alky.pdf

36
8/12/2019 alky.pdf http://slidepdf.com/reader/full/alkypdf 1/36

Upload: yefresson-guimarey-santiago

Post on 03-Jun-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 1/36

Page 2: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 2/36

2

Page 3: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 3/36

Page 4: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 4/36

changing the economics to favor H2SO4 alkylation. Several refiners, particularly those near major population

centers, are considering revamping their HF alkylation facitlities to H2SO4 alkylation.

Chemistry

The primary purpose of the alkylation reactor is to join isobutane and a light olefin to form branched alkylates.6

 AcidiC4  + C3   C7  + heat 

 AcidiC4  + C4   C8  + heat 

Disproportionation reactions contribute to a distribution of alkylate products from iC5 to C12+; i.e.,

  2C8   C7 + C9

Olefin polymerization is undesirable and is usually minimized by proper mixing, low reaction temperatures and

high isobutane concentrations.

  2C3H6   C6H12

CnH2n  + CmH2m   Cn+mH2(m+n)

The polymers form acid soluble oils that foul the sulfuric acid catalyst, resulting in excessive purge and make-up

requirements. As the acid strength weakens, an ‘‘acid runaway’’ characterized by low octane and increased

acid consumption may occur.

SIMULATION SCOPE AND OBJECTIVES

The objective is to model the overall basic sulfuric acid alkylation process in a manner that permits the process

engineer to analyze virtually all flowsheeting issues. The flowsheet models presented here allow the following

questions to be answered with few or no changes to the input description:

How is the process affected if more propane is circulated in the depropanizer-refrigeration recycle?

How is the process affected if more isobutane is recycled from the deisobutanizer?

What are the optimum feed tray locations for each of the four distillation columns?

How do the utility requirements change for changes in feedstock?

-- What is the total reboiler steam requirements for all four distillation columns?

-- What is the total refrigeration duty?

If supplemental isobutane is available, where is the optimum place in the flowsheet to introduce this

feed?

For a given reactor volume, what is the space velocity?

What are the differences if the deisobutanizer is operated as an isostripper instead of a conventional

tower?

4

4

Page 5: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 5/36

How is the refrigeration duty affected if effluent regrigeration rather than autorefrigeration is chosen?

How much reboiler duty is saved if the debutanizer is eliminated by drawing a normal butane-rich side

stream off of the deisobutanizer? How is the isobutane recycle affected?

The following simplifying assumptions have been made to the model:

Feed pretreatment is not included. If the amine towers are working correctly, their operation has no

effect on the flowsheet.

Caustic treatment is not considered. The reactor products are generally run through a caustic wash to

neutralize acid carryover and ester formation. If the acid settler is working correctly, the caustic wash

has little effect on the heat or hydrocarbon balance and may be safely deleted from the simulation.

The stoichiometry is assumed to be fixed for each isobutane-olefin reaction pair, and olefin is assumed

to react to extinction. This is clarified further in the REACTOR MODEL section.

Sulfuric acid is assumed to be 100% pure and totally immiscible with the process hydrocarbon. In

reality, circulating sulfuric acid is generally maintained at 85 - 96 weight percent. The trace amount of 

hydrocarbon absorbed by the acid is disposed of by the acid purge and may usually be ignored in the

hydrocarbon balance. Acid entrained or absorbed in the reactor hydrocarbon effluent is neutralized by

caustic wash, and does not normally have a significant effect on the hydrocarbon balance. For 

flowsheet simulation purposes, the only effect of having a sulfuric acid circulation is to correctly account

for the flowing heat capacity.

THE REACTOR MODEL A fixed stoichiometry for each pair of reacting components is derived from the work of Cupit, et al .

7  This

reference provides reaction yields on a volumetric basis. PRO/II was used to normalize the products to mass

balance with the feeds. Note that although it is necessary to adjust the stoichiometry to mass balance, it is

not necessary to normalize the stoichiometry to integer coefficients. Heat of reaction data need not be supplied.

PRO/II automatically accounts for reaction enthalpy via pure component heat of formation data adjusted for 

temperature and pressure.

5

5

Page 6: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 6/36

Table 2

Stoichiometric Coefficients for Alkylating Pairs of Components

Olefin Propylene Isobutylene 2-Butylenes 1-Butylene

Reactant

olefin 12.3008 8.5683 10.9924 11.5763

isobutane 12.3461 10.5445 11.3223 9.9587

Products

isopentane 0.5541 1.2706 0.6346 0.6877

2,3-dimethylbutane 0.5553 0.5925 0.6261 0.5870

2,4-dimethylpentane 2.3756 0.3827 0.2832 0.3016

2,3-dimethylpentane 5.9539 0.2638 0.1703 0.1730

2,2,4-trimethylpentane 0.4574 2.5703 3.3018 3.1778

2,4-dimethylhexane 0.0731 0.3627 0.4360 0.5271

2,3-dimethylhexane 0.1062 0.5101 0.5566 0.6466

2,3,4-trimethylpentane 0.3969 2.1523 4.6514 4.2314

2,2,5-trimethylhexane 0.0821 0.3998 0.1852 0.1686

C9s (NBP=280, MW=128) 0.0594 0.2074 0.0782 0.0984

C10s (NBP=325, MW=142) 0.6688 0.2754 0.0891 0.0720

C11s (NBP=365, MW=156) 0.4325 0.2134 0.0799 0.0761

C12s (NBP=395, MW=170) 0.0468 0.5173 0.2831 0.2674

C13+ (NBP=425, MW=184) 0.0315 0.0239 0.0000 0.0079

In the autorefrigeration flowsheets considered for this paper, the reaction vessel is divided into four reaction

chambers. Flashing occurs in each chamber to balance the exothermic heat of reaction. In the flowsheet

where effluent refrigeration is considered, the reaction takes place in a single reaction chamber under sufficient

pressure to suppress vapor flashing. This work assumes that the reaction is to be maintained at 45 F.

Temperatures significantly above 45 F will result in excessive acid consumption and lower octane. Tempera-

tures significantly below 45 F will increase the refrigeration load. Liquid hydrocarbon and acid phases coexist

in the reactor.

The reactor could be modeled with a reactor unit operation using conventional two phase equilibrium models,

followed by a three phase flash. This has one disadvantage in that the reactor is nested two levels deep in

controller and recycle loops, and rigorous three phase flashes add to the CPU overhead. In this paper, the

three phase flash is replaced with a stream calculator unit operation. This unit operation allows the user tomathematically manipulate stream separation.

One other solution for modeling a three phase reactor is to declare the acid as a solid component. It thus

carries with it a fixed heat capacity, but no vapor pressure. This strategy is not used in the simulations

presented in this paper, but has been proven in preliminary runs for this work.

THERMODYNAMIC MODELING

6

6

Page 7: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 7/36

The Soave modification to the Redlich-Kwong equation of state is used for all unit operations in the flowsheet

for the calculation of equilibrium, enthalpy and entropy.8 

SULFURIC ACID ALKYLATION FLOWSHEET

The flowsheet for the sulfuric acid alkylation plant with autorefrigeration and isostripper design is shownin Figure 1.

Treated saturated feed is combined with recycle from the refrigeration circuit and depropanized in column

DEC3. The overhead enters the deethanizer DEC2 and leaves the flowsheet as fuel gas and HD5 propane

product. The bottoms are cooled to 100 F and enter the economizer together with condensed propane rich

refrigeration and supplemental isobutane feed. Evaporation in the economizer cools the stream to 55 F. The

pressure is then let down to 30 psia as it enters the first reaction chamber together with sulfuric acid and recycle

isobutane.

 Acid and hydrocarbon are cascaded into each of four reaction chambers in sequence. Olefin feed enters the

tube side of the economizer where it is cooled to 65 F. The stream is split into four equal parts, each of which

enters a separate reaction chamber. Olefin reacts to extinction with isobutane in each chamber to form

alkylate. Vaporization in each chamber approximately compensates for the heat of reaction to maintain the

reactor at about 45 F throughout. All of the vapor is collected and recycled to the refrigeration circuit. Acid is

settled and decanted. Part of the acid is purged for on-site or off-site regeneration. The hydrocarbon enters

the isostripper DIC4 where normal butane and alkylate product is separated from the isobutane rich recycle.

The alkylate is then stabilized to an RVP of 12 psi in the debutanizer DEC4.

The hydrocarbon feeds to the flowsheet are shown in Table 3.

Table 3

Feed Hydrocarbon Conditions

Saturated

Feed

Olefin

Feed

Supplemental

Isobutane

Stream ID 1 2 3

Component rate,

  standard liquid volume, bbl/hr 

methane 2.0 -- --

ethane 10.0 -- --

propane 100.0 9.0 --

isobutane 187.5 95.0 36.0

normal butane 100.0 50.0 9.0

propylene -- 9.0 --

isobutylene -- 14.0 --

2-butylene -- 75.0 --

1-butylene -- 56.0 --

isopentane -- 5.0 --

7

7

Page 8: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 8/36

Total 399.5 413.0 45.0

Temperature, F 100 100 100

Pressure, psia 400 215 400

The supplemental isobutane feed has been included here to demonstrate that alternate sources of isobutane

with varying compositions and thermal conditions may be processed. The optimum flowsheet feed location

for this stream may or may not be the same as for the bulk of the isobutane feed. The effects of alternate feed

locations may be quickly tested via simulation.

