13 experimental papers: alice (7), atlas (2), cms (3...

30
p–Pb Collisions at the LHC: a brief overview Anton Andronic – GSI Darmstadt 13 experimental papers: ALICE (7), ATLAS (2), CMS (3), LHCb (1) (...and “innumerable” theoretical ones :) Initial state (shadowing/saturation) ...reference measurements IS2013, http://indico.cern.ch/conferenceTimeTable.py?confId=239958 Final state? (to flow or not to flow?) Rencontres QGP-France 2013 - Etretat, Sep. 9-11

Upload: others

Post on 19-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

p–Pb Collisions at the LHC: a brief overview

Anton Andronic – GSI Darmstadt

13 experimental papers: ALICE (7), ATLAS (2), CMS (3), LHCb (1)

(...and “innumerable” theoretical ones :)

• Initial state (shadowing/saturation) ...reference measurementsIS2013, http://indico.cern.ch/conferenceTimeTable.py?confId=239958

• Final state? (to flow or not to flow?)

Rencontres QGP-France 2013 - Etretat, Sep. 9-11

Page 2: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Reference measurements

2 [email protected]

ALICE, PRL 110 (2013) 032301 PRL 110 (2013) 08230230 citations 32 citations

(GeV)NNs210 310

⟩pa

rtN⟨

)/η/d

chN

(d

0

1

2

3

4

5) NSDppp (p

ALICE

CMS

CDF

UA5

UA1

STAR

Central AA

ALICE

ATLAS

CMS

NA50

BRAHMS

PHENIX

STAR

PHOBOS

0.10NN

s ∝

0.11NN

s ∝

0.15NN

s ∝

pPb ALICE

dAu PHOBOSpAu NA35

) INELppp (p

ISR

UA5

PHOBOS

ALICE

(GeV/c)T

p0 2 4 6 8 10 12 14 16 18 20

PbP

b ,

RpP

bR

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 ALICE, charged particles

| < 0.3cms

η = 5.02 TeV, NSD, | NN

sp-Pb

| < 0.8η = 2.76 TeV, 0-5% central, | NNsPb-Pb

| < 0.8η = 2.76 TeV, 70-80% central, | NNsPb-Pb

p-Pb data exhibit generic features of (gluon) saturation (NB: Ncoll (p-Pb) = 8)

Page 3: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Reference measurements + theory

3 [email protected]

ALICE, PRL 110 (2013) 032301 PRL 110 (2013) 082302

labη

-2 0 2

lab

η/d

chNd

0

5

10

15

20

25

DPMJET [32]

Sat. Models:IP-Sat [5]KLN [3]rcBK [7]

HIJING:2.1 no shad. [6]

=0.28 [6]g2.1 s2.0 no shad. [4]BB2.0 with shad. [4]BB

ALICE NSD

= 5.02 TeVNNsp-Pb,

0 2 4 6 8 10 12 14 16 18 200.4

0.6

0.8

1

1.2

1.4

1.6

1.8 = 5.02 TeVNNsp-Pb

| < 0.3cms

ηALICE, NSD, charged particles, |

Saturation (CGC), rcBK-MCSaturation (CGC), rcBKSaturation (CGC), IP-Sat

0 2 4 6 8 10 12 14 16 18 20

pPb

R

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 )0πShadowing, EPS09s (

LO pQCD + cold nuclear matter

(GeV/c)T

p0 2 4 6 8 10 12 14 16 18 20

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 HIJING 2.1=0.28gs

=0.28gDHC, s

DHC, no shad.

DHC, no shad., indep. frag.

