13 experimental papers: alice (7), atlas (2), cms (3...

Post on 19-May-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

p–Pb Collisions at the LHC: a brief overview

Anton Andronic – GSI Darmstadt

13 experimental papers: ALICE (7), ATLAS (2), CMS (3), LHCb (1)

(...and “innumerable” theoretical ones :)

• Initial state (shadowing/saturation) ...reference measurementsIS2013, http://indico.cern.ch/conferenceTimeTable.py?confId=239958

• Final state? (to flow or not to flow?)

Rencontres QGP-France 2013 - Etretat, Sep. 9-11

Reference measurements

2 A.Andronic@GSI.de

ALICE, PRL 110 (2013) 032301 PRL 110 (2013) 08230230 citations 32 citations

(GeV)NNs210 310

⟩pa

rtN⟨

)/η/d

chN

(d

0

1

2

3

4

5) NSDppp (p

ALICE

CMS

CDF

UA5

UA1

STAR

Central AA

ALICE

ATLAS

CMS

NA50

BRAHMS

PHENIX

STAR

PHOBOS

0.10NN

s ∝

0.11NN

s ∝

0.15NN

s ∝

pPb ALICE

dAu PHOBOSpAu NA35

) INELppp (p

ISR

UA5

PHOBOS

ALICE

(GeV/c)T

p0 2 4 6 8 10 12 14 16 18 20

PbP

b ,

RpP

bR

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 ALICE, charged particles

| < 0.3cms

η = 5.02 TeV, NSD, | NN

sp-Pb

| < 0.8η = 2.76 TeV, 0-5% central, | NNsPb-Pb

| < 0.8η = 2.76 TeV, 70-80% central, | NNsPb-Pb

p-Pb data exhibit generic features of (gluon) saturation (NB: Ncoll (p-Pb) = 8)

Reference measurements + theory

3 A.Andronic@GSI.de

ALICE, PRL 110 (2013) 032301 PRL 110 (2013) 082302

labη

-2 0 2

lab

η/d

chNd

0

5

10

15

20

25

DPMJET [32]

Sat. Models:IP-Sat [5]KLN [3]rcBK [7]

HIJING:2.1 no shad. [6]

=0.28 [6]g2.1 s2.0 no shad. [4]BB2.0 with shad. [4]BB

ALICE NSD

= 5.02 TeVNNsp-Pb,

0 2 4 6 8 10 12 14 16 18 200.4

0.6

0.8

1

1.2

1.4

1.6

1.8 = 5.02 TeVNNsp-Pb

| < 0.3cms

ηALICE, NSD, charged particles, |

Saturation (CGC), rcBK-MCSaturation (CGC), rcBKSaturation (CGC), IP-Sat

0 2 4 6 8 10 12 14 16 18 20

pPb

R

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 )0πShadowing, EPS09s (

LO pQCD + cold nuclear matter

(GeV/c)T

p0 2 4 6 8 10 12 14 16 18 20

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 HIJING 2.1=0.28gs

=0.28gDHC, s

DHC, no shad.

DHC, no shad., indep. frag.

Binary collision scaling: “cold” matter / EW observables

4 A.Andronic@GSI.de

)2 (GeV), or mass (GeV/cT

(GeV/c), ET

p0 10 20 30 40 50 60 70 80 90 100

pPb

, R

PbP

bR

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 = 5.02 TeV, NSD (ALICE)

NNs, p-Pb chN

= 2.76 TeV, 0-10% (CMS)NN

s, Pb-Pb γ

= 2.76 TeV, 0-10% (CMS)NNs, Pb-Pb ±W

= 2.76 TeV, 0-10% (CMS)NN

s, Pb-Pb 0Z

“cold” nuclei (p–Pb):shadowing / saturation(gluon distr. func.) ...at low-x

binary coll. scaling, pT > 2 GeV/c

exhibited by various observables

ALICE, PRL 110 (2013) 082302

CMSγ, PLB 710 (2012) 256W±, PLB 715 (2012) 66Z0, PRL 106 (2011) 212301

ATLAS: PRL 110 (2013) 002301

...and relevance to jet quenching at the LHC

4 A.Andronic@GSI.de

)2 (GeV), or mass (GeV/cT

(GeV/c), ET

p0 10 20 30 40 50 60 70 80 90 100

pPb

, R

PbP

bR

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 = 5.02 TeV, NSD (ALICE)