Table 4

Acid Feed to Reactor 

Acid Feed

Acid Stream ID SA1

 Acid rate, 106 lb/hr 1.00

Temperature, F 45

Pressure, psia 40

RUN #1 - AUTOREFRIGRATION AND ISOSTRIPPER OPERATION

Simulation Strategy

The success of the simulation convergence depends on which flowsheet variables have assumed values, and

which are calculated by the program. Assumed values may be investigated through sensitivity analyses and

optimization techniques. Referring to the flowsheet given in Figure 1, convergence stability is enhanced by

fixing flowrates at least once in each of the recycle circuits. Thus, the bottoms of depropanizer DEC3 is

specified to contain a fixed value of 50 mole/hr of propane, and the overhead rate from deisobutanizer is fixed

at 1000 bbl/hr.

The economizer H2 is operated in a manner that fixes the outlet temperature of both sides of the exchanger.

Normally, there are only enough degrees of freedom to specify one outlet temperature of a heat exchanger;

however, the upstream pressure on the saturates side is varied by controller C1 until both temperature

specifications are met. This control loop is embedded in another control loop as well as a recycle loop. It is

thus essential that the tolerance is tightened, enabling the external loops to see clean derivatives. Since this

is the innermost loop, a good practice is to set this tolerance just barely loose enough to ensure convergence

on each pass. An absolute tolerance of 0.0001 F is used.

The reactor effluent temperature is controlled at 45 F by adjusting splitter S1. This has the effect of circulating

more or less refrigerant through the autorefrigeration circuit and thus cooling the reactor to a greater or lesser 

extent. The number of control iterations is limited to 5 as it is not necessary to solve this recycle to completion

on each recycle pass. This permits the recycle and control loop to converge simultaneously, reducing CPU

time. An absolute tolerance of 0.0002 F is used.

8

8

Page 9: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 9/36

The two-stage compressor and condenser together are replaced by a single flash for the recycle calculation

(see Figure 3). Following the successful convergence of the flowsheet, each compressor stage and the

condenser are solved once external to the recyle loop. Although the compressor does not require an excessive

amount of CPU, the number of passes through this loop make it well worthwhile to reduce the two P-S (constant

pressure - constant entropy) flashes and one P-T (constant pressure - constant temperature) flash to a single

P-T flash.

The case study feature of PRO/II is used to study the effects of increased propane to the refrigeration circuit,

increased isobutane recycle, and a change in feed composition to include more normal butane.

Input Description

The PRO/II keyword input file for the autorefrigeration/isostripper run is given in Appendix A. An electronic

copy of this file on 3-1/2" or 5-1/4" PC compatible disks may be obtained by contacting Simulation Sciences.

Results

Key operating conditions for the base case and case studies are summarized in Table 5, including total reboiler 

duties, reactor effluent flowrates and isobutane content, refrigeration loads, and product flows. These

parameters form the basis for calculating operating expenses.

Table 5

Key Flowsheet Parameters

Run #1 -- Autorefrigeration and Isostripper Operation

Basecase

More C3

Recycle

More iC4

Recycle

More nC4

in Feed

Input Flowsheet Parameters

C3 in depropanizer bottoms, moles/hr 50 100 50 50

Recycle from isostripper, bbl/hr 2525 2525 2600 2525

 Additional normal butane in saturates

feed, bbl/hr

0 0 0 50

Calculated Flowsheet Parameters

Reboiler duties, 106 Btu/hr 

Deethanizer DEC2 1.00 1.00 1.00 1.00

Depropanizer DEC3 28.24 29.02 28.40 28.46

Isostripper DIC4 80.69 80.69 82.73 80.36

Debutanizer DEC4 9.09 9.08 9.10 11.73

Total reboiler duties 119.02 119.79 121.23 122.05

HC liquid reactor effluent

Hot volume rate, gpm 2180 2180 2232 2214

Isobutane content liq. vol. percent 64.0 64.0 64.9 58.4

Compressor shaft power, hp

Stage 1 996 995 977 1044

9

9

Page 10: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 10/36

Stage 2 2005 2005 2005 2069

Total compressor duty 3001 3000 2982 2113

Product flowrates at standard conditions

Gas products, mscfh

Fuel gas 17.42 17.41 17.42 17.44Liquid products, bbl/hr

Liquid propane 111.1 111.1 111.0 110.8

Normal butane 118.9 118.6 118.9 168.7

12 RVP alkylate 522.3 522.3 522.3 522.6

10

10

Page 11: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 11/36

The significance of these results can be summarized as follows:

Table 6

Significance of Simulation Results for Run #1

Case Observations Conclusion

More C3 in depropanizer bottoms Increases depropanizer reboiler duty Profitability is improved whenpropane in depropanizer bottoms

is minimized.

More iC4 recycle Increases isobutane

concentration in reactor.

Reduces reactor and settler 

residence time due to increased

reactor throughput.

Increases isostripper reboiler duty

Reduces first stage compressor 

load.

Increase in octane and decrease

in acid consumption due to

isobutane content, together with

reduced compressor loading

more than compensates for 

increase in reboiler duty. If the

isostripper hydraulics and reactor 

residence time requirements are

not limiting, profitability is

improved as isobutane recycle is

increased.

More nC4 in feed The reactor isobutane

concentration decreases.

The reactor throughput increases.

The debutanizer reboiler rate

increases in proportion to

increase in product butane.

The refrigeration requirement

load increases.

 Although normal butane is an

inert component in the reactor, it

adversely affects plant

profitability. In particular, the

decrease in reactor isobutane

concentration translates to a

significant drop in octane and

increase in acid consumption.

RUNS #2 and #3 - DEISOBUTANIZER WITH AUTOTHERMAL REFRIGERATIONAND DEISOBUTANIZER WITH EFFLUENT REFRIGERATION

Figure 2 demonstrates the difference in configuration between the isostripper flowsheet and the deisobutanizer 

flowsheet.

The deisobutanizer overhead constitutes the isobutane rich recycle to the reactor. Based on the recycle rate

chosen, the reflux and feed tray location is optimized in a separate run constrained by an 80 percent of flood

specification. The larger the recycle, the smaller the reflux with the limiting case being the isostripper design

demonstrated by Run #1.

Figure 3 shows the flowsheet for the effluent refrigeration process. In this case, the reaction is conducted

under pressure and with cooling coils sufficient to keep all hydrocarbons in the liquid state. After decanting

the acid, the hydrocarbon reactor effluent is let down and passed through the tube side of the reactor. A 10

F hot-out/cold-out approach is assumed to be sufficient to cool the reactor, thus the tube side outlet is assumed

to be at 35 F.

11

11

Page 12: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 12/36

Page 13: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 13/36

The significance of these results can be summarized as follows:

Table 8

Significance of Results for Runs #2 and #3.

Comparison Observations Conclusion

Isostripper vs. deisobutanizer configuration Deisobutanizer operationdecreases substantially the

isobutane content in the reactor.

The deisobutanizer operation

substantially decreases the

reactor volumetric throughput.

Deisobutanizer operation

decreases the depropanizer 

duty, but increases refrigeration

load.

The isostripper operationrequires a substantially larger 

capital investment for increased

reactor and settler volumes. The

benefit to this is a substantially

improved octane and lower acid

consumption due to the higher 

reactor isobutane concentration.

 Autorefrigeration vs. effluent

refrigeration

The autorefrigeration operation

requires less refrigeration.

Based on the operating

parameters considered here, the

autorefrigeration operation is

more economical. Licensors of 

autorefrigeration alkylation point

out that the lower temperatures

required on the tube side of 

effluent refrigeration reactors

accounts for the higher 

compression requirements.9

Note, however, that the two

reactor designs are

fundamentally different and other considerations not included here,

such as capital costs and mixing

utilities, will have an important

impact.

CONCLUSIONS

Steady state process simulation technology has matured to the point where large scale highly integrated

process plants are simulated routinely to answer ‘‘what if’’ questions ranging from small parametric changes

to changes in plant configuration. PRO/II has been used to demonstrate this capability in solving a sulfuric

acid alkylation flowsheet which has a high degree of recycle and thermal integration. Typical process questionsregarding this flowsheet have been posed and answered.

13

13

Page 14: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 14/36

REFERENCES

1. Masters, K.R., ‘‘Alkylation’s Role in Reformulated Gasoline’’, presented at 1991 Spring National Meeting

 AIChE.

2. Unzelman, G.H., ‘‘U.S. Clean Air Act Expands Role for Oxygenates’’, Oil & Gas Journal ,

 April 15, 1991.

3. API, Technical Data Book - Petroleum Refining , Volume 1 (1987).

4. Chapin, L.E., Liolios, G.C. and Robertson, T.M., ‘‘Which Alkylation - HF or H2SO4?’’,

Hydrocarbon Processing , September 1985, pg. 67-71.

5. Myer, D.W., Chapin, L.E. and Muir, R.F., ‘‘Cost Benefits of Sulfuric Acid Alkylation,’’ Chem. Eng. Pro-

gress, 79, 8, pg. 59-65 (1983).

6. Lee, L. and Harriott, P., ‘‘The Kinetics of Isobutane Alkylation in Sulfuric Acid,’’

I&EC Process Design Dev., 16, 3 (1977).

7. Cupit, C.R., Gwyn, J.E. and Jernigan, E.C., ‘‘Special Report Catalytic Alkylation’’, Petroleum and Chemi-

cal Engineering , 33, 47, 1961 and 34, 49, (1962).

8. Soave, G., ‘‘Equilibrium Constants from a Modified Redlich-Kwong Equation of States,’’ Chem. Eng. Sci.,

27, 1177-1203 (1972).

9. Lerner, H. and Citarella, V.A., ‘‘Exxon Research and Engineering Sulfuric Acid

 Alkylation Technology’’, presented at 1991 NPRA Annual Meeting.