Page 4: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Binary collision scaling: “cold” matter / EW observables

4 [email protected]

)2 (GeV), or mass (GeV/cT

(GeV/c), ET

p0 10 20 30 40 50 60 70 80 90 100

pPb

, R

PbP

bR

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 = 5.02 TeV, NSD (ALICE)

NNs, p-Pb chN

= 2.76 TeV, 0-10% (CMS)NN

s, Pb-Pb γ

= 2.76 TeV, 0-10% (CMS)NNs, Pb-Pb ±W

= 2.76 TeV, 0-10% (CMS)NN

s, Pb-Pb 0Z

“cold” nuclei (p–Pb):shadowing / saturation(gluon distr. func.) ...at low-x

binary coll. scaling, pT > 2 GeV/c

exhibited by various observables

ALICE, PRL 110 (2013) 082302

CMSγ, PLB 710 (2012) 256W±, PLB 715 (2012) 66Z0, PRL 106 (2011) 212301

ATLAS: PRL 110 (2013) 002301

Page 5: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

...and relevance to jet quenching at the LHC

4 [email protected]

)2 (GeV), or mass (GeV/cT

(GeV/c), ET

p0 10 20 30 40 50 60 70 80 90 100

pPb

, R

PbP

bR

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 = 5.02 TeV, NSD (ALICE)

NNs, p-Pb chN

= 2.76 TeV, 0-10% (CMS)NN

s, Pb-Pb γ

= 2.76 TeV, 0-10% (CMS)NNs, Pb-Pb ±W

= 2.76 TeV, 0-10% (CMS)NN

s, Pb-Pb 0Z

, Pb-Pb (ALICE)chN, Pb-Pb (CMS)chN

= 2.76 TeV, 0-5% NNs

reaches a factor of about 7 aroundpT=7 GeV/c

(stronger than previously measuredat RHIC,

√sNN=200 GeV)

remains substantial even at 50-100GeV/c

ALICE, PLB 720 (2013) 52

CMS, EPJC (2012) 72

seen also with jets

ATLAS, PLB 719 (2013) 220

CMS, PLB 712 (2012) 176PLB 718 (2013) 773 (γ-jet)

ALICE preliminary

Page 6: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Long-range correlations

5 [email protected]

pp p-Pb

η∆­4

­20

24

φ∆0

2

4

∆,η

∆R

( ­2­101

<3.0GeV/cT

110, 1.0GeV/c<p≥(d) CMS N

η∆-4

-20

24

φ∆0

2

4φ∆

dη∆d

pair

N2 d

trig

N1 1.6

1.7

1.8

110≥ trk

offline = 5.02 TeV, NNNsCMS pPb

< 3 GeV/cT

1 < p

(b)

long range in η

CMS, JHEP 1009 (2010) 091, PLB 718 (2013) 795, ALICE, PLB 719 (2013) 29

Interpretations (long range in η): flow (EPOS MC), initial state (CGC/Glasma)Werner et al., PRL 106 (2011) 122004; Dusling, Venugopalan, PRL 108 (2012) 262001

aligned flux tubes connecting valence quarks (pp), Bjorken, Brodsky, Goldhaber, arXiv:1308.1435

Page 7: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Long-range correlations

5 [email protected]

pp p-Pb p–Pb

η∆­4

­20

24

φ∆0

2

4

∆,η

∆R

( ­2­101

<3.0GeV/cT

110, 1.0GeV/c<p≥(d) CMS N

η∆-4

-20

24

φ∆0

2

4φ∆

dη∆d

pair

N2 d

trig

N1 1.6

1.7

1.8

110≥ trk

offline = 5.02 TeV, NNNsCMS pPb

< 3 GeV/cT

1 < p

(b)

long range in η ...and in φ (jet-subtracted distr.)

CMS, JHEP 1009 (2010) 091, PLB 718 (2013) 795, ALICE, PLB 719 (2013) 29

Interpretations (long range in η): flow (EPOS MC), initial state (CGC/Glasma)Werner et al., PRL 106 (2011) 122004; Dusling, Venugopalan, PRL 108 (2012) 262001

aligned flux tubes connecting valence quarks (pp), Bjorken, Brodsky, Goldhaber, arXiv:1308.1435

Page 8: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Initial state model (CGC) vs. data

6 [email protected]

near side (CMS) near and away side (ALICE)

0

0.02

0.04

0 1 2 3 4 5 6

pTtrig=pT

asc [GeV]

Associated Yield

p+Pb: CMS data

p+p: CMS data

0

0.02

0.04

0.06

0.08

0.1

0-20% 20-40% 40-60%

Away-Side, Symmetric Near-Side, Symmetric

Away-Side, Off-DiagonalNear-Side, Off-Diagonal

Dusling, Venugopalan, PRD 87 (2013) 094034

the saturation model (CGC) is successful

Page 9: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Collective flow in p–Pb collisions?