NNs, p-Pb chN

= 2.76 TeV, 0-10% (CMS)NN

s, Pb-Pb γ

= 2.76 TeV, 0-10% (CMS)NNs, Pb-Pb ±W

= 2.76 TeV, 0-10% (CMS)NN

s, Pb-Pb 0Z

, Pb-Pb (ALICE)chN, Pb-Pb (CMS)chN

= 2.76 TeV, 0-5% NNs

reaches a factor of about 7 aroundpT=7 GeV/c

(stronger than previously measuredat RHIC,

√sNN=200 GeV)

remains substantial even at 50-100GeV/c

ALICE, PLB 720 (2013) 52

CMS, EPJC (2012) 72

seen also with jets

ATLAS, PLB 719 (2013) 220

CMS, PLB 712 (2012) 176PLB 718 (2013) 773 (γ-jet)

ALICE preliminary

Long-range correlations

5 A.Andronic@GSI.de

pp p-Pb

η∆­4

­20

24

φ∆0

2

4

∆,η

∆R

( ­2­101

<3.0GeV/cT

110, 1.0GeV/c<p≥(d) CMS N

η∆-4

-20

24

φ∆0

2

4φ∆

dη∆d

pair

N2 d

trig

N1 1.6

1.7

1.8

110≥ trk

offline = 5.02 TeV, NNNsCMS pPb

< 3 GeV/cT

1 < p

(b)

long range in η

CMS, JHEP 1009 (2010) 091, PLB 718 (2013) 795, ALICE, PLB 719 (2013) 29

Interpretations (long range in η): flow (EPOS MC), initial state (CGC/Glasma)Werner et al., PRL 106 (2011) 122004; Dusling, Venugopalan, PRL 108 (2012) 262001

aligned flux tubes connecting valence quarks (pp), Bjorken, Brodsky, Goldhaber, arXiv:1308.1435

Long-range correlations

5 A.Andronic@GSI.de

pp p-Pb p–Pb

η∆­4

­20

24

φ∆0

2

4

∆,η

∆R

( ­2­101

<3.0GeV/cT

110, 1.0GeV/c<p≥(d) CMS N

η∆-4

-20

24

φ∆0

2

4φ∆

dη∆d

pair

N2 d

trig

N1 1.6

1.7

1.8

110≥ trk

offline = 5.02 TeV, NNNsCMS pPb

< 3 GeV/cT

1 < p

(b)

long range in η ...and in φ (jet-subtracted distr.)

CMS, JHEP 1009 (2010) 091, PLB 718 (2013) 795, ALICE, PLB 719 (2013) 29

Interpretations (long range in η): flow (EPOS MC), initial state (CGC/Glasma)Werner et al., PRL 106 (2011) 122004; Dusling, Venugopalan, PRL 108 (2012) 262001

aligned flux tubes connecting valence quarks (pp), Bjorken, Brodsky, Goldhaber, arXiv:1308.1435

Initial state model (CGC) vs. data

6 A.Andronic@GSI.de

near side (CMS) near and away side (ALICE)

0

0.02

0.04

0 1 2 3 4 5 6

pTtrig=pT

asc [GeV]

Associated Yield

p+Pb: CMS data

p+p: CMS data

0

0.02

0.04

0.06

0.08

0.1

0-20% 20-40% 40-60%

Away-Side, Symmetric Near-Side, Symmetric

Away-Side, Off-DiagonalNear-Side, Off-Diagonal

Dusling, Venugopalan, PRD 87 (2013) 094034

the saturation model (CGC) is successful

Collective flow in p–Pb collisions?