14

14

Page 15: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 15/36

Figure 1H2SO4 ALKYLATION PLANT

With Isostripper and Autorefrigeration

Page 16: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 16/36

16

16

Page 17: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 17/36

17

17

Page 18: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 18/36

APPENDIX A

PRO/II Input File for Run #1 - Autorefrigeration with Isostripper Configuration

 An electronic copy of this input file is available from Simulation Sciences. This file has been

validated on PRO/II version 3.02 or greater. TITLE PROJ=H2SO4 ALKY, PROB= RUN1, USER=SIMSCI,CASEID=BASE-CASE$$ 12,000 BPSD H2SO4 ALKYLATION PLANT.  PRINT RATE=M,LV,STREAM=PART,INPUT=NONE  CALC TRIALS=40 ,RECYCLE=TEAR  DIME LIQV=BBL,XDENS=SPGR  OUTDIMENSION SI  SEQU FX,HT3 ,FB2,DEC3, FB2X &  PC1,S1,V1, H2,C1, &  OLSP,RX1A,F1X,RX1B,F1Y,RX1C,F1Z,RX1D, &  F1ZZ,SETL,VAPR,C2,MCOM, P2, &  DIC4,CON1,FT1, P1,DEC4,FB4,CL4, &  P3,DEC2,FB1,CL1, &  SCTN,CMP1,CMP2,AFTR

COMP DATA  LIBID 1,C1 /2,C2 /3,C3 /4,IC4 /5,NC4/ &

  6,PROPENE/7,ISOBUTENE/8,T2BUTENE,,2BUTENE /9,1BUTENE / &  10,IC5 /11,23DMB /12,24MP /13,23MP/ &  14,224MPN /15,24HX /16,23HX /17,234MP/18,225MHX

  PETRO 19,C9s, 128.26, 0.73, 280 / &  20,C10s, 142.28, 0.74, 325 / &  21,C11s, 156.31, 0.75, 365 / &  22,C12s, 170.34, 0.76, 395 / &  23,C13s, 184.36, 0.77, 425

  LIBID 24,H2SO4,BANK=SIMSCI  TC(K) 24,924  PC(BAR) 24,64  VISC(V) CORR=1,DATA=24,,,1  COND(V) CORR=1,DATA=24,,,1

THERMODYNAMIC DATA  METHOD SYSTEM=SRK,TRANSPORT=PURE,SET=SRK  ENTHALPY ALPHA=SIMSCI  SA06 24,1.81341,1.25196,0.566576

STREAM DATA

$ SATURATE FEED  PROP STREAM=1,TEMP=100,PRES=400, &  COMP(LV)=1,2 / 2,10 / 3,100 / 4,187.5 / 5,100.

$ OLEFIN FEED  PROP STREAM=2,TEMP=100,PRES=215, &  COMP(LV)=3,9 / 4,95 / 5,50 / 6,9 / 7,14/ 8,175 /9,56/ 10,5

$ MAKE-UP  PROP STREAM=3,TEMP=100,PRES=400,RATE(LV)=45, &  COMP(LV)=4,80 / 5,20

$ MAKEUP N-BUTANE FOR CASE STUDY ANALYSIS  PROPSTREAM=1NB,TEMP=100,PRES=400,COMP(LV)=5,1,RATE=0.00001

$ ACID FEED  PROP STREAM=SA1, TEMP=45, PRES=40,COMP(WT,LB/HR)=24,1000000

$ DEIC4 FEED  PROP STREAM=253X,TEMP=110,PRES=115,REFSTREAM=251

$ DEC2 FEED  PROP STREAM=11B,TEMP=140,REFSTREAM=11A

  $ RECYCLE STREAM DATA ESTIMATES

  PROP STREAM=27P,NAME=RCY_SAT,PHASE=L,PRES=400, &  COMP=3,100 / 4,600 / 5,100

  PROP STREAM=26,NAME=SRG_DRUM,PHASE=L,PRES=73, &  COMP=3,900 / 4,4000 / 5,800

  PROP STREAM=30R,NAME=RCY_IC4,TEMP=62,PRES=200, &  COMP=3,400 / 4, 6500 / 5,1600 / 10,30 / 11,7 / 13,4/ &  14,20 17,10 / 18, 1

  NAME 1,SATURATED FEED/2,OLEFIN FEED/3,MAKEUP IC4/ &  10,DEC3 FEED/11,PROPANE TO DEC2/12,DEC4 BOTTOMS/ &  20, OLEFIN TO RXN/21,IC4 TO RXN/24, RXN VAPORS/&  25, RXN LIQUIDS/26, COMP SURGE DRUM LIQ/27, RCY TODEC3/&  30, DEIC4 OVHD/ 30R, IC4 RCY/32, BUTANE/332,ALKY-LATE/&  40, FUEL GAS/41B, HD5 PROPANE

  OUTPUT FORMAT=VOLSUM, STREAMS=1,2,3,DESCRIPTION=FEEDSTREAMS  OUTPUT FORMAT=VOLSUM, STREAMS=40,41B,32,332,  DESCRIPTION=PRODUCT STREAMS &  OUTPUT FORMAT=VOLSUM, STREAMS=25,DESCRIPTION=REACTOR

PRODUCT

  FORMAT ID=VOLSUM,NAME,LINE,TEMP,PRES,LINE,&  LRATE(LV,1,2,BBL/DAY)=C2+,&  LRATE(LV,3,BBL/DAY)=PROPANE,&  LRATE(LV,4,BBL/DAY)=I-BUTANE,&  LRATE(LV,5,BBL/DAY)=N-BUTANE,&  LRATE(LV,6,BBL/DAY)=PROPENE,&  LRATE(LV,7,9,BBL/DAY)=BUTENES,&  LRATE(LV,10,BBL/DAY)=PENTANE,&  LRATE(LV,11,23,BBL/DAY)=C6+,LINE,&

RATE(LV,BBL/DAY),RATE(LV,BBL/HR),RATE(LV,M3/HR),LINE,&

ARATE(LV,GAL/MIN),ARATE(LV,L/MIN),LINE,&

RATE(GV,FT3/HR),RATE(GV,M3/HR),LINE, &  CPCT(LV,4)

UNIT OPERATION

FLASH UID=FX,NAME=OLEFIN FD  FEED 2  PROD L=2A

  BUBB TEMP=200

FLASH UID=HT3, NAME=PRECHILLER  $ PRECOOLS OLEFIN FEED TO 100 F  FEED 2A  PROD L=2B  ISO TEMP=100,DP=5

HX UID=FB2  OPERATION CTEMP=170  COLD FEED=1,1NB,27P,L=10

COLUMN UID=DEC3, NAME=SAT DEC3  FEED 10,20  PROD OVHD=11,60,BTMS=12  CONDENSER TYPE=BUBB,PRES=310  PARA TRAY=40  SPEC REFLUX,VALUE=4000  SPEC STREAM=12,COMP=3,RATE,VALUE=50.0  ESTI MODEL=CONVENTIONAL,RRATIO=9.0  DUTY 1,1/2,40  VARY DUTY=1,2  PSPEC PTOP=315,DPCOL=10  PRINT PROP=BRIEF  TRATE SECTION=2,39,SIEVE,PASSES=2, &  SPACING(TRAY,IN)=24, DIAMETER(TRAY,FT)=10.0

HX UID=FB2X  HOT FEED=12,L=121,DP=5  OPERATION  COLD FEED=1,1NB,27P,L=10X  CONFIG U=80  DEFINE DUTY AS HX=FB2, DUTY

HX UID=PC1, NAME=ECON PRECOOL  HOT FEED=121,L=122,DP=5  OPERATION HTEMP=100  CONFIG U=100  UTIL WATER TIN=70,TEMP=80

19

Page 19: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 19/36

SPLITTER UID=S1  FEED 26  PROD L=27,L=28  SPEC STREAM=27,RATE(LV),VALUE=75

 VALVE UID=V1  FEED 28  PROD M=28V  OPERATION DP=30

HX UID=H2, NAME=ECONOMIZER  HOT FEED=2B,L=20,DP=3  COLD FEED=122,3,28V,DP=1,L=21,V=29  CONFIG U=80  OPERATION HTEMP=65

CONTROLLER UID=C1  SPEC STREAM=21,TEMP,VALUE=55,ATOL=0.0001  VARY VALVE=V1,DP,MAXI=70$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ Begin substitution here when operating as Effluent $$ Refrigeration Reactor

SPLITTER UID=OLSP,NAME=OLEFIN_SPLITTER  FEED 20  PROD V=20A, V=20B, V=20C, V=20D  SPEC STREAM=20A,RATE,RATIO, REFF, VALUE=0.25  SPEC STREAM=20B,RATE,RATIO, REFF, VALUE=0.25  SPEC STREAM=20C,RATE,RATIO, REFF, VALUE=0.25

REACTOR UID=RX1A, NAME=1ST_STAGE  FEED 20A,21,30R,SA1  PROD M=24X

  OPERATION PRES=30,ADIABATIC  RXCALC CONV $,REFPHASE=L,REFTEMP=45

$ PROPENE - ISOBUTENE REACTION  STOIC 4, -12.3461/ 6, -12.3008/ &  10, 0.5541/ 11, 0.5553/ 12, 2.3756/ 13, 5.9539/&  14, 0.4574/ 15, 0.0731/ 16, 0.1062/ 17, 0.3969/ &  18, 0.0821/ 19, 0.0594/ 20, 0.6688/ 21, 0.4325/ &  22, 0.0468/ 23, 0.0315  BASE COMP=6  CONVERSION 1.0

$ ISOBUTENE - ISOBUTANE REACTION  STOIC 4, -8.5683/ 7, -10.5445/ &  10, 1.2706/ 11, 0.5925/ 12, 0.3827/ 13, 0.2638/&  14, 2.5703/ 15, 0.3627/ 16, 0.5101/ 17, 2.1523/ &  18, 0.3998/ 19, 0.2074/ 20, 0.2754/ 21, 0.2134/ &  22, 0.5173/ 23, 0.0239  BASE COMP=7  CONVERSION 1.0

