1 organocatalysis: chiral amines in asymmetric synthesis natalie nguyen march 4, 2003

Post on 18-Jan-2016

221 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Organocatalysis:Chiral Amines in Asymmetric

Synthesis

Natalie NguyenMarch 4, 2003

2

N

N

R

HOH

N

N

HO

HR

NH

CO2H

N

N

R2

R1

NN

R

R

-Lactone and -Lactam formation

Acylation of Alcohols and Amines

Kinetic Resolution

Baylis-Hillman Reaction

CO2H

NH2

Aldol ReactionMannich ReactionMichael Additions

NH

NR1

R2

O

Ph

Friedel-Crafts Alkylation Indole Alkylation

Diels-Alder Cycloadditon

France, S.; Guerin, D.J.; Miller, S.J.; Lectka, T. Chem. Rev. 2003, 2985

Chiral Organocatalysts in Asymmetric Synthesis

R = OMe (Quinidine)R = H (Cinchonine)

R = OMe (Quinine)R = H (Cinchonidine)

3

Chiral Amines in Asymmetric Synthesis

NH

CO2H

NH

NR1

R2

O

Ph

HCl

Proline Catalyzed: Aldol Reaction Mannich Reaction

Imidazolidinone Catalyzed: Diels – Alder Cycloaddition

Total Synthesis of (+)-Hapalindole Q

4

Proline: Enzyme Mimic

Inexpensive Available in both enantiomeric forms

“Chemzyme”: Mode of action very similar to enzymes

NH

CO2HNH

CO2H

(S)-proline (R)-proline

NOH

O

H

NCO2

R

NCO2H

R

NH

CO2H

BifunctionalAcid and Base

Hydrogen-bond donorand acceptor

Iminium Enamine

5

Proline in Asymmetric Synthesis

The proline catalyzed Robinson annulation was one of the earliest examples of an enantioselective reaction

Yamada, 1969

Yamada, S.; Otani, G. Tetrahedron Lett. 1969, 4237

Ph

Me

CHO+

Ph

Me

N

COR

O

CHOMe

Ph

O

AcOH, H2O

O

PhMe

49% ee

NH

48%

MeOH:C6H6 (1:9)

preformed enamine

O

N

6

Proline in Asymmetric Synthesis

Hajos and Parrish, 1974

O

O

ONH

CO2H3 mol%

DMF, rt, 72 h52%

O

OOH

74% ee

p-TsOH

C6H6

O

O

Enantioselective Step

Hajos, Z.G.; Parrish, D.R. J. Org. Chem. 1974, 39, 1615Danishefsky, S. et al. J. Am. Chem. Soc. 1996, 118, 2843

O

(S)-proline

O

O

OH

OHO

OBnH

O

OAcHO

AcO

Baccatin III

O

O

Synthesis of Taxol (Danishefsky, 1996)

7

Intramolecular Aldol Reaction: Solvents and Catalyst

O

O

ONH

CO2H3 mol%

DMF, rt, 20 h100%

O

OOH

93% ee

Hajos, Z.G.; Parrish, D.R. J. Org. Chem. 1974, 39, 1615Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. Engl. 1976, 9, 412

Intramolecular aldol cyclization works best in aprotic polar solvents Protic solvents lower the enantioselectivity drastically

Catalyst Screening

Pyrrolidine ring, secondary nitrogen and carboxylic acid are important to catalysis

CO2H

NH2 NCO2H

NH

CO2Me

NH

CO2H NH

CO2H

8

Intramolecular Aldol Reaction: Mechanism

O

O

ONH

CO2H

O

O

N

CO2

O

O

N

CO2HO

NOH

CO2

O

OOH

+O

O

N

OH

CO2H -H2O

H2O

Enantioselective Step

Brown, K.L.; Damm, L.; Dunitz, J.D.; Eschenmoser, A.; Hobi, R.; Kratky, C. Helv. Chim. Acta. 1978, 61, 3108