7 A.Andronic@GSI.de

ALICE, PLB 719 (2013) 29

[GeV]⟩T

PbEΣ⟨20 40 60 80 100 120

2v

0

0.05

0.1

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

{2}2v{4}2v{2PC}2v

hydro{2}2v

ATLAS -1bµ= 1

int = 5.02 TeV, LNNsp+Pb,

< 5 GeVT

0.3 < p| < 2.5η|

{2}2v{4}2v{2PC}2v

hydro{2}2v

ATLAS, PLB 725 (2013) 60

ATLAS, PRL 110 (2013) 182302; CMS, arXiv:1305.0609

also hydrodynamics can explain data...a heated saturation/hydrodynamics debate (and pursuit with data and models)

Flow in p–Pb (d–Au) collisions?

8 A.Andronic@GSI.de

P.Bozek, PRC 85 (2012) 014911 (hydrodynamics)ε2, initial eccentricity, from MC Glauber

PHENIX, arXiv:1303.1794

Pushing the frontiers of deconfined matter?

9 A.Andronic@GSI.de

Au–Au, b=4 fm d–Au

-8-6

-4-2

0 2

4 6

8 -8-6

-4-2

0 2

4 6

8

MC-Glauber

x [fm]

y [fm]

-8-6

-4-2

0 2

4 6

8 -8-6

-4-2

0 2

4 6

8

IP-Glasmao=0.2 fm/c

x [fm]

y [fm]

MC-Glauber

-4 -2 0 2 4

x [fm]

-4

-2

0

2

4

y [fm

]-4 -2 0 2 4

x [fm]

-4

-2

0

2

4

y [fm

]

IP-Glasma

(a)

(b)

Gale, Jeon, Schenke, arXiv: 1301.5893; Bzdak et al., arXiv:1304.3403

Collective flow in p–Pb collisions?

10 A.Andronic@GSI.de

hydrodynamics makes large strides...

0 1 2 3p

T (GeV/c)

0

0.05

0.1

0.15

0.2

0.25

ATLAS pPb 0-2% v2

CMS pPb 0-2% v3

0-1% v2

0-2% v2

0-5% v2

0-1% v3

0-2% v3

0-5% v3

0 1 2 3p

T (GeV/c)

0

0.05

0.1

0.15

0.2

0.25

ALICE pPb 0-20% v2

ALICE pPb 0-20% v3

0-20% v2

0-20% v3

Qin, Muller, arXiv:1306.3439

0 1 2 3 40

0.05

0.1

0.15

0.2p-Pb 5.02TeV CMS Data 0-2%nv

[GeV/c]T

p

2v

3v

Bozek, Broniowski, Torrieri, arXiv:1307.5060

...after it trully predicted collective flow (v2, v3)Bozek, Broniowski, arXiv:1211.0845, PLB 718 (2013) 1557

Collective flow in p–Pb collisions?

11 A.Andronic@GSI.de

(rad)ϕ∆-1

0 1 23 4

η∆

-2

-1

01

2

)-1

(ra

∆dη∆d

asso

cN2 d

trig

N1

1.0

1.2

1.4

c < 4 GeV/T,trig

p2 <

c < 2 GeV/T,assoc

p 1 < = 5.02 TeVNNsp-Pb

0-20%

AL

I−P

UB

−4

62

28

AL

I−P

UB

−4

62

28

AL

I−P

UB

−4

62

28

-2-1.5

-1-0.5

00.5

11.5

2 -10

12

34

1.1

1.2

1.3

1.4

2.0-4.0 GeV/ctrigg

Tp 1.0-2.0 GeV/cassoc

Tp

η∆φ∆

R

EPOS3.074

(rad)