7 [email protected]

ALICE, PLB 719 (2013) 29

[GeV]⟩T

PbEΣ⟨20 40 60 80 100 120

2v

0

0.05

0.1

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

{2}2v{4}2v{2PC}2v

hydro{2}2v

ATLAS -1bµ= 1

int = 5.02 TeV, LNNsp+Pb,

< 5 GeVT

0.3 < p| < 2.5η|

{2}2v{4}2v{2PC}2v

hydro{2}2v

ATLAS, PLB 725 (2013) 60

ATLAS, PRL 110 (2013) 182302; CMS, arXiv:1305.0609

also hydrodynamics can explain data...a heated saturation/hydrodynamics debate (and pursuit with data and models)

Page 10: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Flow in p–Pb (d–Au) collisions?

8 [email protected]

P.Bozek, PRC 85 (2012) 014911 (hydrodynamics)ε2, initial eccentricity, from MC Glauber

PHENIX, arXiv:1303.1794

Page 11: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Pushing the frontiers of deconfined matter?

9 [email protected]

Au–Au, b=4 fm d–Au

-8-6

-4-2

0 2

4 6

8 -8-6

-4-2

0 2

4 6

8

MC-Glauber

x [fm]

y [fm]

-8-6

-4-2

0 2

4 6

8 -8-6

-4-2

0 2

4 6

8

IP-Glasmao=0.2 fm/c

x [fm]

y [fm]

MC-Glauber

-4 -2 0 2 4

x [fm]

-4

-2

0

2

4

y [fm

]-4 -2 0 2 4

x [fm]

-4

-2

0

2

4

y [fm

]

IP-Glasma

(a)

(b)

Gale, Jeon, Schenke, arXiv: 1301.5893; Bzdak et al., arXiv:1304.3403

Page 12: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Collective flow in p–Pb collisions?

10 [email protected]

hydrodynamics makes large strides...

0 1 2 3p

T (GeV/c)

0

0.05

0.1

0.15

0.2

0.25

ATLAS pPb 0-2% v2

CMS pPb 0-2% v3

0-1% v2

0-2% v2

0-5% v2

0-1% v3

0-2% v3

0-5% v3

0 1 2 3p

T (GeV/c)

0

0.05

0.1

0.15

0.2

0.25

ALICE pPb 0-20% v2

ALICE pPb 0-20% v3

0-20% v2

0-20% v3

Qin, Muller, arXiv:1306.3439

0 1 2 3 40

0.05

0.1

0.15

0.2p-Pb 5.02TeV CMS Data 0-2%nv

[GeV/c]T

p

2v

3v

Bozek, Broniowski, Torrieri, arXiv:1307.5060

...after it trully predicted collective flow (v2, v3)Bozek, Broniowski, arXiv:1211.0845, PLB 718 (2013) 1557

Page 13: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Collective flow in p–Pb collisions?

11 [email protected]

(rad)ϕ∆-1

0 1 23 4

η∆

-2

-1

01

2

)-1

(ra

∆dη∆d

asso

cN2 d

trig

N1

1.0

1.2

1.4

c < 4 GeV/T,trig

p2 <

c < 2 GeV/T,assoc

p 1 < = 5.02 TeVNNsp-Pb

0-20%

AL

I−P

UB

−4

62

28

AL

I−P

UB

−4

62

28

AL

I−P

UB

−4

62

28

-2-1.5

-1-0.5

00.5

11.5

2 -10

12

34

1.1

1.2

1.3

1.4

2.0-4.0 GeV/ctrigg

Tp 1.0-2.0 GeV/cassoc

Tp

η∆φ∆

R

EPOS3.074

(rad)