O

OOH

si-face attackO O

Me

N

re si

CO2H

re-face attackO

OOH (R)

(S)

(S)

(R)

9

Intramolecular Aldol Reaction: Proposed Transition State

Attack occurs on the face opposite the carboxylic acid

Transition state is controlled and stablized by N-H-----O hydrogen bonding

Transition state is controlled and stablized by O-H-----O hydrogen bonding

Agami, 1984-1986 Houk, 2001-2003

N

HO

O

OO

Me

Agami, C.; Meynier, F.; Puchot, C.; Guilhem, J.; Pascard, C. Tetrahedron 1984, 40, 1031Bahmanyar, S; Houk, K.N. J. Am. Chem. Soc. 2001, 123, 12911

NO

O

OHH

H

Me

O

10

Intramolecular Aldol Reaction: Proposed Transition State

Attack occurs on the face opposite the carboxylic acid

Transition state is controlled and stablized by N-H-----O hydrogen bonding

Transition state is controlled and stablized by O-H-----O hydrogen bonding

Favorable electrostatic interactions +NCH-----O - (2.4 Å)

Agami, 1984-1986 Houk, 2001-2003

Agami, C.; Meynier, F.; Puchot, C.; Guilhem, J.; Pascard, C. Tetrahedron 1984, 40, 1031Bahmanyar, S; Houk, K.N. J. Am. Chem. Soc. 2001, 123, 12911

N

HO

O

OO

Me

NO

O

OHH

H

Me

O

11

Intramolecular Aldol Reaction: Proposed Transition State

Reaction is second order in proline A negative non-linear effect was

observed Two prolines are involved

Reaction is first order in proline A linear effect was observed One proline involved

Agami, 1984-1986 Houk, 2001-2003List, 2003

Agami, C.; Puchot, C.; Sevestre, H. Tetrahedron Lett. 1986, 27, 1501Hoang, L.; Bahmanyar, S.; Houk, K.N.; List, B. J. Am. Chem. Soc. 2003, 125, 16

N

O

O

OO

Me

H

NCO2

NO

O

OHH

H

Me

O

12

Intramolecular Aldol Reaction: Proposed Transition State

Me

O

O

N

O

O HHH

Bahmanyar, S.; Houk, K.N. J. Am. Chem. Soc. 2001, 123, 12911

si-face attack re-face attack

NO

O

OHH

H

Me

O

The hydrogen bonding allows the iminium double bond to be almost planer

Favorable electrostatic interactions +NCH-----O - (2.4 Å)

The hydrogen bonding forces the iminium double bond out of planarity

Small electrostatic interaction +NCH-----O - (3.4 Å)

Transition state is 3.4 kcal/mol higher in energy

13

Intermolecular Aldol Reaction

Evans’ Oxazolidinone Chiral auxillary

O

ClMe

HN O

O

Ph

BuLiO

NMe

O

O

Ph

1. Bu2BOTfEt3N

2. PhCHO

O

BO

N

O

OPh

Me

Bu

BuH

Ph

O

N O

O

Me

OH

Ph

Ph

LiOH, H2O2O

OH

Me

OH

Ph

syn-aldol

First Proline Catalyzed Direct Aldol Reaction (List, 2000)

OH

O

NO2

30 mol% (S)-proline

DMSO, 68%

OHO

NO2

76% ee

+

List, B.; Lerner, R.A.; Barbas III, C.F. J. Am. Chem. Soc. 2000, 122, 2395

14

Intermolecular Aldol Reaction: Mechanism

List, B. Tetrahedron, 2002, 58, 5573Bahmanyar, S.; Houk, K.N. J. Am. Chem. Soc. 2001, 123, 11273

OH

N

H

ArO

O

Previously proposed Zimmerman-Traxler transition state is unlikely because N-H bonding does not occur