ϕ∆-1

01

23

4

η∆

-2

-1

0

1

2

)-1

(ra

∆dη∆d

asso

cN2 d

trig

N1

0.75

0.80

0.85

c < 4 GeV/T,trig

p2 <

c < 2 GeV/T,assoc

p 1 < = 5.02 TeVNNsp-Pb

(0-20%) - (60-100%)

AL

I−P

UB

−4

62

46

AL

I−P

UB

−4

62

46

AL

I−P

UB

−4

62

46

-2-1.5

-1-0.5

00.5

11.5

2 -10

12

34

0.72

0.74

0.76

0.78

2.0-4.0 GeV/ctrigg

Tp 1.0-2.0 GeV/cassoc

Tp

η∆φ∆

R

EPOS3.074

Collective flow in p–Pb collisions?

12 A.Andronic@GSI.de

experiment makes strides ...and theory great claims

)c (GeV/T

p0.5 1 1.5 2 2.5 3 3.5 4

{2P

C, s

ub}

2v

0

0.05

0.1

0.15

0.2

0.25ALICE

= 5.02 TeVNNsp-Pb

(0-20%) - (60-100%)

h π

K p

AL

I−P

UB

−5

10

16

AL

I−P

UB

−5

10

16

AL

I−P

UB

−5

10

16

ALICE, 1307.3237

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.5 1 1.5 2 2.5 pt

v2

EPOS3.074πKp

ALICEπKp

Werner et al., arXiv:1307.4379

EPOS 3.074: full hydrodynamical treatment (+Pomerons:)

Collective flow in p–Pb collisions?

13 A.Andronic@GSI.de

more points to hydrodynamics ...

0 0.5 1 1.5 20

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 p-Pb 5.02TeV ALICE Data 0-20%

πKp

2v

[GeV/c]T

p

(ALICE, 1307.3237)20 40

0

0.5

1

1.5

>

[GeV

]<

p

a) 3+1D Hydro

p-Pb 5.02 TeV

ALICE Data (preliminary)

ηdN/d

20 40

0

0.5

1

1.5 b) HIJING

-π+π

-K+K

pp

ηdN/d

Bozek, Broniowski, Torrieri, arXiv:1307.5060

p–Pb in perspective

14 A.Andronic@GSI.de

chN0 20 40 60 80 100

)c (

GeV

/⟩

Tp⟨

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9 ALICE, charged particlesc<10.0 GeV/

Tp|<0.3, 0.15< η|

= 7 TeVspp = 5.02 TeVNNsp-Pb

= 2.76 TeVNNsPb-Pb

ALICE, 1307.1094

p–Pb exhibits features of both pp andPb–Pb

system√sNN (TeV) 〈Nch〉 〈pT〉 (GeV/c)

pp 7 4.42±0.22 0.622±0.021

p–Pb 5.02 11.9±0.5 0.696±0.024

Pb–Pb 2.76 259.9±5.9 0.678±0.007

NB:

Nch > 14 corresp. to 10%, 50%, 82% upper cross

section for pp, p–Pb, Pb–Pb

Nch > 40 corresp. to upper 1% (70%) of the cross

section p–Pb (Pb–Pb)

p–Pb in perspective

15 A.Andronic@GSI.de

0 20 40 60 80 100

)c (

GeV

/⟩

Tp⟨

0.5

0.6

0.7

0.8

0.9

1Data

PYTHIA 8, tune 4C

without CR

with CR

ALICE, charged particles

c<10.0 GeV/T

p|<0.3, 0.15<η|

= 7 TeVspp

0 20 40 60 80 100

)c (

GeV

/⟩

Tp⟨

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Data

EPOSDPMJETHIJINGAMPTGlauber MC

= 5.02 TeVNNsp-Pb

chN0 20 40 60 80 100

)c (

GeV

/⟩

Tp⟨

0.45

0.5

0.55

0.6

0.65

0.7

= 2.76 TeVNNsPb-Pb

Data

ALICE, 1307.1094

CR: color reconnection - a “collective”effect of hadronizing strings(a probability parameter)