$ 2-BUTENE - ISOBUTANE REACTION  STOIC 4,-10.9924/ 8, -11.3233/ &  10, 0.6347/ 11, 0.6261/ 12, 0.2832/ 13, 0.1703/ &  14, 3.3018/ 15, 0.4360/ 16, 0.5566/ 17, 4.6514/ &  18, 0.1852/ 19, 0.0782/ 0, 0.0891/ 21, 0.0799/ &  22, 0.2831  BASE COMP=8  CONVERSION 1.0

$ 1-BUTENE - ISOBUTANE REACTION  STOIC 4,-11.5763/ 9, -9.9587/ &  10, 0.6877/ 11, 0.5870/ 12, 0.3016/ 13, 0.1730/ &  14, 3.1778/ 15, 0.5271/ 16, 0.6466/ 17, 4.2314/ &  18, 0.1686/ 19, 0.0984/ 20, 0.0720/ 21, 0.0761/ &  22, 0.2674/ 23, 0.0079  BASE COMP=9  CONVERSION 1.0

STCALC UID=F1X,NAME=3_PHASE  FEED 24X  OVHD V=24A,L=25A

  BTMS STREAM=25AX  FOVHD 1,23,1.0/24,0.0

REACTOR UID=RX1B, NAME=2ND_STAGE  FEED 20B,25A,25AX  PROD M=24Y  OPERATION PRES=29,ADIABATIC  RXCALC CONV $,REFPHASE=L,REFTEMP=45

$ PROPENE - ISOBUTENE REACTION  STOIC 4, -12.3461/ 6, -12.3008/ &  10, 0.5541/ 11, 0.5553/ 12, 2.3756/ 13, 5.9539/&  14, 0.4574/ 15, 0.0731/ 16, 0.1062/ 17, 0.3969/ &  18, 0.0821/ 19, 0.0594/ 20, 0.6688/ 21, 0.4325/ &  22, 0.0468/ 23, 0.0315

  BASE COMP=6  CONVERSION 1.0$ ISOBUTENE - ISOBUTANE REACTION  STOIC 4, -8.5683/ 7, -10.5445/ &  10, 1.2706/ 11, 0.5925/ 12, 0.3827/ 13, 0.2638/&  14, 2.5703/ 15, 0.3627/ 16, 0.5101/ 17, 2.1523/ &  18, 0.3998/ 19, 0.2074/ 20, 0.2754/ 21, 0.2134/ &  22, 0.5173/ 23, 0.0239  BASE COMP=7  CONVERSION 1.0

$ 2-BUTENE - ISOBUTANE REACTION  STOIC 4,-10.9924/ 8, -11.3233/ &  10, 0.6347/ 11, 0.6261/ 12, 0.2832/ 13, 0.1703/ &  14, 3.3018/ 15, 0.4360/ 16, 0.5566/ 17, 4.6514/ &  18, 0.1852/ 19, 0.0782/ 0, 0.0891/ 21, 0.0799/ &  22, 0.2831  BASE COMP=8  CONVERSION 1.0

$ 1-BUTENE - ISOBUTANE REACTION  STOIC 4,-11.5763/ 9, -9.9587/ &  10, 0.6877/ 11, 0.5870/ 12, 0.3016/ 13, 0.1730/ &  14, 3.1778/ 15, 0.5271/ 16, 0.6466/ 17, 4.2314/ &  18, 0.1686/ 19, 0.0984/ 20, 0.0720/ 21, 0.0761/ &  22, 0.2674/ 23, 0.0079  BASE COMP=9  CONVERSION 1.0

STCALC UID=F1Y,NAME=3_PHASE  FEED 24Y  OVHD V=24B,L=25B  BTMS STREAM=25BX  FOVHD 1,23,1.0/24,0.0

REACTOR UID=RX1C, NAME=3RD_STAGE  FEED 20C,25B,25BX  PROD M=24Z  OPERATION PRES=28,ADIABATIC  RXCALC CONV $,REFPHASE=L,REFTEMP=45

$ PROPENE - ISOBUTENE REACTION  STOIC 4, -12.3461/ 6, -12.3008/ &  10, 0.5541/ 11, 0.5553/ 12, 2.3756/ 13, 5.9539/&  14, 0.4574/ 15, 0.0731/ 16, 0.1062/ 17, 0.3969/ &  18, 0.0821/ 19, 0.0594/ 20, 0.6688/ 21, 0.4325/ &  22, 0.0468/ 23, 0.0315  BASE COMP=6  CONVERSION 1.0

$ ISOBUTENE - ISOBUTANE REACTION  STOIC 4, -8.5683/ 7, -10.5445/ &  10, 1.2706/ 11, 0.5925/ 12, 0.3827/ 13, 0.2638/&  14, 2.5703/ 15, 0.3627/ 16, 0.5101/ 17, 2.1523/ &  18, 0.3998/ 19, 0.2074/ 20, 0.2754/ 21, 0.2134/ &

  22, 0.5173/ 23, 0.0239  BASE COMP=7  CONVERSION 1.0

$ 2-BUTENE - ISOBUTANE REACTION  STOIC 4,-10.9924/ 8, -11.3233/ &  10, 0.6347/ 11, 0.6261/ 12, 0.2832/ 13, 0.1703/ &  14, 3.3018/ 15, 0.4360/ 16, 0.5566/ 17, 4.6514/ &  18, 0.1852/ 19, 0.0782/ 0, 0.0891/ 21, 0.0799/ &  22, 0.2831  BASE COMP=8  CONVERSION 1.0

$ 1-BUTENE - ISOBUTANE REACTION  STOIC 4,-11.5763/ 9, -9.9587/ &  10, 0.6877/ 11, 0.5870/ 12, 0.3016/ 13, 0.1730/ &  14, 3.1778/ 15, 0.5271/ 16, 0.6466/ 17, 4.2314/ &  18, 0.1686/ 19, 0.0984/ 20, 0.0720/ 21, 0.0761/ &  22, 0.2674/ 23, 0.0079  BASE COMP=9  CONVERSION 1.0

STCALC UID=F1Z,NAME=3_PHASE  FEED 24Z  OVHD V=24C,L=25C  BTMS STREAM=25CX  FOVHD 1,23,1.0/24,0.0

REACTOR UID=RX1D, NAME=4TH_STAGE  FEED 20D,25C,25CX  PROD M=24ZZ  OPERATION PRES=27,ADIABATIC  RXCALC CONV $,REFPHASE=L,REFTEMP=45

20

Page 20: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 20/36

$ PROPENE - ISOBUTENE REACTION  STOIC 4, -12.3461/ 6, -12.3008/ &  10, 0.5541/ 11, 0.5553/ 12, 2.3756/ 13, 5.9539/&  14, 0.4574/ 15, 0.0731/ 16, 0.1062/ 17, 0.3969/ &  18, 0.0821/ 19, 0.0594/ 20, 0.6688/ 21, 0.4325/ &  22, 0.0468/ 23, 0.0315  BASE COMP=6  CONVERSION 1.0

$ ISOBUTENE - ISOBUTANE REACTION  STOIC 4, -8.5683/ 7, -10.5445/ &

  10, 1.2706/ 11, 0.5925/ 12, 0.3827/ 13, 0.2638/&  14, 2.5703/ 15, 0.3627/ 16, 0.5101/ 17, 2.1523/ &  18, 0.3998/ 19, 0.2074/ 20, 0.2754/ 21, 0.2134/ &  22, 0.5173/ 23, 0.0239  BASE COMP=7  CONVERSION 1.0

$ 2-BUTENE - ISOBUTANE REACTION  STOIC 4,-10.9924/ 8, -11.3233/ &  10, 0.6347/ 11, 0.6261/ 12, 0.2832/ 13, 0.1703/ &  14, 3.3018/ 15, 0.4360/ 16, 0.5566/ 17, 4.6514/ &  18, 0.1852/ 19, 0.0782/ 0, 0.0891/ 21, 0.0799/ &  22, 0.2831  BASE COMP=8  CONVERSION 1.0

$ 1-BUTENE - ISOBUTANE REACTION  STOIC 4,-11.5763/ 9, -9.9587/ &  10, 0.6877/ 11, 0.5870/ 12, 0.3016/ 13, 0.1730/ &  14, 3.1778/ 15, 0.5271/ 16, 0.6466/ 17, 4.2314/ &  18, 0.1686/ 19, 0.0984/ 20, 0.0720/ 21, 0.0761/ &  22, 0.2674/ 23, 0.0079

  BASE COMP=9  CONVERSION 1.0

STCALC UID=F1ZZ,NAME=3_PHASE  FEED 24ZZ  OVHD V=24D,L=25D  BTMS L=25DX  FOVHD 1,23,1.0/24,0.0

STCALC UID=SETL,NAME=ACID_SETTLER  FEED 25D/25DX  OVHD V=24E,L=25,PRES=26  BTMS STREAM=SA2,PRES=26  FOVHD 1,23,1.0/24,0.0

MIXER UID=VAPR, NAME=RXN_VAPORS  FEED 24A,24B,24C,24D,24E  PROD V=24

$ End substitution here when operating as Effluent $$ Refrigeration Reactor $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

CONTROLLER UID=C2  SPEC STREAM=25,TEMP,VALUE=45,ATOL=0.0002  VARY SPLITTER=S1,SPEC,MINI=1,MAXI=1000,STEP=20  CPARAMETER ITER=5

