䛶ሗ࿌䛩䜛䚹 Fig. 1. Layout of LHD superconducting and cryogenic system Fig. 2. Equipment layout in the LHD He refrigeration room Fig. 3. Operation history of the LHD cryogenic system ཧ⪃⊩ 1. T. Mito, “Long-term operational performance of the LHD cryogenic system,” 2015 TEION KOGAKU J. Cryo. Super. Soc. Jpn.Vol. 50, No. 12, pp. 565-5 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 1/1997-8 2/1998 3/1999 4/2000 5/2001 6/2002 7/2003 8/2004 9/2005 10/2006 11/2007 12/2008 13/2009 14/2010 15/2011 16/2012 17/2013 18/2014 19/2016-7 Stop time (h) Purification / Cool-down/ Warm-up (h) Steady state operation time (h) Operation time (h) LHD cryostat / superconducting coils He refrigerator Superconducting Bus-lines Power supplies He compressors He gas storage tanks Cold box A Cold box B LN 2 storage tank Fire accident Position of outer cylinder during maintenance LHe Dewar 20,000 L He purifier / Table 1. Comparison of measured refrigeration power Refrigeration power Measurement on August 5, 2016 Measurement on June 17, 1995 4.4 K refrigeration power (Measured by heater input in LHe Dewar) 5.67 kW 5.67 kW 4.4 K liquefaction ability (Measured by He level sensor in LHe Dewar) 606 L/h 704 L/h 80 K refrigeration power (Measured by heater input of LTIC2023) 23.35 kW 20.7 kW 4.4 k equivalent refrigeration power 9.19 kW 9.38 kW 59 第95回 2017年度秋季低温工学・超電導学会 大型冷凍機 1D-a01

Upload: others

Post on 06-Jan-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1D-a01 大型冷凍機 - CSJ

Re-examination of refrigeration power of the LHD cryogenic system and the 19th operation in 2017

MITO Toshiyuki, IWAMOTO Akifumi, HAMAGUCHI Shinji, MORIUCHI Sadatomo, OOBA Kouki, TAKAMI Shigeyuki, NOGUCHI Hiroki, TAKAHATA Kazuya, YANAGI Nagato, IMAGAWA Shinsaku NIFS ; KUMAKI Takuya, OBARA Kouji,

NOBUTOKI Minoru (Taiyo Nippon Sanso Corporation) E-mail: [email protected]

LHD

80 K 5.76 kW at 4.4 K20.6 kW at 80 K 650 L/h

1

Fig. 1. Layout of LHD superconducting and cryogenic system

Fig. 2. Equipment layout in the LHD He refrigeration room

Fig. 3. Operation history of the LHD cryogenic system

1. T. Mito, “Long-term operational performance of the LHD cryogenic system,” 2015 TEION KOGAKU J. Cryo. Super. Soc. Jpn. Vol. 50, No. 12, pp. 565-5

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1/19

97-8

2/19

983/

1999

4/20

005/

2001

6/20

027/

2003

8/20

049/

2005

10/2

006

11/2

007

12/2

008

13/2

009

14/2

010

15/2

011

16/2

012

17/2

013

18/2

014

19/2

016-

7

Stop time (h)Purification / Cool-down/ Warm-up (h)Steady state operation time (h)

Oper

ation

time (

h)

LHD cryostat / superconducting coils

He refrigerator

Superconducting Bus-lines

Power supplies

He compressors

He gas storage tanks

Cold box A

p gCold box B

LN2 storage tank

Fire accident

Position of outer cylinder during maintenance

LHe Dewar 20,000 L ,

He purifier /

Table 1. Comparison of measured refrigeration power

Refrigeration power Measurement on August 5, 2016

Measurement on June 17, 1995

4.4 K refrigeration power (Measured by heater input

in LHe Dewar) 5.67 kW 5.67 kW

4.4 K liquefaction ability (Measured by He level sensor in LHe Dewar)

606 L/h 704 L/h

80 K refrigeration power (Measured by heater input

of LTIC2023) 23.35 kW 20.7 kW

4.4 k equivalent refrigeration power 9.19 kW 9.38 kW

―59― 第95回 2017年度秋季低温工学・超電導学会

大型冷凍機1D-a01

Page 2: 1D-a01 大型冷凍機 - CSJ

0 2 4 6 8 10 122.90

3.00

3.10

3.20

3.30

3.40

3.50

12

13

14

15

16

17

18

Time [hour]