ϕ∆-1

01

23

4

η∆

-2

-1

0

1

2

)-1

(ra

∆dη∆d

asso

cN2 d

trig

N1

0.75

0.80

0.85

c < 4 GeV/T,trig

p2 <

c < 2 GeV/T,assoc

p 1 < = 5.02 TeVNNsp-Pb

(0-20%) - (60-100%)

AL

I−P

UB

−4

62

46

AL

I−P

UB

−4

62

46

AL

I−P

UB

−4

62

46

-2-1.5

-1-0.5

00.5

11.5

2 -10

12

34

0.72

0.74

0.76

0.78

2.0-4.0 GeV/ctrigg

Tp 1.0-2.0 GeV/cassoc

Tp

η∆φ∆

R

EPOS3.074

Page 14: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Collective flow in p–Pb collisions?

12 [email protected]

experiment makes strides ...and theory great claims

)c (GeV/T

p0.5 1 1.5 2 2.5 3 3.5 4

{2P

C, s

ub}

2v

0

0.05

0.1

0.15

0.2

0.25ALICE

= 5.02 TeVNNsp-Pb

(0-20%) - (60-100%)

h π

K p

AL

I−P

UB

−5

10

16

AL

I−P

UB

−5

10

16

AL

I−P

UB

−5

10

16

ALICE, 1307.3237

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.5 1 1.5 2 2.5 pt

v2

EPOS3.074πKp

ALICEπKp

Werner et al., arXiv:1307.4379

EPOS 3.074: full hydrodynamical treatment (+Pomerons:)

Page 15: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Collective flow in p–Pb collisions?

13 [email protected]

more points to hydrodynamics ...

0 0.5 1 1.5 20

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 p-Pb 5.02TeV ALICE Data 0-20%

πKp

2v

[GeV/c]T

p

(ALICE, 1307.3237)20 40

0

0.5

1

1.5

>

[GeV

]<

p

a) 3+1D Hydro

p-Pb 5.02 TeV

ALICE Data (preliminary)

ηdN/d

20 40

0

0.5

1

1.5 b) HIJING

-π+π

-K+K

pp

ηdN/d

Bozek, Broniowski, Torrieri, arXiv:1307.5060

Page 16: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

p–Pb in perspective

14 [email protected]

chN0 20 40 60 80 100

)c (

GeV

/⟩

Tp⟨

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9 ALICE, charged particlesc<10.0 GeV/

Tp|<0.3, 0.15< η|

= 7 TeVspp = 5.02 TeVNNsp-Pb

= 2.76 TeVNNsPb-Pb

ALICE, 1307.1094

p–Pb exhibits features of both pp andPb–Pb

system√sNN (TeV) 〈Nch〉 〈pT〉 (GeV/c)

pp 7 4.42±0.22 0.622±0.021

p–Pb 5.02 11.9±0.5 0.696±0.024

Pb–Pb 2.76 259.9±5.9 0.678±0.007

NB:

Nch > 14 corresp. to 10%, 50%, 82% upper cross

section for pp, p–Pb, Pb–Pb

Nch > 40 corresp. to upper 1% (70%) of the cross

section p–Pb (Pb–Pb)

Page 17: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

p–Pb in perspective

15 [email protected]

0 20 40 60 80 100

)c (

GeV

/⟩

Tp⟨

0.5

0.6

0.7

0.8

0.9

1Data

PYTHIA 8, tune 4C

without CR

with CR

ALICE, charged particles

c<10.0 GeV/T

p|<0.3, 0.15<η|

= 7 TeVspp

0 20 40 60 80 100

)c (

GeV

/⟩

Tp⟨

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Data

EPOSDPMJETHIJINGAMPTGlauber MC

= 5.02 TeVNNsp-Pb

chN0 20 40 60 80 100

)c (

GeV

/⟩

Tp⟨

0.45

0.5

0.55

0.6

0.65

0.7

= 2.76 TeVNNsPb-Pb

Data

ALICE, 1307.1094

CR: color reconnection - a “collective”effect of hadronizing strings(a probability parameter)