O

NH

CO2H+ NCO2

NCO2H

O

H

H

N

O

O

OH

H

Ar

HN

O2COH

O OH

NO2

NO2NO2

15

Intermolecular Aldol Reaction: Amino Acid Catalysts

Catalyst Yield ee

68% 76%

(L)-His, (L)-Val

(L)-Tyr, (L)-Phe<10% -

55% 40%

<10% -

NH

CO2H

NH

CO2H

NH

CO2H

NH

CONH2

NH

CO2H

S

NH

CO2H

S

NH

CO2H

Catalyst Yield ee

<10% -

67% 73%

66% 86%

<10% -

List, B.; Lerner, R.A.; Barbas III, C.F. J. Am. Chem. Soc. 2000, 122, 2395 Sakthivel, K.; Notz, W.; Bui, T.; Barbas III, C.F. J. Am. Chem. Soc. 2001, 123, 5260

O+ H

O

NO2

20 mol% catalyst

rt, DMSO

OHO

NO2

16

Intermolecular Aldol Reaction: Amino Acid Catalysts

Catalyst Yield ee

68% 76%

(L)-His, (L)-Val

(L)-Tyr, (L)-Phe<10% -

55% 40%

<10% -

NH

CO2H

NH

CO2H

NH

CO2H

NH

CONH2

NH

CO2H

S

NH

CO2H

S

NH

CO2H

Catalyst Yield ee

<10% -

67% 73%

66% 86%

<10% -

O+ H

O

NO2

20 mol% catalyst

rt, DMSO

OHO

NO2

List, B.; Lerner, R.A.; Barbas III, C.F. J. Am. Chem. Soc. 2000, 122, 2395 Sakthivel, K.; Notz, W.; Bui, T.; Barbas III, C.F. J. Am. Chem. Soc. 2001, 123, 5260

17

Intermolecular Aldol Reaction: Substrate Scope

Reaction works best with large excess of ketone

Reaction is general to: aromatic aldehydes -substituted aldehydes

-Unsubstituted aldehydes: Aldol condensation product

was the major product

O OH

Product Yield ee

1

2

68%

60%

76%

86%

1 85% 99%

1 34% 72%

1

2

0%

0%

-

OHO

NO2

NH

CO2H S

NH

CO2H

1 2

O OH

O+

R2H

O 20 mol% catalyst

rt, DMSO:ketone (4:1)

OHO

R2

R1 R1

O OH

NO2

List, B.; Lerner, R.A.; Barbas III, C.F. J. Am. Chem. Soc. 2000, 122, 2395 Sakthivel, K.; Notz, W.; Bui, T.; Barbas III, C.F. J. Am. Chem. Soc. 2001, 123, 5260

18

Intermolecular Aldol Reaction: Anti-Aldol Products

Thiaproline (2): Not as general as

proline

Product Yield anti/syn ee

1

2

60%

45%

20:1

20:1

99%

95%

1 85% 1:1 (anti) 85%

(syn) 76%

1 68% 20:1 97%

O OH

O

Ph

OH

OH

O OH

Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386Sakthivel, K.; Notz, W.; Bui, T.; Barbas III, C.F. J. Am. Chem. Soc. 2001, 123, 5260List, B.; Pojarliev, P.; Castello, C. Org. Lett. 2001, 3, 573

R1

O

R2

+O

H R3

20 mol% catalyst

rt, DMSO:ketone (4:1) R1 R3

O

R2

OH

NH

CO2H S

NH

CO2H

1 2

19

Cross Aldol Reaction

H

O

R1 +O

H R2

10 mol% (S)-proline

DMF, 4 oC

O

H

OH

R1

R2

Product Yield anti/syn ee

88% 3:1 97%

81% 3:1 95%

80% 24:1 95%

82% 24:1 99%

O

H

OH

O

H

OH

O

H

OH

O

H

OH

Bu

Northrup, A.B.; MacMillan, D.W.C. J. Am. Chem. Soc. 2002, 124, 6798

Transition State

HH

NO

O

OHH

R2

R1

H

20

Mannich Reaction

The rate of the Mannich reaction must be faster than the rate of aldol reaction

O+

CHO

NO2

+

H2N

OMe 35 mol% (S)-proline

DMSO, 50%

O HN

OMe

NO294% ee

+

O OH

NO2

minor aldol product

List, B. J. Am. Chem. Soc. 2000, 122, 9336List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. J. Am. Chem. Soc. 2002, 124, 827