EPOS LHC: parametrized flow(pp, p–Pb, Pb–Pb)Pierog et al., arXiv:1306.0121

CGC strikes back

16 A.Andronic@GSI.de

0 20 40 60 80 100 120 140N

ch

0.6

0.75

0.9

1.05

1.2

< p

T >

[G

eV]

ALICE, Pb+Pb 2.76 TeVALICE, p+p 7 TeVALICE, p+Pb 5.02 TeVb-CGC (Saturation)

| η| < 0.3, 0.15< pT [GeV]<10

Rezaeian, 1308.4736 (3 parameters)

CGC strikes back

16 A.Andronic@GSI.de

...or does it?

0 20 40 60 80 100 120 140N

ch

0.6

0.75

0.9

1.05

1.2

< p

T >

[G

eV]

ALICE, Pb+Pb 2.76 TeVALICE, p+p 7 TeVALICE, p+Pb 5.02 TeVb-CGC (Saturation)

| η| < 0.3, 0.15< pT [GeV]<10

Rezaeian, 1308.4736 (3 parameters)

)-1 (fm1/2)TS /chN(0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

)c (

GeV

/⟩

Tp⟨

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9 ALICE, charged particlesc<10.0 GeV/

Tp|<0.3, 0.15<η|

= 5.02 TeVNN

sp-Pb

= 7 TeVspp

= 2.76 TeVspp

ALICE, 1307.1094

geometric scaling (ST = πR2), McLerran et al., arXiv:1306.2350;

R ∼ (dNg/dy)1/3 ≃ (1.5 · dNch/dη)

1/3, sat. at 1.54 (2.39) fm for pp (p–Pb)

claim of success based on CMS data, arXiv:1307.3442 ...in a smaller Nch range

p–Pb in perspective

17 A.Andronic@GSI.de

)c (GeV/T

p

S0 /

00.20.40.60.8

11.21.41.61.8

22.22.4

0 2 4 6 8

0-5%

60-80%

= 5.02 TeVNNsALICE, p-Pb,

0 2 4 6 8

0-5%

80-90%

= 2.76 TeVNNsALICE, Pb-Pb,

0-5% central p–Pb collisions look like 60-70% central Pb–Pb(dNch/dη ∼1.7 lower)

ALICE, arXiv:1307.6796

η/dchNd10 210 310

)- π +

+ π

) / (

- +

K+

(K

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

= 2.76 TeVNNsALICE, Pb-Pb,

= 200 GeVNNsSTAR, Au-Au,

= 200 GeVNNsPHENIX, Au-Au,

= 200 GeVNNsBRAHMS, Au-Au,

= 5.02 TeVNNsALICE, p-Pb,

= 200 GeVNNsSTAR, d-Au,

η/dchNd10 210 310

)- π +

+ π

) / (

p(p

+

0.02

0.03

0.04

0.05

0.06

0.07

0.08

= 2.76 TeVNNsALICE, Pb-Pb,

= 200 GeVNNsPHENIX, Au-Au,

= 200 GeVNNsBRAHMS, Au-Au, = 5.02 TeVNNsALICE, p-Pb,

More flow arguments

18 A.Andronic@GSI.de

η/dchNd10 210

)c (

GeV

/⟩

Tp⟨

0.4

0.6

0.8

1

1.2

1.4

Λ + Λpp +

0SK

- + K+K

-π + +π

⟩T

β⟨0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

(G

eV)