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ REFRIGERATION CIRCUIT $

FLASH UID=MCOM $ SIMULATED IN DETAIL OUTSIDE THE  FEED 24,29 $ RECYCLE LOOPS WITH CMP1, CMP2AND AFTR  BUBB TEMP=100 $ PRES=73  PROD L=26$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ PRODUCT PURIFICATION CIRCUIT

PUMP UID=P2,NAME=EFFL_PUMP  FEED 25  PROD L=251

  OPERATION PRES=120

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ Start substitution here when running as desisobutanizer $

COLUMN UID=DIC4,NAME=ISO-STRIP  PARA SURE=20 TRAYS=42

FEED 253X,1  PROD OVHD=30,BTMS=31,1300  DUTY 1,42  SPEC STREAM=30,RATE(LV),VALUE=2525 $ THIS SETS THE IC4RECYCLE  VARY DUTY=1  ESTIMATE MODEL=CONVENTIONAL  PRESSURE 1,90/42,95  PRINT PROP=BRIEF

  TRATE SECTION=2,42,SIEVE,PASSES=4, &  SPACING(TRAY,IN)=24, DIAMETER(TRAY,FT)=13

HX UID=CON1,NAME=DIC4_COND  HOT FEED=30,L=301,DP=5  UTIL WATER TIN=70,TEMP=80  OPER HLFRAC=1.0  CONFIG U(BTU/HR)=110

$ End substitution here when running as desisobutanizer $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

HX UID=FT1,NAME=EFFL_RECL  COLD FEED=251,L=252,DP=5  HOT FEED=301,L=30R,DP=5  OPER HTEMP=62  CONFIG U(BTU/HR)=90

PUMP UID=P1  FEED 27  PROD L=27P  OPER PRES=400

$ THE DEBUTANIZER CIRCUIT IS SOLVED OUTSIDE THE LOOP

 COLUMN UID=DEC4,NAME=DEBUTANIZER  PARA TRAYS=30  FEED 31,15  PROD OVHD=32,350,BTMS=33  COND TYPE=TFIX,TEMP=100,PRES=80  DUTY 1,1/2,30  SPEC STREAM=33,RVP,VALUE=12.0  SPEC STREAM=32, COMP=10, PERCENT(LV), VALUE=2  VARY DUTY=1,2

  ESTIMATE MODEL=CONVENTIONAL  PRESSURE 2,85/30,90  PRINT PROP=BRIEF  TRATE SECTION=2,29,SIEVE,PASSES=1, &  SPACING(TRAY,IN)=24, DIAMETER(TRAY,FT)=5

HX UID=FB4,NAME=EFFL_ALKY  COLD FEED=252,L=253,DP=5  HOT FEED=33,L=331,DP=5  OPER CTEMP=110

HX UID=CL4,NAME=ALKY_CLR  HOT FEED=331,L=332,DP=5  UTIL WATER TIN=70,TEMP=80  OPER HTEMP=100

$ THE DEETHANIZER IS SOLVED OUTSIDE THE LOOP

PUMP UID=P3  FEED 11  PROD L=11A

  OPERATION PRES=600

COLUMN UID=DEC2, NAME=DEETHANIZER  FEED 11B,5  PROD OVHD=40,40,BTMS=41  CONDENSER TYPE=PART,PRES=420  PARA TRAY=20  SPEC TRAY=1,TEMP,VALUE=100.0  SPEC STREAM=41,TVP(PSIG),VALUE=203 $ HD5 SPEC IS 208 MAX  ESTI MODEL=CONVENTIONAL,RRATIO=2.0  DUTY 1,1/2,20  VARY DUTY=1,2  PSPEC PTOP=425,DPCOL=10  PRINT PROP=BRIEF  TSIZE SIEVE

HX UID=FB1  COLD FEED=11A,L=11B,DP=5  HOT FEED=41,L=41A,DP=5  OPERATION HOCO=5

HX UID=CL1  HOT FEED=41A,L=41B,DP=5

  UTIL WATER TIN=70,TOUT=80  OPERATION HTEMP=100

$ THE COMPRESSOR REQUIREMENTS CAN BE CALCULATED AFTER$ THE RECYCLE LOOPS ARE SOLVED

VALVE UID=SCTN, NAME=SUCTION  FEED 24  PROD V=240  OPERATION PRES=23

COMPRESSOR UID=CMP1, NAME=1ST STAGE  FEED 240  PROD V=241

21

Page 21: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 21/36

  OPERATION EFF=80  DEFINE PRESSURE AS STREAM=29 PRESSURE MINUS 1

COMPRESSOR UID=CMP2, NAME=2ND STAGE  FEED 241,29  PROD V=260  DEFINE PRESSURE AS STREAM=26,PRESSURE,PLUS 5.0

FLASH UID=AFTR, NAME=AFT_COOL  FEED 260  PROD L=261  BUBB DP=5

$ -----------------------------------------------------------------------------------------------------

RECYCLE

  LOOP NO=1, START=FB2, END=P1, TOLE=0.0005  LOOP NO=2,START=DEC2,END=FB1, WEGS, TOLE=0.0005

$ -----------------------------------------------------------------------------------------------------CASESTUDY OLDCASE=BASECASE,NEWCASE=MORE_C3  CHANGE COLUMN=DEC3,SPEC(2),VALUE=100  DESC INCREASE C3 IN THE BOTTOMS OF THE  DESC SATURATE DEPROPANIZER.

CASESTUDY OLDCASE=BASECASE,NEWCASE=MORE_IC4  CHANGE COLUMN=DIC4,SPEC,VALUE=2600  DESC INCREASE IC4 RECYCLE

CASESTUDY OLDCASE=BASECASE,NEWCASE=MORE_NC4  CHANGE STREAM=1NB,RATE(LV),VALUE=50

  DESC INCREASE NC4 IN SATURATE FEED

END

22

Page 22: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 22/36

APPENDIX B

PRO/II Input File Inserts for Run #2 (Deisobutanizer Configuration) and Run #3(Effluent Refrigeration Configuration)

Substitute these file inserts for the corresponding section of code given in Appendix A.

Deisobutanizer insert:

COLUMN UID=DIC4,NAME=DEISOBUTANIZER  PARA TRAYS=43

FEED 253X,20  PROD OVHD=30,BTMS=31,1300  DUTY 1,1/2,43  SPEC STREAM=30,RATE(LV),VALUE=1000 $ THIS SETS THE IC4RECYCLE  SPEC REFLUX(LV),VALUE=1600  VARY DUTY=1,2  ESTIMATE MODEL=CONVENTIONAL  PRESSURE 1,85/2,90/43,95  PRINT PROP=BRIEF  TRATE SECTION=2,42,SIEVE,PASSES=4, &  SPACING(TRAY,IN)=24, DIAMETER(TRAY,FT)=13

Effluent Refrigeration insert:

PUMP UID=P4, NAME=SATS PUMP  FEED 21  PROD L=21X  OPERATION PRES=80REACTOR UID=RX, NAME=1ST_STAGE  FEED 20,21X,30R,SA1  PROD M=25X  OPERATION PRES=80,ISOTHERMAL, TEMP=45  RXCALC CONV $,REFPHASE=L,REFTEMP=45

$ PROPENE - ISOBUTENE REACTION  STOIC 4, -12.3461/ 6, -12.3008/ &  10, 0.5541/ 11, 0.5553/ 12, 2.3756/ 13, 5.9539/&  14, 0.4574/ 15, 0.0731/ 16, 0.1062/ 17, 0.3969/ &  18, 0.0821/ 19, 0.0594/ 20, 0.6688/ 21, 0.4325/ &  22, 0.0468/ 23, 0.0315  BASE COMP=6  CONVERSION 1.0

$ ISOBUTENE - ISOBUTANE REACTION  STOIC 4, -8.5683/ 7, -10.5445/ &  10, 1.2706/ 11, 0.5925/ 12, 0.3827/ 13, 0.2638/&  14, 2.5703/ 15, 0.3627/ 16, 0.5101/ 17, 2.1523/ &  18, 0.3998/ 19, 0.2074/ 20, 0.2754/ 21, 0.2134/ &  22, 0.5173/ 23, 0.0239  BASE COMP=7  CONVERSION 1.0

$ 2-BUTENE - ISOBUTANE REACTION  STOIC 4,-10.9924/ 8, -11.3233/ &  10, 0.6347/ 11, 0.6261/ 12, 0.2832/ 13, 0.1703/ &  14, 3.3018/ 15, 0.4360/ 16, 0.5566/ 17, 4.6514/ &  18, 0.1852/ 19, 0.0782/ 0, 0.0891/ 21, 0.0799/ &  22, 0.2831  BASE COMP=8  CONVERSION 1.0

$ 1-BUTENE - ISOBUTANE REACTION  STOIC 4,-11.5763/ 9, -9.9587/ &  10, 0.6877/ 11, 0.5870/ 12, 0.3016/ 13, 0.1730/ &  14, 3.1778/ 15, 0.5271/ 16, 0.6466/ 17, 4.2314/ &  18, 0.1686/ 19, 0.0984/ 20, 0.0720/ 21, 0.0761/ &  22, 0.2674/ 23, 0.0079  BASE COMP=9  CONVERSION 1.0

STCALC UID=ACST,NAME=ACID SETTLER  FEED 25X  OVHD L=25Y,DP=2  BTMS STREAM=SA1,DP=0  FOVHD 1,23,1.0/24,0.0

FLASH UID=TUBE NAME=COOLING TUBES $ SIMULATES DPACROSS VALVE,  FEED 25Y $ DP ACROSS TUBES,HEAT EXCHANGE  PROD V=24,L=25 $ AND SEPARATION INONE UNIT  ADIA TEMP=35,PEST=20  DEFINE DUTY AS REACT=RX, DUTY, MULTIPLY, -1

23

Page 23: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 23/36

APPENDIX C

Excerpts from Run with Isostripper and Autorefrigeration

The following are selected excerpts from the PRO/II output report. The completeoutput is available from SimSci on floppy disk.