First Proline Catalyzed Direct Mannich Reaction (List, 2000)

R

O OH kAldol

N

H

O

R2

Keq = 1

R1-NH2

-H2OH

N

R2

R1 kMannich

R2

O HNR1

CO2H N CO2H

21

O

HR3+ N CO2H

R2

R3R1

NN

O

O

HR2

MeO

H

R1

HR1

NO

O

OHH

R3

R2

H

R1 R3

O

R2

HNPMP

R1 R3

O

R2

OH

Mannich

AldolH2N

OMe

syn anti

List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. J. Am. Chem. Soc. 2002, 124, 827

Mannich Reaction: Transition State

(E)-enamine (E)-enamine

22List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. J. Am. Chem. Soc. 2002, 124, 827List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. J. Am. Chem. Soc. 2002, 124, 827

O

HR3+ N CO2H

R2

R3R1

NN

O

O

HR2

MeO

H

R1

HR1

NO

O

OHH

R3

R2

H

R1 R3

O

R2

HNPMP

R1 R3

O

R2

OH

Mannich

AldolH2N

OMe

syn anti

List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. J. Am. Chem. Soc. 2002, 124, 827

Mannich Reaction: Transition State

(E)-enamine (E)-enamine

(E)-imine

23List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. J. Am. Chem. Soc. 2002, 124, 827List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. J. Am. Chem. Soc. 2002, 124, 827

O

HR3+ N CO2H

R2

R3R1

NN

O

O

HR2

MeO

H

R1

HR1

NO

O

OHH

R3

R2

H

R1 R3

O

R2

HNPMP

R1 R3

O

R2

OH

Mannich

AldolH2N

OMe

syn anti

List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. J. Am. Chem. Soc. 2002, 124, 827

Mannich Reaction: Transition State

(E)-enamine (E)-enamine

(E)-imine

Nonbondinginteractions

24

Mannich Reaction: Amino Acid Catalysts

Catalyst Yield ee

90% 93%

56% 76%

22% 15%

60% 16%

NH

CO2H

S

NH

CO2H

NH

CO2H

OH

NH

CO2H

HO

List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. J. Am. Chem. Soc. 2002, 124, 827

O+

O

H+

H2N

OMe35 mol% catalyst

Acetone HNO

OMe

25

Mannich Reaction: Amino Acid Catalysts

List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. J. Am. Chem. Soc. 2002, 124, 827

Catalyst Yield ee

90% 93%

56% 76%

22% 15%

60% 16%

NH

CO2H

S

NH

CO2H

NH

CO2H

OH

NH

CO2H

HO

O+

O

H+

H2N

OMe35 mol% catalyst

Acetone HNO

OMe

26

Mannich Reaction: Variation in Aldehydes

Aldehyde Yield ee

50% 94%

90% 93%

35% 96%

56% 70%

O

H

O

H

List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. J. Am. Chem. Soc. 2002, 124, 827

O+

O

RH+

H2N

OMe35 mol% (S)-proline

Acetone

R

O HN

OMe

O

H

R

NN

O

O

H

MeO

H

Transition StateO

H

NO2

27

Mannich Reaction: Variation in Ketones

Product Yield ee

96%

2.5:1

99%

94%

93% 98%

O HN

Ar

PMP

O HN

Ar

PMP

O HN

Ar

PMP

OMe

List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. J. Am. Chem. Soc. 2002, 124, 827