Tem

pera

ture

[K]

Mas

s flo

w ra

te [g

/s]

―60― 第95回 2017年度秋季低温工学・超電導学会

大型冷凍機1D-a02

Page 3: 1D-a01 大型冷凍機 - CSJ

3

―61― 第95回 2017年度秋季低温工学・超電導学会

大型冷凍機1D-a03

Page 4: 1D-a01 大型冷凍機 - CSJ

Compressor

He bu er tank

Turbine

HX1

HX2

HX3

Cold box

ADS

Safety box

LN2 tank

OS-5

LP line 0.2MPa

1.6MPa

H2 pump

Moderators

ADS: Adsorber HX: Heat exchanger

Oilseparators

―62― 第95回 2017年度秋季低温工学・超電導学会

大型冷凍機1D-a04

Page 5: 1D-a01 大型冷凍機 - CSJ

―63― 第95回 2017年度秋季低温工学・超電導学会

大型冷凍機1D-a05

Page 6: 1D-a01 大型冷凍機 - CSJ

―64― 第95回 2017年度秋季低温工学・超電導学会

大型冷凍機1D-a06

Page 7: 1D-a01 大型冷凍機 - CSJ

(,

(

Fig. 1 Cooling power vs heat capacity of regenerator materials in second regenerator column.

―65― 第95回 2017年度秋季低温工学・超電導学会

小型冷凍機1D-a07

Page 8: 1D-a01 大型冷凍機 - CSJ

―66― 第95回 2017年度秋季低温工学・超電導学会

小型冷凍機1D-a08

Page 9: 1D-a01 大型冷凍機 - CSJ

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

a-axis//Hb-axis//Hc-axis//H

Magnetization

[B/G

d]

Heff [T]

5K

GdTiO3

-14

-12

-10

-8

-6

-4

-2

00 10 20 30 40 50 60 70

5T3T1T

dS [J

/kg

K]

Temperature [K]

GdTiO3

―67― 第95回 2017年度秋季低温工学・超電導学会

小型冷凍機1D-a09

Page 10: 1D-a01 大型冷凍機 - CSJ

( )

MIYAZAKI Yoshiki, IKEDA Kazuya, WAKI Koichiro (RTRI) E-mail: [email protected]

kW

AMR(Active magnetic regenerator)

60%[1, 2]

[3]

Fig. 1 5 W

(Gd) 23 AMR

11 mm 60 mm (AMR 26 g)100 ~ 150 min-1

5 W/ 26 g = 192 W/kg ( 30 K)

Fig. 2 kW (7.2 kg) kW

30 KkW

2

Fig. 3 25 kW350 kg [4]

Gd 2

MnFe LaFeSi 1

kW

21

290 kg

Fig. 1 Temperature span as a function of the number of

rotation.

Fig. 2 Improvement of the cooling capacity with the

high-speed cycle.

Fig. 3 Weight of air-conditioning facility using magnetic heat

pump

[1] Y. Miyazaki, et al.: Abstracts of CSJ Conference, Vol. 91

(2015) p. 193. [2] Y. Miyazaki, et al.: Abstracts of CSJ Conference, Vol. 92

(2015) p. 238. [3] Y. Miyazaki, et al.: Abstracts of CSJ Conference, Vol. 94

(2017) p. 51. [4] S. Shimada, et al.: Railway Cybernetics Symposium, Vol.

39, No. 1 (2002) pp. 523, 1-4.