SIMULATION SCIENCES INC. R PAGE P-4PROJECT H2SO4 ALKY PRO/II VERSION 3.02 IBM RS6000PROBLEM ALKY11B OUTPUT - PRIMARY UNITS SIMSCIBASE CASE SPLITTER SUMMARY 09/12/91==============================================================================

  UNIT 7, ’S1’

  STREAM ID FLOW FRACTION ------------------------- RATES --------------------  LB-MOL/HR LB/HR  ----------------- ------------------------- ------------------------- -------------------- FEED 26 5839.754 3.292E+05 PRODUCTS 27 .1158 676.150 38116.934  28 .8842 5163.944 2.911E+05 

TEMPERATURE, F 100.0000 PRESSURE, PSIA 84.2188 PRESSURE DROP, PSIA .0000 MOLE FRAC VAPOR .0000 MOLE FRAC TOTAL LIQUID 1.0000 MOLE FRAC MW SOLID .0000

 - - - - - - - - - - - - - - - - - - - - - - - - - -

  UNIT 11, ’OLSP’, ’OLEFIN_SPLIT’

  STREAM ID FLOW FRACTION ------------------------- RATES --------------------  LB-MOL/HR LB/HR  ----------------- ------------------------- ------------------------- -------------------- FEED 20 1517.604 85412.609 

PRODUCTS 20A .2500 379.401 21353.152  20B .2500 379.401 21353.152  20C .2500 379.401 21353.152  20D .2500 379.401 21353.152 TEMPERATURE, F 64.9999 PRESSURE, PSIA 221.6801 PRESSURE DROP, PSIA .0000 MOLE FRAC VAPOR .0000 MOLE FRAC TOTAL LIQUID 1.0000 MOLE FRAC MW SOLID .0000

25

Page 24: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 24/36

SIMULATION SCIENCES INC. R PAGE P-5PROJECT H2SO4 ALKY PRO/II VERSION 3.02 IBM RS6000PROBLEM ALKY11B OUTPUT - PRIMARY UNITS SIMSCIBASE CASE COMPRESSOR SUMMARY 09/12/91==============================================================================

  UNIT 37, ’CMP1’, ’1ST STAGE’

FEEDS 240 

PRODUCTS VAPOR 241

OPERATING CONDITIONS

  INLET ISENTROPIC OUTLET  --------------------- --------------------- --------------------- TEMPERATURE, F 45.05 69.02 74.00 PRESSURE, PSIA 23.00 37.04 37.04 ENTHALPY, MM BTU/HR 39.6986 41.7253 42.2320 ENTROPY, BTU/LB-MOL-F 58.8751 58.8751 59.0927 CP, BTU/LB-MOL-F 22.0878 23.3080 CV, BTU/LB-MOL-F 19.7258 20.7717 CP/(CP-R) 1.0988 1.0931 CP/CV 1.1197 1.1221 MOLE PERCENT VAPOR 100.0000 100.0000 100.0000 MOLE PERCENT LIQUID .0000 .0000 .0000

 MOLE PERCENT MW SOLID .0000 .0000 .0000 WEIGHT PERCENT TOTAL SOLID .0000 .0000 .0000 ACT VAP RATE, M FT3/MIN 16.4365 ADIABATIC EFF, PERCENT 80.0000 POLYTROPIC EFF, PERCENT 80.5374 ISENTROPIC COEFFICIENT, K 1.1092 POLYTROPIC COEFFICIENT, N 1.1392 HEAD, FT  ADIABATIC 6342.42  POLYTROPIC 6385.02  ACTUAL 7928.03 WORK, HP  THEORETICAL 796.53  POLYTROPIC 801.88  ACTUAL 995.66

 NOTE: POLYTROPIC AND ISENTROPIC COEFFICIENTS

  CALCULATED FROM HEAD EQUATION

26

Page 25: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 25/36

SIMULATION SCIENCES INC. R PAGE P-16PROJECT H2SO4 ALKY PRO/II VERSION 3.02 IBM RS6000PROBLEM ALKY11B OUTPUT - PRIMARY UNITS SIMSCIBASE CASE REACTOR SUMMARY 09/12/91==============================================================================

  UNIT 18, ’RX1D’, ’4TH_STAGE’

OPERATING CONDITIONS

 REACTOR TYPE ADIABATIC REACTOR DUTY, MM BTU/HR 3.582E-05 TOTAL HEAT OF REACTION AT 77.00 F, MM BTU/HR -7.2618

  INLET OUTLET  --------------------- --------------------- FEED 20D  25C  25CX LIQUID PRODUCT 24ZZ TEMPERATURE, F 3.71 13.46 PRESSURE, PSIA 28.0000 27.0000

REACTION DATA

  ----------------- RATES, LB-MOL/HR -------------------- FRACTION COMPO-

NENT FEED CHANGE PRODUCT CONVERTED ------------------------------------ --------------------- --------------------- --------------------- ---------------------  1 C1 3.892E-14 .0000 3.892E-14  2 C2 5.072E-06 .0000 5.072E-06  3 C3 401.3702 .0000 401.3702  4 IC4 7807.1416 -243.2212 7563.9204 .0312  5 NC4 2196.5942 .0000 2196.5942  6 PROPENE 9.7732 -9.7732 .0000 1.0000  7 ISOBUTENE 13.1145 -13.1145 .0000 1.0000  8 2BUTENE 166.5524 -166.5524 .0000 1.0000  9 1BUTENE 52.5366 -52.5366 .0000 1.0000  10 IC5 99.1748 14.9841 114.1589  11 23DMB 49.5287 13.4840 63.0126  12 24MP 26.8594 8.1200 34.9795  13 23MP 27.3744 8.4761 35.8505  14 224MPN 218.1511 68.8901 287.0412  15 24HX 30.2208 9.7029 39.9237

  16 23HX 38.0992 12.3168 50.4161  17 234MP 290.9589 93.7313 384.6902  18 225MHX 12.8181 4.1760 16.9941  19 C9s 6.0026 1.9745 7.9771  20 C10s 7.7323 2.5643 10.2966  21 C11s 6.5710 2.1857 8.7568  22 C12s 18.7859 6.2553 25.0411  23 C13s .2894 .0964 .3859  24 H2SO4 1.020E+04 .0000 1.020E+04

  TOTAL 2.168E+04 -238.2402 2.144E+04

27

Page 26: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 26/36

SIMULATION SCIENCES INC. R PAGE P-17PROJECT H2SO4 ALKY PRO/II VERSION 3.02 IBM RS6000PROBLEM ALKY11B OUTPUT - PRIMARY UNITS SIMSCIBASE CASE REACTOR SUMMARY 09/12/91==============================================================================

  UNIT 18, ’RX1D’, ’4TH_STAGE’ (Cont)

  LB-MOL/HR FRACTION  BASE COMPONENT REACTION CONVERTED CONVERTED

 ------------------------------------ --------------------- --------------------- ---------------------  6 PROPENE 1 9.7732 1.0000  7 ISOBUTENE 2 13.1145 1.0000  8 2BUTENE 3 166.5524 1.0000  9 1BUTENE 4 52.5366 1.0000

REACTOR MASS BALANCE

  --------------------- RATES, LB/HR ------------------------ FRACTION  COMPONENT FEED CHANGE PRODUCT CONVERTED ------------------------------------ --------------------- --------------------- --------------------- ---------------------  1 C1 6.244E-13 .0000 6.244E-13  2 C2 1.525E-04 .0000 1.525E-04  3 C3 1.770E+04 .0000 1.770E+04  4 IC4 4.538E+05 -1.414E+04 4.396E+05 .0312  5 NC4 1.277E+05 .0000 1.277E+05

  6 PROPENE 411.2641 -411.2641 .0000 1.0000  7 ISOBUTENE 735.8282 -735.8282 .0000 1.0000  8 2BUTENE 9344.9219 -9344.9219 .0000 1.0000  9 1BUTENE 2947.7253 -2947.7253 .0000 1.0000  10 IC5 7155.5620 1081.1206 8236.6826  11 23DMB 4268.2812 1162.0229 5430.3042  12 24MP 2691.4763 813.6763 3505.1526  13 23MP 2743.0818 849.3572 3592.4390  14 224MPN 2.492E+04 7869.5195 3.279E+04  15 24HX 3452.2146 1108.3928 4560.6074  16 23HX 4352.1909 1406.9893 5759.1802  17 234MP 3.324E+04 1.071E+04 4.394E+04  18 225MHX 1644.0549 535.6118 2179.6667  19 C9s 769.8903 253.2465 1023.1368  20 C10s 1100.1488 364.8459 1464.9948  21 C11s 1027.1207 341.6521 1368.7728  22 C12s 3199.9836 1065.5256 4265.5093

  23 C13s 53.3607 17.7775 71.1383  24 H2SO4 1.000E+06 .0000 1.000E+06

  TOTAL 1.703E+06 .0000 1.703E+06

28

Page 27: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 27/36

SIMULATION SCIENCES INC. R PAGE P-32PROJECT H2SO4 ALKY PRO/II VERSION 3.02 IBM RS6000PROBLEM ALKY11B OUTPUT - PRIMARY UNITS SIMSCIBASE CASE STREAM CALCULATOR SUMMARY 09/12/91==============================================================================

  UNIT 20, ’SETL’, ’ACID_SETTLER’