O

R+

OHC

NO2

+

H2N

OMe 35 mol% (S)-proline

DMSO

O HN

OMe

NO2R

ArR1

NN

O

O

HR2

MeO

H

Transition State

28

Aldol and Mannich Reaction

Direct Aldol Deprotonation or silylation is not required

Direct Mannich Imine electrophile can be generated in situ

Proline proved to the optimal catalyst Nontoxic Inexpensive Both enantiomers available Can be used in wet solvents and open to air Can be removed from reaction mixture by aqueous workup

NH

CO2H

(S)-proline

29

Organocatalyzed Diels-Alder Cycloaddition

Asymmetric Diels-Alder Reaction by Chiral Bases (Kagan, 1989)

O

N

O

R

H

H

N

O

O

Riant, O.; Kagan, H.B.; Tetrahedron, 1989, 30, 7403

O

N

N

HO

HMeOQuinidine, 50 mol%

CHCl3, -50 oC97%N

O

O

HO

N

O

O

61% ee

Transition State

30

Diels-Alder Cycloaddition

Exo vs Endo

O OO

O

Enantioselectivity in Diels Alder Reaction

exo endo

O

OO

+O

31

Diels-Alder Cycloaddition : Lewis Acids and Iminiums

Lewis Acids and Iminiums lowers the energy of the LUMO

O

dienophile

HOMO

LUMO

HOMO

LUMO

LUMO

HOMO

diene

Energy

Z

activateddienophile

32

Organocatalytic Diels-Alder Cycloaddition

MacMillan’s Catalyst Design: Lowers the energy of LUMO of the dienophile Kinetically labile ligand for catalytic turnover Chiral molecule would induce stereoselectivity

Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. J. Am. Chem. Soc. 2000, 122, 4243

NH

R1 R2 O

NR2R1

N

R2

R1

O

33

Diels-Alder Cycloaddition: Catalyst Screening

Catalyst Yield endo:exo exo ee

81% 1:2.7 48%

92% 1:2.6 57%

82% 1:3.6 74%

99% 1:1.3 93%

NH

CO2Me

NH

CO2MeMeO2C

Bn NH

Bn

MeO2C CO2Me

NH

NO

Ph

Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. J. Am. Chem. Soc. 2000, 122, 4243

Ph O +10 mol% catalyst

MeOH-H2O

23 oC OHC

Ph

endo

+

Ph

CHO

exo

HCl

34

Diels-Alder Cycloaddition: Catalyst Screening

Catalyst Yield endo:exo exo ee

81% 1:2.7 48%

92% 1:2.6 57%

82% 1:3.6 74%

99% 1:1.3 93%

NH

CO2Me

NH

CO2MeMeO2C

Bn NH

Bn

MeO2C CO2Me

NH

NO

Ph

Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. J. Am. Chem. Soc. 2000, 122, 4243

Ph O +10 mol% catalyst

MeOH-H2O

23 oC OHC

Ph

endo

+

Ph

CHO

exo

HCl

35

Diels-Alder Cycloaddition: Variation in Dienophiles

O

Ph O

O

R Yield endo:exo exo ee endo ee

75% 1:1 86% 90%

81% 1:1 84% 93%

99% 1:1.3 93% 93%

20% 1:7 - -

Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. J. Am. Chem. Soc. 2000, 122, 4243

O

Et

R O +5 mol%

MeOH-H2O

23 oC

NH

NO

Ph

HCl

OHC

R

endo

+

R

CHO

exo

36

Diels-Alder Cycloaddition: Variation in Dienes

Diene Yield endo:exo endo ee

82% 14:1 94%

90% - 83%

75% 5:1 90%

72% 11:1 85%

Ph

Me

Me

OAc

Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. J. Am. Chem. Soc. 2000, 122, 4243

O +X

20 mol%

MeOH-H2O

23 oC

NH

NO

Ph

HCl

endo

H

CHO

X

37

Diels-Alder Cycloaddition: Transition State

Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. J. Am. Chem. Soc. 2000, 122, 4243