Tem

pera

ture

spa

n [K

]

Number of rotation [min-1]

3 layered AMR at 100 min-1

(Calculation)

2 layered AMR at 30 min-1

(2014 prototype)

Coo

ling

capa

city

[W]

Temperature span [K]

Wei

ght [

kg]

Compressor Magnetic Heat pumpWith 2nd order material

Magnetic Heat pumpWith 1st order material

Heat exchanger

Fan

Frame / cover

Electric accessory

Others

―68― 第95回 2017年度秋季低温工学・超電導学会

小型冷凍機1D-a10

Page 11: 1D-a01 大型冷凍機 - CSJ

0 100 2000

1000

2000

3000

4000SUS pipe6.0-200mmP = 400 kPa TB= 21 K

Tsub= 5 K

Flow Velocity 1.38 m/s 2.23 m/s 2.27 m/s 3.75 m/s

Tsat [ K ]

h [

W/(m

2 K)]

0 100 2000

1000

2000

3000

4000SUS pipe6.0-200mmP = 700 kPa TB= 21 K

Tsub= 8 K

Flow Velocity 1.19 m/s 1.36 m/s 2.11 m/s

Tsat [ K ]

h [

W/(m

2 K)]

0 100 2000

1000

2000

3000

4000

5000SUS pipe6.0-200mmP = 1100 kPa TB= 21 K

Tsub= 11 K

Flow Velocity 0.71 m/s 0.90 m/s 2.36 m/s 4.29 m/s

Tsat [ K ]

h [

W/(m

2 K)]

0 1 2 3 4 50

1000

2000

3000Heat Transfer Coefficient at

Tsat = 150 K

h [

W/(m

2 K)]

Flow Velocity [m/s]

400 kPa 700 kPa 1100 kPa

―69― 第95回 2017年度秋季低温工学・超電導学会

熱伝達1D-p01

Page 12: 1D-a01 大型冷凍機 - CSJ

―70― 第95回 2017年度秋季低温工学・超電導学会

熱伝達1D-p02

Page 13: 1D-a01 大型冷凍機 - CSJ

1. S. Takada, M. Murakami, et al.: Cryogenics, 49-10 (2009), pp. 576.

2. M.Nozawa, et al.: Cryogenics, 49-10 (2009), pp. 583. 3. M .Murakami, et al.: Adv. Cryo. Engineering, 61A

(2016) pp. 596.

(B) 25289300

Fig. 1 Planar heater and visualization for PIV application.

Fig. 2 Transient record of radial velocity. T=2.1 K, 4.44×E4 W/m2.

Fig. 3 Variation of radial velocity with r. =0° and -52° for T=1.8 K, =0° and -42° for 1.9 K, 4.44×E4 W/m2. a) Variation of time-averaged radial velocity, b) Logarithmic plot of RMS of fluctuating velocity.

―71― 第95回 2017年度秋季低温工学・超電導学会

熱伝達1D-p03

Page 14: 1D-a01 大型冷凍機 - CSJ

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Res

ista

nce

()

Temperature (K)

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Res

ista

nce

()

Temperature (K)Temperature (K)

―72― 第95回 2017年度秋季低温工学・超電導学会

極低温流体計測1D-p04

Page 15: 1D-a01 大型冷凍機 - CSJ

―73― 第95回 2017年度秋季低温工学・超電導学会

極低温流体計測1D-p05

Page 16: 1D-a01 大型冷凍機 - CSJ

175

180

185

190

195

200

205

210

215

220

225

0 200 400 600 800 1000 1200 1400 1600 1800

CB2B1

A1 A2

―74― 第95回 2017年度秋季低温工学・超電導学会

極低温流体計測1D-p06

Page 17: 1D-a01 大型冷凍機 - CSJ

Fig.1 Characteristics of Kulite pressure sensor.

Fig. 2 Characteristics of Kyowa pressure sensor.

JST (ALCA)

0 500 1000-3

-2

-1

0

1

2

3

4

5

6

7

8

Out

putV

olta

ge[m

V]

Pressure[kPa]

y=5.154*10-3*x

KYOWA PHL-A-B-2MPB

at 21 K2.5 mV

0 500 10000

20

40

60

80

21K~25K 26K~27K 29K

Pres

sure

Gau

ge V

olta

ge (m

V)

Pressure (kPa)

KULITE CCQ-093

y=0.06*x+2.6

y=0.059*x

―75― 第95回 2017年度秋季低温工学・超電導学会

極低温流体計測1D-p07