NET DUTY, MM BTU/HR -1.26622E-04

FEEDS STREAM ID FACTOR

25D 1.000

TOTAL RATE, LB-MOL/HR 10462.600TEMPERATURE, F 46.860PRESSURE, PSIA 27.000MOLECULAR WEIGHT 62.9744MOL FRAC VAPOR .00000MOL FRAC TOTAL LIQUID 1.00000MOL FRAC MW SOLID .00000ENTHALPY, MM BTU/HR 3.87839

25DX 1.000

TOTAL RATE, LB-MOL/HR 10195.812TEMPERATURE, F 46.860

PRESSURE, PSIA 27.000MOLECULAR WEIGHT 98.0795MOL FRAC VAPOR .00000MOL FRAC TOTAL LIQUID 1.00000MOL FRAC MW SOLID .00000ENTHALPY, MM BTU/HR -28.15074

PRODUCTS OVERHEAD BOTTOMS ALTERNATEPRODUCT

VAPOR 24ELIQUID 25 SA2

TOTAL RATE, LB-MOL/HR 10462.600 10195.812 N/ATEMPERATURE, F 45.000 45.000 N/APRESSURE, PSIA 26.000 26.000 N/A

PRESSURE DROP, PSI 1.000 1.000 N/AENTHALPY, MM BTU/HR 4.47479 -28.74714 N/A

29

Page 28: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 28/36

SIMULATION SCIENCES INC. R PAGE P-33PROJECT H2SO4 ALKY PRO/II VERSION 3.02 IBM RS6000PROBLEM ALKY11B OUTPUT - PRIMARY UNITS SIMSCIBASE CASE COLUMN SUMMARY 09/12/91==============================================================================

  UNIT 4, ’DEC3’, ’SAT DEC3’

TOTAL NUMBER OF ITERATIONS

  IN/OUT METHOD 50

COLUMN SUMMARY

  -------------------- NET FLOW RATES --------------------- HEATER  TRAY TEMP PRESSURE LIQUID VAPOR FEED PRODUCT DUTIES  DEG F PSIA LB-MOL/HR MM BTU/HR ------------ ------------- ---------------- ---------------- ---------------- ----------------- ----------------- ------------------------  1 106.5 310.00 4000.0 494.7L -24.9973  2 131.1 315.00 4415.6 4494.7  3 136.7 315.26 4508.5 4910.3  4 138.5 315.53 4536.1 5003.2  5 139.3 315.79 4546.0 5030.8  6 139.8 316.05 4549.4 5040.7  7 140.1 316.32 4549.3 5044.1  8 140.5 316.58 4546.1 5044.0

  9 141.0 316.84 4539.1 5040.8  10 141.7 317.11 4526.9 5033.8  11 142.7 317.37 4507.2 5021.6  12 144.2 317.63 4477.4 5001.9  13 146.4 317.89 4435.2 4972.1  14 149.6 318.16 4380.0 4929.9  15 153.9 318.42 4314.8 4874.7  16 159.4 318.68 4247.2 4809.5  17 166.1 318.95 4187.4 4742.0  18 173.3 319.21 4143.5 4682.2  19 180.5 319.47 4117.6 4638.2  20 187.1 319.74 6729.0 4612.3 2122.0L  21 188.9 320.00 6768.6 5101.7  22 190.2 320.26 6789.4 5141.2  23 191.5 320.53 6804.3 5162.1  24 192.9 320.79 6817.7 5177.0  25 194.4 321.05 6831.7 5190.4

  26 196.1 321.32 6847.5 5204.4  27 198.0 321.58 6865.8 5220.1  28 200.1 321.84 6887.3 5238.5  29 202.3 322.11 6912.3 5260.0  30 204.6 322.37 6940.9 5285.0  31 207.0 322.63 6972.9 5313.6  32 209.4 322.89 7007.7 5345.6  33 211.8 323.16 7044.4 5380.3  34 214.1 323.42 7081.9 5417.0  35 216.4 323.68 7118.9 5454.5  36 218.5 323.95 7154.0 5491.6  37 220.5 324.21 7185.9 5526.7  38 222.4 324.47 7213.0 5558.6  39 224.2 324.74 7233.3 5585.7  40 226.1 325.00 5606.0 1627.3L 28.2376

30

Page 29: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 29/36

SIMULATION SCIENCES INC. R PAGE P-34PROJECT H2SO4 ALKY PRO/II VERSION 3.02 IBM RS6000PROBLEM ALKY11B OUTPUT - PRIMARY UNITS SIMSCIBASE CASE COLUMN SUMMARY 09/12/91==============================================================================

  UNIT 4, ’DEC3’, ’SAT DEC3’ (Cont)

FEED AND PRODUCT STREAMS

  TYPE STREAM PHASE FROM TO LIQUID FLOW RATES HEAT RATES  TRAY TRAY FRACTION LB-MOL/HR MM BTU/HR ------------- ------------ ------------ -------- -------- ---------------- ------------------------ ------------------------ FEED 10 LIQUID 20 1.0000 2122.03 9.8079 PRODUCT 11 LIQUID 1 494.72 1.0133 PRODUCT 12 LIQUID 40 1627.31 12.0350

 OVERALL MASS BALANCE, (FEEDS - PRODUCTS) -1.0940E-03 OVERALL HEAT BALANCE, (H(IN) - H(OUT) ) -1.0298E-04

SPECIFICATIONS

 PARAMETER TRAY COMP SPECIFICATION SPECIFIED CALCULATED  TYPE NO NO TYPE VALUE VALUE ----------------- -------- ------------ ------------------------- -------------------- -------------------- UNIT DEC3 1 MOL REFLUX 4.000E+03 4.000E+03

 STRM 12 40 3 MOL RATE 5.000E+01 5.000E+01

REFLUX RATIOS

  REFLUX RATIOS  MOLAR WEIGHT STD L VOL  --------- ------------ -----------------  REFLUX / FEED STREAM 10 1.8850 1.4699 1.6497  REFLUX / LIQUID DISTILLATE 8.0853 8.0853 8.0853

31

Page 30: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 30/36

SIMULATION SCIENCES INC. R PAGE P-38PROJECT H2SO4 ALKY PRO/II VERSION 3.02 IBM RS6000PROBLEM ALKY11B OUTPUT - PRIMARY UNITS SIMSCIBASE CASE COLUMN SUMMARY 09/12/91==============================================================================

  UNIT 25, ’DIC4’, ’ISO-STRIP’

TOTAL NUMBER OF ITERATIONS

  SURE METHOD 41

COLUMN SUMMARY

  -------------------- NET FLOW RATES --------------------- HEATER  TRAY TEMP PRESSURE LIQUID VAPOR FEED PRODUCT DUTIES  DEG F PSIA LB-MOL/HR MM BTU/HR ------------ ------------- ---------------- ---------------- ---------------- ----------------- ----------------- ------------------------  1 124.9 90.00 11016.4 10318.7L 8648.7V  2 125.9 90.12 11037.1 9346.4  3 126.4 90.24 11049.0 9367.1  4 126.7 90.37 11056.5 9379.1  5 126.9 90.49 11061.7 9386.5  6 127.1 90.61 11065.8 9391.7  7 127.2 90.73 11069.3 9395.8

  8 127.3 90.85 11072.5 9399.3  9 127.4 90.98 11075.6 9402.5  10 127.5 91.10 11078.5 9405.6  11 127.6 91.22 11081.4 9408.5  12 127.8 91.34 11084.1 9411.4  13 127.9 91.46 11086.8 9414.1  14 128.0 91.59 11089.4 9416.8  15 128.1 91.71 11091.8 9419.4  16 128.2 91.83 11094.0 9421.8  17 128.4 91.95 11096.1 9424.1  18 128.5 92.07 11097.9 9426.1  19 128.7 92.20 11099.4 9427.9  20 128.9 92.32 11100.4 9429.4  21 129.1 92.44 11101.1 9430.5  22 129.3 92.56 11101.1 9431.1  23 129.6 92.68 11100.4 9431.1  24 129.8 92.80 11099.0 9430.4

  25 130.2 92.93 11096.5 9429.0  26 130.6 93.05 11093.0 9426.5  27 131.0 93.17 11088.2 9423.0  28 131.5 93.29 11082.1 9418.2  29 132.1 93.41 11074.5 9412.1  30 132.8 93.54 11065.5 9404.5  31 133.6 93.66 11055.0 9395.5  32 134.4 93.78 11043.3 9385.0  33 135.4 93.90 11030.6 9373.3  34 136.5 94.02 11017.3 9360.6  35 137.6 94.15 11003.4 9347.3  36 138.8 94.27 10989.2 9333.4  37 140.1 94.39 10973.6 9319.2

32

Page 31: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 31/36

SIMULATION SCIENCES INC. R PAGE P-39PROJECT H2SO4 ALKY PRO/II VERSION 3.02 IBM RS6000PROBLEM ALKY11B OUTPUT - PRIMARY UNITS SIMSCIBASE CASE COLUMN SUMMARY 09/12/91==============================================================================

  UNIT 25, ’DIC4’, ’ISO-STRIP’ (Cont)

  -------------------- NET FLOW RATES --------------------- HEATER  TRAY TEMP PRESSURE LIQUID VAPOR FEED PRODUCT DUTIES

  DEG F PSIA LB-MOL/HR MM BTU/HR ------------ ------------- ---------------- ---------------- ---------------- ----------------- ----------------- ------------------------  38 141.4 94.51 10952.6 9303.6  39 143.0 94.63 10900.0 9282.6  40 145.7 94.76 10605.9 9230.0  41 156.3 94.88 9047.9 8935.9  42 212.7 95.00 7377.9 1670.0L 80.6870