EPOS LHC: parametrized flow(pp, p–Pb, Pb–Pb)Pierog et al., arXiv:1306.0121

Page 18: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

CGC strikes back

16 [email protected]

0 20 40 60 80 100 120 140N

ch

0.6

0.75

0.9

1.05

1.2

< p

T >

[G

eV]

ALICE, Pb+Pb 2.76 TeVALICE, p+p 7 TeVALICE, p+Pb 5.02 TeVb-CGC (Saturation)

| η| < 0.3, 0.15< pT [GeV]<10

Rezaeian, 1308.4736 (3 parameters)

Page 19: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

CGC strikes back

16 [email protected]

...or does it?

0 20 40 60 80 100 120 140N

ch

0.6

0.75

0.9

1.05

1.2

< p

T >

[G

eV]

ALICE, Pb+Pb 2.76 TeVALICE, p+p 7 TeVALICE, p+Pb 5.02 TeVb-CGC (Saturation)

| η| < 0.3, 0.15< pT [GeV]<10

Rezaeian, 1308.4736 (3 parameters)

)-1 (fm1/2)TS /chN(0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

)c (

GeV

/⟩

Tp⟨

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9 ALICE, charged particlesc<10.0 GeV/

Tp|<0.3, 0.15<η|

= 5.02 TeVNN

sp-Pb

= 7 TeVspp

= 2.76 TeVspp

ALICE, 1307.1094

geometric scaling (ST = πR2), McLerran et al., arXiv:1306.2350;

R ∼ (dNg/dy)1/3 ≃ (1.5 · dNch/dη)

1/3, sat. at 1.54 (2.39) fm for pp (p–Pb)

claim of success based on CMS data, arXiv:1307.3442 ...in a smaller Nch range

Page 20: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

p–Pb in perspective

17 [email protected]

)c (GeV/T

p

S0 /

00.20.40.60.8

11.21.41.61.8

22.22.4

0 2 4 6 8

0-5%

60-80%

= 5.02 TeVNNsALICE, p-Pb,

0 2 4 6 8

0-5%

80-90%

= 2.76 TeVNNsALICE, Pb-Pb,

0-5% central p–Pb collisions look like 60-70% central Pb–Pb(dNch/dη ∼1.7 lower)

ALICE, arXiv:1307.6796

η/dchNd10 210 310

)- π +

+ π

) / (

- +

K+

(K

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

= 2.76 TeVNNsALICE, Pb-Pb,

= 200 GeVNNsSTAR, Au-Au,

= 200 GeVNNsPHENIX, Au-Au,

= 200 GeVNNsBRAHMS, Au-Au,

= 5.02 TeVNNsALICE, p-Pb,

= 200 GeVNNsSTAR, d-Au,

η/dchNd10 210 310

)- π +

+ π

) / (

p(p

+

0.02

0.03

0.04

0.05

0.06

0.07

0.08

= 2.76 TeVNNsALICE, Pb-Pb,

= 200 GeVNNsPHENIX, Au-Au,

= 200 GeVNNsBRAHMS, Au-Au, = 5.02 TeVNNsALICE, p-Pb,

Page 21: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

More flow arguments

18 [email protected]

η/dchNd10 210

)c (

GeV

/⟩

Tp⟨

0.4

0.6

0.8

1

1.2

1.4

Λ + Λpp +

0SK

- + K+K

-π + +π

⟩T

β⟨0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

(G

eV)