kin

T

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

= 5.02 TeVNNsALICE, p-Pb,

= 2.76 TeVNNsALICE, Pb-Pb,

= 7 TeV (with Color Reconnection)sPYTHIA8,

= 7 TeV (without Color Reconnection)sPYTHIA8,

0 2 4 6 8 10

]-2 )c

) [(

GeV

/yd

Tp

/(d

N2 d

Tpπ

1/2

evN

1/

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

410

(100x)-π + +π

(10x)- + K+K

(1x)pp +

(0.1x)0SK

(0.01x)Λ + Λevent class 5-10%

Blast-Wave

EPOS LHC

Krakow

DPMJET

)c (GeV/T

p0 2 4 6 8 10

data

/ m

odel

0.51

1.5 -π + +π

0 2 4 6 8 10

0.51

1.5 - + K+K

0 2 4 6 8 10

0.51

1.5 pp +

0 2 4 6 8 10

0.51

1.5 0SK

0 2 4 6 8 10

0.51

1.5 Λ + Λ

ALICE, 1307.6796

Flow or Cronin effect or saturation?

19 A.Andronic@GSI.de

(GeV/c)T

p0 2 4 6 8 10 12 14 16 18 20

dAu

, R

pPb

R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8charged particles

| < 0.3cms

η = 5.02 TeV, NSD, | NN

sALICE, p-Pb

| < 0.5η = 0.2 TeV, | NNsSTAR, d-Au

| < 0.18η = 0.2 TeV, | NNsPHENIX, d-Au

LHC vs. RHIC data

ALICE, PRL 110 (2013) 082302

• flow: blue-shift of spectralarger at LHC

• Cronin effect: “re-distribution” oflow-pT hadrons at higher pT dueto multiple (parton) scattering

larger at RHIC

• saturation: depletion of spectra atlow pTlarger at LHC

still need some strategy to distinguish...a challenge: reduce (dominant) systematic uncertainties (?)

Charmonium in p–Pb

20 A.Andronic@GSI.de

ALICE, arXiv:1308.6726; LHCb, arXiv:1308.6729

cmsy

-4 -3 -2 -1 0 1 2 3 4

pPb

R

0

0.2

0.4

0.6

0.8

1

1.2

1.4 c<15 GeV/T

p, 0<-µ+µ→ψ= 5.02 TeV, inclusive J/NNs p-Pb

-1<3.53)= 5.0 nbcms

y (2.03<int

, L-1<-2.96)= 5.8 nbcms

y (-4.46<intL

EPS09 NLO (Vogt)

CGC (Fujii et al.)

/fm (Arleo et al.)2=0.075 GeV0

ELoss, q

/fm (Arleo et al.)2=0.055 GeV0

EPS09 NLO + ELoss, q

(GeV/c)T

p0 2 4 6 8 10 12 14

FB

R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

EPS09 NLO (Vogt)

/fm (Arleo et al.)2=0.075 GeV0

ELoss, q

/fm (Arleo et al.)2=0.055 GeV0

EPS09 NLO + Eloss, q

< 3.53cms

y, 2.96 < -µ+µ→ψ= 5.02 TeV, inclusive J/NNsp-Pb

theory (nobody’s perfect:) shadowing and Eloss ∼ OK ...CGC seems ruled out

tantalizing implication for Pb–Pb: RAA > 1 (at low pT) if-no-shadowing...cannot turn off shadowing, but means we may see this at the top LHC energy

Summary

• interesting / puzzling features in p–Pb collisions

• both initial state and final state (collective flow?) play a role

... would we be able to disentangle them?

...(if so) is CGC the correct description of the initial state?

• what are the implications for Pb–Pb?...normalize Pb–Pb to p–Pb(min.B)?

• would p–Pb (and pp) help elucidating thermalization and hadronization?

