aerospace physiology

57
Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Aerospace Physiology Lecture #14 – October 14, 2021 Cardiopulmonary physiology – Respiratory – Cardiovascular • Musculoskeletal • Vestibular • Neurological Environmental Effects 1 © 2021 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Upload: others

Post on 20-Jan-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Aerospace Physiology• Lecture #14 – October 14, 2021 • Cardiopulmonary physiology

– Respiratory – Cardiovascular

• Musculoskeletal • Vestibular • Neurological • Environmental Effects

1

© 2021 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Page 2: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

The Human Respiratory System

2

Page 3: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Lung Measurements

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

3

Page 4: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Metabolic Processes• Respiratory Quotient (“RQ”)

• Function of activity and dietary balance – Sugar: – Protein: – Fat:

• For well-balanced diet, RQ~0.85

4

RQ = Exhaled volume of CO2Inhaled volume of O2

C6H12O6 + 6O2 → 6CO2 + 6H2O (RQ = 1.0)2C3H7O2N + 6O2 → 5CO2 + 5H2O (RQ = 0.83)C57H104O6 + 80O2 → 57CO2 + 52H2O(RQ = 0.71)

Page 5: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

VO2 Metabolic Workload Measurement

5

Page 6: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

VO2 Measurement in (Simulated) Suit

6

Page 7: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

The Human Circulatory System

7

Page 8: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Blood Pressure in Circulatory System

8

Page 9: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Gas Exchange in the Lungs

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

9

Page 10: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Gas Exchange in the Tissues

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

10

Page 11: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Respiratory Problems• Hypoxia

– Hypoxic – Hypemic – Stagnant – Histotoxic

• Hyperoxia • Hypocapnia • Hypercapnia

11

Page 12: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Types of Hypoxia• Hypoxic (insufficient O2 present)

– Decompression – Pneumonia

• Hypemic (insufficient blood capacity) – Hemorrhage – Anemia

• Stagnant (insufficient blood transport) – Excessive acceleration – Heart failure

• Histotoxic (insufficient tissue absorption) – Poisoning

12

Page 13: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Pressure Effects on Blood Oxygenation

13

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1996

Page 14: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Pressure Effects on Blood Oxygenation

14

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1996

Page 15: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Effects of Supplemental Oxygen

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

15

Page 16: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Hypoxia Effective Performance Time

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

16

Page 17: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Lung Overpressure Following Decompression

17

From Nicogossian and Gazenko, Space Biology and Medicine - Volume II: Life Support and Habitability, AIAA 1994

Page 18: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Oxygen Toxicity

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

18

Page 19: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Effects of ppCO2

19

From James T. Joiner, NOAA Diving Manual, Fourth Edition, 2001

Page 20: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Acute Effects of Hyperventilation

20

From James T. Joiner, NOAA Diving Manual, Fourth Edition, 2001

Page 21: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Gravity Effects on Arterial Pressure

120/80 mmHg

95/55 mmHg

210/170 mmHg

320 mm

1200 mm

1000 mmH2O = 74.1 mmHg

21

Page 22: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Acceleration Effects on Arterial Pressure

120/80 mmHg

25/–– mmHg

475/435 mmHg

320 mm

1200 mmAt 4 g’s longitudinal: 1000 mmH2O = 296 mmHg

22

Page 23: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Cardiovascular Effects of Microgravity• Cardiovascular deconditioning • Upper body blood pooling • Changes in blood volume • Increased calcium content

23

Page 24: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Supersaturation of Blood Gases• Early observation that “factor of two” (50% drop

in pressure) tended to be safe • Definition of tissue ratio R as ratio between

saturated pressure of gas compared to ambient pressure

• 50% drop in pressure corresponds to R=1.58 (R values of ~1.6 considered to be “safe”)

24

R =PN2

Pambient= 0.79 (nominal Earth value)

Page 25: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Tissue Models of Dissolved Gases• Issue is dissolved inert gases (not involved in

metabolic processes, like N2 or He) • Diffusion rate is driven by the gradient of the

partial pressure for the dissolved gas

where k=time constant for specific tissue (min-1) P refers to partial pressure of dissolved gas

25

dPtissue(t)dt

= k [Palveoli(t)� Ptissue(t)]

Page 26: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Solution of Dissolved Gas Differential Eqn.