Formation of (E)-imine to avoid nonbonding interactions between the geminal methyls Benzyl group shields the top face leaving the si-face exposed

O

NH

NO

Ph

+ N

NO

Ph

NN

O

N

N

Ph

O

CHO

N

N

Ph

O

endo

exo

CHO

+

+

NN

O

38

Diels-Alder Cycloaddition: Transition State

Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. J. Am. Chem. Soc. 2000, 122, 4243

Formation of (E)-imine to avoid nonbonding interactions between the geminal methyls Benzyl group shields the top face leaving the si-face exposed

O

NH

NO

Ph

+ N

NO

Ph

NN

O

N

N

Ph

O

CHO

N

N

Ph

O

endo

exo

CHO

+

+

NN

O

39

Diels-Alder Cycloaddition: Transition State

Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. J. Am. Chem. Soc. 2000, 122, 4243

Formation of (E)-imine to avoid nonbonding interactions between the geminal methyls Benzyl group shields the top face leaving the si-face exposed

O

NH

NO

Ph

+ N

NO

Ph

NN

O

N

N

Ph

O

CHO

N

N

Ph

O

endo

exo

CHO

+

+

NN

O

40

Diels-Alder Cycloaddition: Catalyst Screening

Catalyst Yield endo:exo ee

20% 7:1 -

89% 25:1 90%NH

NO

Ph

O

NH

NO

Ph

Northrup, A.B.; MacMillan, D.W.C. J. Am. Chem. Soc. 2000, 122, 4243

O

Et+

NH

NR2

R3

O

R1

20 mol%, H2O, 0 oC

HClO4

Ph

endo

OEt

41

Diels-Alder Cycloaddition: Variation in Dienophiles

Dienophile Yield endo:exo ee

89% 24:1 90%

78% 6:1 90%

24% 8:1 0

O

O

Northrup, A.B.; MacMillan, D.W.C. J. Am. Chem. Soc. 2000, 122, 4243

O

R1

O

R2+

20 mol%, MeOH-H2O

23 oC

NH

NO

Ph

O

HClO4

R1

endoOR2

NN

O

OR2

R1

Transition State

42

Diels-Alder Cycloaddition: Variation in Dienes

Diene Yield endo:exo endo ee

88% 200:1 94%

91% 100:1 89%

92% 200:1 83%

90% 200:1 90%

Ph

Me

Me

OMe

NHCBz

Northrup, A.B.; MacMillan, D.W.C. J. Am. Chem. Soc. 2000, 122, 4243

NN

O

OEt

R2

R1

Transition State

O

Et+

R2R1

20 mol%, MeOH-H2O

23 oC

NH

NO

Ph

O

HClO4

R2

COEt

R1

43

Diels-Alder Cycloadditon: Conclusions

Organocatalyzed Diels-Alder Cycloadditions Highly enantioselective Applicable to a variety of substrates

Chiral Amines Nontoxic Can be used in wet solvents and open to air Can be removed from reaction mixture by aqueous workup

NH

NO

Ph

O

HClO4

NH

NO

Ph HCl

44

The Total Synthesis of (+)-Hapalindole Q by an Organomediated Diels-Alder Reaction

Isolated from the terrestrial blue-green algae Hapalosiphon fontinalis

Cyanobacterium indigenous to the Marshall Islands

Isolated in 1984 by Moore and co-workers

Exhibits antimycotic activity through its ability to directly inhibit RNA polymerase