FEED AND PRODUCT STREAMS

  TYPE STREAM PHASE FROM TO LIQUID FLOW RATES HEAT RATES  TRAY TRAY FRACTION LB-MOL/HR MM BTU/HR ------------- ------------ ------------ -------- -------- ---------------- ------------------------ ------------------------ FEED 253X LIQUID 1 1.0000 10318.68 27.3680 PRODUCT 30 VAPOR 1 8648.69 93.2828 PRODUCT 31 LIQUID 42 1669.99 14.7736

 OVERALL MASS BALANCE, (FEEDS - PRODUCTS) -4.7306E-04 OVERALL HEAT BALANCE, (H(IN) - H(OUT) ) -1.4478E-03

SPECIFICATIONS

 PARAMETER TRAY COMP SPECIFICATION SPECIFIED CALCULATED  TYPE NO NO TYPE VALUE VALUE ----------------- -------- ------------ ------------------------- -------------------- -------------------- STRM 30 1 VOL RATE 2.525E+03 2.525E+03

33

Page 32: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 32/36

SIMULATION SCIENCES INC. R PAGE P-43PROJECT H2SO4 ALKY PRO/II VERSION 3.02 IBM RS6000PROBLEM ALKY11B OUTPUT - PRIMARY UNITS SIMSCIBASE CASE COLUMN SUMMARY 09/12/91==============================================================================

  UNIT 29, ’DEC4’, ’DEBUTANIZER’

TOTAL NUMBER OF ITERATIONS

  IN/OUT METHOD 4

COLUMN SUMMARY

  -------------------- NET FLOW RATES --------------------- HEATER  TRAY TEMP PRESSURE LIQUID VAPOR FEED PRODUCT DUTIES  DEG F PSIA LB-MOL/HR MM BTU/HR ------------ ------------- ---------------- ---------------- ---------------- ----------------- ----------------- ------------------------  1 100.0 80.00 365.7 414.2L -7.2296  2 130.7 85.00 408.0 779.9  3 132.3 85.18 405.4 822.2  4 133.6 85.36 403.0 819.5  5 134.8 85.54 400.9 817.2  6 135.9 85.71 398.9 815.1  7 136.9 85.89 397.2 813.1

  8 137.9 86.07 395.5 811.4  9 138.7 86.25 393.9 809.7  10 139.6 86.43 392.0 808.1  11 140.5 86.61 388.4 806.1  12 142.1 86.79 377.2 802.6  13 146.3 86.96 333.7 791.4  14 162.6 87.14 240.5 747.9  15 201.5 87.32 1834.3 654.7 1670.0M  16 201.7 87.50 1835.7 578.5  17 201.8 87.68 1837.2 579.9  18 201.9 87.86 1838.6 581.4  19 202.1 88.04 1840.0 582.8  20 202.2 88.21 1841.4 584.2  21 202.4 88.39 1842.9 585.6  22 202.5 88.57 1844.4 587.1  23 202.7 88.75 1846.0 588.6  24 202.9 88.93 1847.7 590.2

  25 203.2 89.11 1849.5 591.9  26 203.6 89.29 1851.4 593.7  27 204.5 89.46 1852.7 595.6  28 207.3 89.64 1849.1 596.9  29 218.1 89.82 1828.0 593.3  30 258.6 90.00 572.2 1255.8L 9.0948

34

Page 33: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 33/36

SIMULATION SCIENCES INC. R PAGE P-44PROJECT H2SO4 ALKY PRO/II VERSION 3.02 IBM RS6000PROBLEM ALKY11B OUTPUT - PRIMARY UNITS SIMSCIBASE CASE COLUMN SUMMARY 09/12/91==============================================================================

  UNIT 29, ’DEC4’, ’DEBUTANIZER’ (Cont)

FEED AND PRODUCT STREAMS

  TYPE STREAM PHASE FROM TO LIQUID FLOW RATES HEAT RATES  TRAY TRAY FRACTION LB-MOL/HR MM BTU/HR ------------- ------------ ------------ -------- -------- ---------------- ------------------------ ------------------------ FEED 31 MIXED 15 .9672 1669.99 14.7735 PRODUCT 32 LIQUID 1 414.19 .9451 PRODUCT 33 LIQUID 30 1255.80 15.6930

 OVERALL MASS BALANCE, (FEEDS - PRODUCTS) 5.9133E-05 OVERALL HEAT BALANCE, (H(IN) - H(OUT) ) 6.3894E-04

SPECIFICATIONS

 PARAMETER TRAY COMP SPECIFICATION SPECIFIED CALCULATED  TYPE NO NO TYPE VALUE VALUE ----------------- -------- ------------ ------------------------- -------------------- -------------------- STRM 33 30 RVP 1.200E+01 1.200E+01

 STRM 32 1 10 VOL PERCENT 2.000E+00 2.000E+00

REFLUX RATIOS

  REFLUX RATIOS  MOLAR WEIGHT STD L VOL  --------- ------------ -----------------  REFLUX / FEED STREAM 31 .2190 .1421 .1637  REFLUX / LIQUID DISTILLATE .8829 .8829 .8829

35

Page 34: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 34/36

SIMULATION SCIENCES INC. R PAGE P-52PROJECT H2SO4 ALKY PRO/II VERSION 3.02 IBM RS6000PROBLEM ALKY11B OUTPUT - PRIMARY UNITS SIMSCIBASE CASE FEED STREAMS 09/12/91==============================================================================

STREAM ID 1 2 3  NAME SATURATED OLEFIN FEED MAKEUP IC4  FEED  PHASE LIQUID LIQUID LIQUID

 NAME SATURATED OLEFIN FEED MAKEUP IC4

  FEED

TEMPERATURE, F 100.00 100.00 100.00PRESSURE, PSIA 400.000 215.000 400.000

STD. LIQ. VOL. RATES,  BBL/DAY  1 C2+ 287.9995 .0000 .0000  2 PROPANE 2399.9956 215.9996 .0000  3 I-BUTANE 4499.9917 2279.9958 863.9985  4 N-BUTANE 2399.9956 1199.9978 215.9996  5 PROPENE .0000 215.9996 .0000  6 BUTENES .0000 5879.9893 .0000  7 PENTANE .0000 119.9998 .0000  8 C6+ .0000 .0000 .0000

RATE, BBL/DAY 9587.9824 9911.9824 1079.9982RATE, BBL/HR 399.5000 413.0000 45.0000RATE, M3/HR 63.5153 65.6616 7.1544

ACT.RATE, GAL/MIN 293.4756 302.5900 32.8676ACT.RATE, M3/MIN 1.1109 1.1454 .1244

RATE, M FT3/HR N/A N/A N/ARATE, M M3/HR N/A N/A N/A

36

Page 35: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 35/36

SIMULATION SCIENCES INC. R PAGE P-53PROJECT H2SO4 ALKY PRO/II VERSION 3.02 IBM RS6000PROBLEM ALKY11B OUTPUT - PRIMARY UNITS SIMSCIBASE CASE PRODUCT STREAMS 09/12/91==============================================================================

STREAM ID 40 41B 32 332  NAME FUEL GAS HD5 PROPANE BUTANE ALKYLATE  PHASE VAPOR LIQUID LIQUID LIQUID 

NAME FUEL GAS HD5 PROPANE BUTANE ALKYLATE

TEMPERATURE, F 100.00 100.00 100.00 100.00PRESSURE, PSIA 420.000 425.000 80.000 80.000

STD. LIQ. VOL. RATES,  BBL/DAY  1 C2+ 113.7476 174.2521 .0000 .0000  2 PROPANE 128.2400 2490.9919 4.4373E-12 8.9440E-14  3 I-BUTANE 6.5160E-03 1.0425 580.4763 172.2643  4 N-BUTANE 2.3891E-05 9.0889E-03 2215.1643 1606.7673  5 PROPENE .0000 .0000 .0000 .0000  6 BUTENES .0000 .0000 .0000 .0000  7 PENTANE 1.0482E-13 5.4936E-10 57.0653 538.9185  8 C6+ 1.3167E-13 1.6801E-12 2.6859E-03 10217.9102

RATE, BBL/DAY 241.9940 2666.2957 2852.7090 12535.8623

RATE, BBL/HR 10.0831 111.0958 118.8631 522.3285RATE, M3/HR 1.6031 17.6628 18.8977 83.0434

ACT.RATE, GAL/MIN 60.6965 82.9068 87.2953 375.5728ACT.RATE, M3/MIN .2298 .3138 .3304 1.4217

RATE, M FT3/HR 17.4234 N/A N/A N/ARATE, M M3/HR .4934 N/A N/A N/A

37

Page 36: alky.pdf

8/12/2019 alky.pdf

http://slidepdf.com/reader/full/alkypdf 36/36

SIMULATION SCIENCES INC. R PAGE P-54PROJECT H2SO4 ALKY PRO/II VERSION 3.02 IBM RS6000PROBLEM ALKY11B OUTPUT - PRIMARY UNITS SIMSCIBASE CASE REACTOR PRODUCT 09/12/91==============================================================================

STREAM ID 25  NAME RXN LIQUIDS  PHASE LIQUID 

NAME RXN LIQUIDS

TEMPERATURE, F 45.00PRESSURE, PSIA 26.000

STD. LIQ. VOL. RATES,  BBL/DAY  1 C2+ 1.3447E-05  2 PROPANE 1876.8214  3 I-BUTANE 48610.7422  4 N-BUTANE 14023.2529  5 PROPENE .0000  6 BUTENES .0000  7 PENTANE 884.9083  8 C6+ 10592.7617

RATE, BBL/DAY 75988.4922

RATE, BBL/HR 3166.1926RATE, M3/HR 503.3835

ACT.RATE, GAL/MIN 2179.9150ACT.RATE, M3/MIN 8.2519

RATE, M FT3/HR N/ARATE, M M3/HR N/A