• Assume ambient pressure is piecewise constant (response to step input of ambient pressure)

• Result is the Haldane equation:

• Need to consider value of Palveoli

where Q=fraction of dissolved gas in atmosphere ΔPO2=change in ppO2 due to metabolism

26

Ptissue(t) = Ptissue(0) + [Palveoli(0)� Ptissue(0)]�1� e�kt

Palveoli =�

Pambient � PH2O +1�RQ

RQPCO2

⇥Q

Palveoli = (Pambient � PH2O � PCO2 + �PO2)Q

Page 27: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Alveolar Pressure Corrections• At body temperature (37°C=98.6°F), 100%

humidified air has a partial pressure of 47 mmHg=6.3 kPa=0.91 psi – this is independent of total pressure or atmospheric composition

• Earth atmosphere=78% N2=Q, 0.04% CO2 (ISS limit ≤0.5% (negligible for these calculations)

PN2,alveoli(sea level) = (14.7 − 0.97) 0.78 = 10.7 psiPN2,alveoli(8.2 psi/32 % O2) = (8.2 − 0.97) 0.68 = 4.9 psi

27

Page 28: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Scuba Diving Decompression

28

05

101520253035404550

0 20 40 60 80 100 120 140 160

Tiss

ue S

atur

atio

n Pr

essu

re (p

si)

Time (min)

5 min tissue 20 min 60 min 240 min

R=1.4R=1.6

R=1.0

at 100 ft. depth at surface

Page 29: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140

Tiss

ue S

atur

atio

n Pr

essu

re (p

si)

Time (min)

5 min tissue 20 min 60 min 240 min

Apollo Pre-Launch Decompression

29

R=1.4R=1.6

R=1.0

Transitioning from Earth sea level to 5psi 100% O2

Page 30: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Solving for Time to Denitrogenate

30

PN2,alveoli = (Pambient − PH2O) fN2

PN2,tissue(t) = PN2,tissue(0) + [(Pambient − PH2O) fN2− PN2,tissue(0)] (1 − e−kt)

e−kt = 1 −PN2,tissue(t) − PN2,tissue(0)

(Pambient − PH2O) fN2 − PN2,tissue(0)

e−kt = 1 −

PN2,tissue

Pambient(t) −

PN2,tissue

Pambient(0)

(1 −PH2O

Pambient ) fN2 −PN2,tissue

Pambient(0)

Page 31: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Time to Reach Denitrogenation

31

PN2,tissue

Pambient(t) ≡ R(t)

t = − 10.002888 ln 1 − 1.4 − 2.14

(1 − 0.975 ) 0 − 2.14

= 147 min

t = − 1k

ln 1 − R(t) − R(0)

(1 −PH2O

Pambient ) fN2 − R(0)

For Apollo case, 240 min tissue

Page 32: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Haldane Tissue Models• Rate coefficient frequently given as time to

evolve half of dissolved gases:

• Example: for 5-min tissue, k=0.1386 min-1

• Haldane suggested five tissue “compartments”: 5, 10, 20, 40, and 75 minutes

• Basis of U. S. Navy tables used through 1960’s • Three tissue model (5 and 10 min dropped) • 1950’s: Six tissue model (5, 10, 20, 40, 75, 120)

32

T1/2 =ln (2)

kk =

ln (2)T1/2

Page 33: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Physics of Bubbles• Pressure inside a bubble is balanced by exterior

pressure and surface tension

where γ=surface tension in J/m2 or N/m (=0.073 for water at 273°K)

• Dissolved gas partial pressure Pg=Pamb in equilibrium

• Gas pressure in bubble Pint>Pamb due to γ • All bubbles will eventually diffuse and collapse

33

Pinternal = Pambient + Psurface = Pambient +2�

r

Page 34: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Bubble Formation and Growth• In equilibrium, external pressure balanced by internal gas

pressure and surface tension • Surface tension forces inversely proportional to radius

34

Page 35: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Critical Bubble Size• Minimum bubble size is defined by point at

which interior pressure Pint = gas pressure Pg

• r<rmin - interior gas diffuses into solution and bubble collapses

• r>rmin - bubble will grow • r=rmin - unstable equilibrium

35

rmin =2�

Pg � pambient

Page 36: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Historical Data on Cabin Atmospheres

36

from Scheuring et. al., “Risk Assessment of Physiological Effects of Atmospheric Composition and Pressure in Constellation Vehicles” 16th Annual Humans in Space, Beijing, China, May 2007

Page 37: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Spacecraft Atmosphere Design Space

37

from Scheuring et. al., “Risk Assessment of Physiological Effects of Atmospheric Composition and Pressure in Constellation Vehicles” 16th Annual Humans in Space, Beijing, China, May 2007

Page 38: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Effect of Pressure and %O2 on Flammability

38

from Hirsch, Williams, and Beeson, “Pressure Effects on Oxygen Concentration Flammability Thresholds of Materials for Aerospace Applications” J. Testing and Evaluation, Oct. 2006