Has been synthesized by 5 groups

Aaron C. Kinsman and Michael KerrJ. Am. Chem. Soc. 2003, 125, 14120

NH

HNCS

(+)-Hapalindole Q

NH

R1

R2

H

C, D, E, F

NH

R1

R2

H

H

A, B, J, M, O

Hapalindoles

R1 = NC, NCSR2 = H, Cl, OH

45

(+)-Hapalindole Q: Retrosynthesis

(+)- Hapalindole Q

SCN

NHCHO

NTs

Diels-Alder

NN

O

TsN

NH

NO

PhHCl

NTs

CHO

+

46

(+)- Hapalindole Q: Synthesis

SCN

NH

NTs

CHO

+HO OH

O O

py, reflux, 2 h86%

NH 20 mol%

NTs

CO2H

EtOH, cat H2SO4reflux

Dean-Stark, 24 h97% N

Ts

CO2Et

-10 to 0 oC, 2 h, >95%

DIBAL- H, CH2Cl2

NTs

OH

Dess-Martin periodinaneCH2Cl2

0 oC, 1 h, 72%NTs

CHO

47

(+)- Hapalindole Q: Synthesis

SCN

NH

NTs

CHO

+

NH

HNO

Ph

rt, DMF/MeOH (1:1)5% H2O, 35%

NN

O

TsN

70% de93% ee endo

CHO

NTs

TsN

CHO

92% ee exo

85:15

HCl

NN

O

TsN

48

(+)- Hapalindole Q: Synthesis

CHO

NTs

TsN

CHO NaClO2, NaH2PO4 (aq)

2-methyl-2-butene

NTs

OHOTsN

O

OH1. Et3N, PhMe

2. MeOH, sealed tube150 oC, 17 h, 79%

NHCO2Me

NTs

TsN

NHCO2Me

85:15

85:15

85:15

POO

ON3

SCN

NH

49

(+)- Hapalindole Q: Synthesis

NHCO2Me

NTs

TsN

NHCO2Me

5 mol % K2OsO2(OH)415 mol % DABCO, MeSO2NH2

K2CO3, K3Fe(CN)6, THF, H2Ort, 2 d, 75%

NHCO2Me

NTsHO

HO

NHCO2Me

NTs

OHOH

85:15

+Unreacted exo

isomer

NaIO4/SiO2, CH2Cl2

2 h, >95%

O

MeO2CHN

O

NTs

3:1

endo exo

SCN

NH

50

(+)- Hapalindole Q: Synthesis

KOt-Bu, Ph3PCH3I

PhMe, 60 oC, 2 h

81%

MeO2CHN

O

NTs

KOt-Bu, Ph3PCH3I

PhMe, 60 oC, 2 h

67%

MeO2CHN

NTs

TBAF, THF

reflux, 12 h

H2N

NH0 oC, 20 h,

29% two steps

CH2Cl2

S

NN

NN

O

MeO2CHN

O

NTs

NH

HNCS

(+)-Hapalindole Q

51

(+)- Hapalindole Q: Conclusion

The first total synthesis utilizing an organomediated Diels-Alder reaction It was the most structurally complex molecule used with MacMillan’s

catalyst (+)-Hapalindole Q was synthesized in 12 steps in 1.7% overall yield

NH

HNCS

(+)-Hapalindole Q

52

Conclusions

The First Proline Catalyzed Direct Aldol reaction Direct Mannich reaction

Organocatalyzed Diels-Alder Cycloadditions Highly enantioselective Applicable to a variety of substrates Key step in the synthesis of (+)-Hapalindole Q

NH

CO2H

(S)-proline

NH

NO

Ph

O

HClO4

NH

NO

Ph HCl

53

Acknowledgements

Dr. Alex Fallis

The Fallis Group

Megan ApSimon

Dr. Christophe Benard

Matt Clay

Aaron Dumas

Dr. Nancy Lamb

Dr. Sara Palmier

Jeremy Praetorius

Thiva Thurugam

Kelly VanCrey

54

55

Diels-Alder Reaction: Synthesis of Catalyst

NH2

O

OMeMe-NH2

EtOH NH2

O

NHMe

O O

HNN

p-TSA

59%

Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. J. Amer. Chem. Soc. 2000, 122, 4243

NH2

O

NHMeSm(SO3CF3)3, THF

OCHO

O

HNN

O

46%

top related