Extra slides

x

Elliptic flow (non-central collisions)

x1 A.Andronic@GSI.de

density of binary collisionsU.Heinz, arXiv:0901.4355

−10 −5 0 5 10

−10

−5

0

5

10

x (fm)

y (f

m)

...arising from different initial gradi-ents along x and y

“self-quenching” (develops early)

determined by the spatial eccentricity

ε(b) = <y2−x2><y2+x2>

with energy dens. as weight

...transformed into momentumanisotropy in φ (wrt reaction plane)

Fourier coef. v2 = 〈cos(2(φ−ΨRP ))〉quantifies collective (elliptic) flow

Higher order harmonics (central collisions)

x2 A.Andronic@GSI.de

Sorensen, JPG 37 (2010) 094011; Alver, Roland, PRC 81 (2010) 054905 ...collision geometry fluctuations

0 2 4

)φ∆C

(

0.99

0.995

1

1.005

1.01

1.015

Pb-Pb 2.76 TeV, 0-2% central

< 2.5 GeV/ctT

2 < p < 2 GeV/ca

T1.5 < p

| < 1.8η∆0.8 < |

/ndf = 33.3 / 352χ

[rad]φ∆0 2 4

ratio

0.998

1

1.002

n1 2 3 4 5 6 7 8

]-2

[10

∆nV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 Centrality

0-2%

< 2.5 GeV/ct

T2 < p

< 2 GeV/ca

T1.5 < p

ALICE, PLB 708 (2012) 032301; PRL 107 (2011) 032301ATLAS, PRC 86 (2012) 014907 ; PHENIX, PRL 107 (2011) 252301event-by-event distributions: ATLAS, arXiv:1305.2942constrain initial state and η/s (small) in hydrodynamic models

Identified hadrons at the LHC

x3 A.Andronic@GSI.de

)c (GeV/T

p

)- π +

+ π

) / (

- +

K+

(K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3

0-5%

60-80%

= 5.02 TeVNNsALICE, p-Pb,

0 1 2 3

0-5%

80-90%

= 2.76 TeVNNsALICE, Pb-Pb,

)c (GeV/T

p

)- π +

+ π

) / (

p(p

+

0

0.2

0.4

0.6

0.8

1

0 1 2 3

0-5%

60-80%

= 5.02 TeVNNsALICE, p-Pb,

0 1 2 3

0-5%

80-90%

= 2.76 TeVNNsALICE, Pb-Pb,

ALICE, 1307.6796 ...

0-5% central p–Pb collisions look like 60-70% central Pb–Pb

Identified hadrons at the LHC

x4 A.Andronic@GSI.de

)c (GeV/T

p

S0 /

00.20.40.60.8

11.21.41.61.8

22.22.4

0 2 4 6 8

0-5%

60-80%

= 5.02 TeVNNsALICE, p-Pb,

0 2 4 6 8

0-5%

80-90%

= 2.76 TeVNNsALICE, Pb-Pb,

η/dchNd10 210 310

)- π +

+ π

/ (

Λ2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

= 2.76 TeVNNsALICE, Pb-Pb,

= 200 GeVNNsSTAR, Au-Au,

)-π + +π) / (Λ + ΛSTAR, ( = 5.02 TeVNNsALICE, p-Pb,

ALICE, 1307.6796 ...

0-5% central p–Pb collisions look like 60-70% central Pb–Pb(dNch/dη ∼1.7 lower)

Identified hadrons at RHIC (d–Au collisions)

x5 A.Andronic@GSI.de

-π/p 0-10%10-20%20-40%40-60%60-92%p+p

+πp/ = 200 GeVNNsAu+Au

πR

atio

p/

0

0.2

0.4

0.6

0.8

πR

atio

p/

0

0.2

0.4

0.6

0.8

1

(GeV/c)T

p0 1 2 3 4 5 6

-π/p 0-20%20-40%0-100%40-60%60-88%p+p

+πp/ = 200 GeVNNsd+Au

πR

atio

p/

0

0.1

0.2

0.3

0.4

πR

atio

p/

0

0.1

0.2

0.3

0.4

0.5

(GeV/c)T

p0 1 2 3 4 5 6

PHENIX, arXiv:1304.3410

... 0-20% central d–Au collisions look like 60-92% central Au–Au

top related