kin

T

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

= 5.02 TeVNNsALICE, p-Pb,

= 2.76 TeVNNsALICE, Pb-Pb,

= 7 TeV (with Color Reconnection)sPYTHIA8,

= 7 TeV (without Color Reconnection)sPYTHIA8,

0 2 4 6 8 10

]-2 )c

) [(

GeV

/yd

Tp

/(d

N2 d

Tpπ

1/2

evN

1/

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

410

(100x)-π + +π

(10x)- + K+K

(1x)pp +

(0.1x)0SK

(0.01x)Λ + Λevent class 5-10%

Blast-Wave

EPOS LHC

Krakow

DPMJET

)c (GeV/T

p0 2 4 6 8 10

data

/ m

odel

0.51

1.5 -π + +π

0 2 4 6 8 10

0.51

1.5 - + K+K

0 2 4 6 8 10

0.51

1.5 pp +

0 2 4 6 8 10

0.51

1.5 0SK

0 2 4 6 8 10

0.51

1.5 Λ + Λ

ALICE, 1307.6796

Page 22: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Flow or Cronin effect or saturation?

19 [email protected]

(GeV/c)T

p0 2 4 6 8 10 12 14 16 18 20

dAu

, R

pPb

R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8charged particles

| < 0.3cms

η = 5.02 TeV, NSD, | NN

sALICE, p-Pb

| < 0.5η = 0.2 TeV, | NNsSTAR, d-Au

| < 0.18η = 0.2 TeV, | NNsPHENIX, d-Au

LHC vs. RHIC data

ALICE, PRL 110 (2013) 082302

• flow: blue-shift of spectralarger at LHC

• Cronin effect: “re-distribution” oflow-pT hadrons at higher pT dueto multiple (parton) scattering

larger at RHIC

• saturation: depletion of spectra atlow pTlarger at LHC

still need some strategy to distinguish...a challenge: reduce (dominant) systematic uncertainties (?)

Page 23: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Charmonium in p–Pb

20 [email protected]

ALICE, arXiv:1308.6726; LHCb, arXiv:1308.6729

cmsy

-4 -3 -2 -1 0 1 2 3 4

pPb

R

0

0.2

0.4

0.6

0.8

1

1.2

1.4 c<15 GeV/T

p, 0<-µ+µ→ψ= 5.02 TeV, inclusive J/NNs p-Pb

-1<3.53)= 5.0 nbcms

y (2.03<int

, L-1<-2.96)= 5.8 nbcms

y (-4.46<intL

EPS09 NLO (Vogt)

CGC (Fujii et al.)

/fm (Arleo et al.)2=0.075 GeV0

ELoss, q

/fm (Arleo et al.)2=0.055 GeV0

EPS09 NLO + ELoss, q

(GeV/c)T

p0 2 4 6 8 10 12 14

FB

R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

EPS09 NLO (Vogt)

/fm (Arleo et al.)2=0.075 GeV0

ELoss, q

/fm (Arleo et al.)2=0.055 GeV0

EPS09 NLO + Eloss, q

< 3.53cms

y, 2.96 < -µ+µ→ψ= 5.02 TeV, inclusive J/NNsp-Pb

theory (nobody’s perfect:) shadowing and Eloss ∼ OK ...CGC seems ruled out

tantalizing implication for Pb–Pb: RAA > 1 (at low pT) if-no-shadowing...cannot turn off shadowing, but means we may see this at the top LHC energy

Page 24: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Summary

• interesting / puzzling features in p–Pb collisions

• both initial state and final state (collective flow?) play a role

... would we be able to disentangle them?

...(if so) is CGC the correct description of the initial state?

• what are the implications for Pb–Pb?...normalize Pb–Pb to p–Pb(min.B)?

• would p–Pb (and pp) help elucidating thermalization and hadronization?

Page 25: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Extra slides

x

Page 26: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Elliptic flow (non-central collisions)

x1 [email protected]

density of binary collisionsU.Heinz, arXiv:0901.4355

−10 −5 0 5 10

−10

−5

0

5

10

x (fm)

y (f

m)

...arising from different initial gradi-ents along x and y

“self-quenching” (develops early)

determined by the spatial eccentricity

ε(b) = <y2−x2><y2+x2>

with energy dens. as weight

...transformed into momentumanisotropy in φ (wrt reaction plane)

Fourier coef. v2 = 〈cos(2(φ−ΨRP ))〉quantifies collective (elliptic) flow

Page 27: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Higher order harmonics (central collisions)

x2 [email protected]

Sorensen, JPG 37 (2010) 094011; Alver, Roland, PRC 81 (2010) 054905 ...collision geometry fluctuations

0 2 4

)φ∆C

(

0.99

0.995

1

1.005

1.01

1.015

Pb-Pb 2.76 TeV, 0-2% central

< 2.5 GeV/ctT

2 < p < 2 GeV/ca

T1.5 < p

| < 1.8η∆0.8 < |

/ndf = 33.3 / 352χ

[rad]φ∆0 2 4

ratio

0.998

1

1.002

n1 2 3 4 5 6 7 8

]-2

[10

∆nV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 Centrality

0-2%

< 2.5 GeV/ct

T2 < p

< 2 GeV/ca

T1.5 < p

ALICE, PLB 708 (2012) 032301; PRL 107 (2011) 032301ATLAS, PRC 86 (2012) 014907 ; PHENIX, PRL 107 (2011) 252301event-by-event distributions: ATLAS, arXiv:1305.2942constrain initial state and η/s (small) in hydrodynamic models

Page 28: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Identified hadrons at the LHC

x3 [email protected]

)c (GeV/T

p

)- π +

+ π

) / (

- +

K+

(K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3

0-5%

60-80%

= 5.02 TeVNNsALICE, p-Pb,

0 1 2 3

0-5%

80-90%

= 2.76 TeVNNsALICE, Pb-Pb,

)c (GeV/T

p

)- π +

+ π

) / (

p(p

+

0

0.2

0.4

0.6

0.8

1

0 1 2 3

0-5%

60-80%

= 5.02 TeVNNsALICE, p-Pb,

0 1 2 3

0-5%

80-90%

= 2.76 TeVNNsALICE, Pb-Pb,

ALICE, 1307.6796 ...

0-5% central p–Pb collisions look like 60-70% central Pb–Pb

Page 29: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Identified hadrons at the LHC

x4 [email protected]

)c (GeV/T

p

S0 /

00.20.40.60.8

11.21.41.61.8

22.22.4

0 2 4 6 8

0-5%

60-80%

= 5.02 TeVNNsALICE, p-Pb,

0 2 4 6 8

0-5%

80-90%

= 2.76 TeVNNsALICE, Pb-Pb,

η/dchNd10 210 310

)- π +

+ π

/ (

Λ2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

= 2.76 TeVNNsALICE, Pb-Pb,

= 200 GeVNNsSTAR, Au-Au,

)-π + +π) / (Λ + ΛSTAR, ( = 5.02 TeVNNsALICE, p-Pb,

ALICE, 1307.6796 ...

0-5% central p–Pb collisions look like 60-70% central Pb–Pb(dNch/dη ∼1.7 lower)

Page 30: 13 experimental papers: ALICE (7), ATLAS (2), CMS (3 ...llr.in2p3.fr/sites/qgp2013/Talks/Etretat2013_Andronic.pdf · ATLAS = 1 µb-1 int p+Pb, sNN = 5.02 TeV, L < 5 GeV T 0.3 < p

Identified hadrons at RHIC (d–Au collisions)

x5 [email protected]

-π/p 0-10%10-20%20-40%40-60%60-92%p+p

+πp/ = 200 GeVNNsAu+Au

πR

atio

p/

0

0.2

0.4

0.6

0.8

πR

atio

p/

0

0.2

0.4

0.6

0.8

1

(GeV/c)T

p0 1 2 3 4 5 6

-π/p 0-20%20-40%0-100%40-60%60-88%p+p

+πp/ = 200 GeVNNsd+Au

πR

atio

p/

0

0.1

0.2

0.3

0.4

πR

atio

p/

0

0.1

0.2

0.3

0.4

0.5

(GeV/c)T

p0 1 2 3 4 5 6

PHENIX, arXiv:1304.3410

... 0-20% central d–Au collisions look like 60-92% central Au–Au