Page 39: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Atmosphere Design Space with Constraints

39

from Scheuring et. al., “Risk Assessment of Physiological Effects of Atmospheric Composition and Pressure in Constellation Vehicles” 16th Annual Humans in Space, Beijing, China, May 2007

Page 40: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

0.0#

2.0#

4.0#

6.0#

8.0#

10.0#

12.0#

14.0#

0# 200# 400# 600# 800# 1000# 1200#

Tissue

&Nitrogen

&Pressure&(psi)&

Time&(min)&

5*min#.ssue# 80*min#.ssue# 240*min#.ssue#

EVA Denitrogenation - 14.7 psi Cabin

40

Suit Pressure 4.3 psi 100% O2

Cabin Atmosphere 14.7 psi 21% O2

R Value = 1.4

Page 41: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

0.0#

1.0#

2.0#

3.0#

4.0#

5.0#

6.0#

0# 200# 400# 600# 800# 1000# 1200#

Tissue

&Nitrogen

&Pressure&(psi)&

Time&(min)&

5+min#/ssue# 80+min#/ssue# 240+min#/ssue#

EVA Denitrogenation - 8.3 psi Cabin

41

Suit Pressure 4.3 psi 100% O2

Cabin Atmosphere 8.3 psi 32% O2

R Value = 1.4

Page 42: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Constellation Spacecraft Atmospheres

42

from Scheuring et. al., “Risk Assessment of Physiological Effects of Atmospheric Composition and Pressure in Constellation Vehicles” 16th Annual Humans in Space, Beijing, China, May 2007

Page 43: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Categories of Sensing• Proprioception (internal to body)

– “Self-Sensing” – Vestibular (inertial forces) – Muscle and tendon sensors (extension) – Joint sensors (angle)

• Exteroception (external to body) – Visual – Auditory – Cutaneous

43

Page 44: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Anatomy of the Ear

44

From James T. Joyner, ed., NOAA Diving Manual, Best Publishing, 2001

Page 45: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Vestibular System

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

45

Page 46: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Vestibular Sense Organs

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

46

Page 47: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Thresholds of Rotational Perception• Rotational accelerations

– Yaw: 0.14 deg/sec2 – Roll and Pitch: 0.5 deg/sec2

• Mulder’s Constant – Acceleration x excitation time = 2 deg/sec – 5 deg/sec2 x 0.5 sec -> sensed – 10 deg/sec2 x 0.1 sec -> not sensed

• Rotational velocities - minimum perceived rotation rates 1-2 deg/sec (all axes)

47

Page 48: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Otolith Responses

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

48

Page 49: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Thresholds of Translational Perception• ax: 0.006 g • ay: 0.006 g • az: 0.01 g • Apparent change in direction of g vector = 1.5°

49

Page 50: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Space Motion Sickness• “Space Adaptation Syndrome” • 2/3 of astronauts report some effects • Symptoms

– Primary: stomach discomfort, nausea, vomiting – Secondary: pallor, cold sweats, salivation, depressed

appetite, fatigue • No correlation to susceptibility to motion

sickness • Primary hypothesis: sensory conflict (Treisman’s

Theory)

50

Page 51: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Progression of Space Motion Sickness

51

From Roy DeHart, Fundamentals of Aerospace Medicine, Williams and Wilkins, 1996

Page 52: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

SAS Experience of First 34 Shuttle Flights

52

0

24

48

72

96

120

First Flight Subsequent FlightNone Mild Moderate Severe

Page 53: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

SAS Experience of First 34 Shuttle Flights

53

0.00

0.25

0.50

0.75

1.00

First Flight % Subsequent Flight %

None Mild Moderate Severe

Page 54: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Space Motion Sickness Countermeasures• Preflight training

– Desensitization – Autogenic feedback training (AFT)

• Pharmaceuticals – Oral - scopolamine/dex-amphetamine (Scopdex) – Transdermal - scopolamine – Intramuscular - promethazine

• Mechanical systems – Pressurized insoles – Load suits – Neck restraints

54

Page 55: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

1

10

100

1000

10000

0 2 4 6

Rotation Rate (rpm)

Lunar gravityMars gravity0.5*Earth gravity0.75*Earth gravityEarth gravity

Artificial Gravity

grotation =ω 2r

55

Page 56: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Allowable Rotation Rates• Select groups (highly trained, physically fit) can

become acclimated to 7 rpm • 95% of population can tolerate 3 rpm • Sensitive groups (elderly, young, pregnant

women) may have tolerance levels as low as 1 rpm

56

Page 57: Aerospace Physiology

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

References• R. L. DeHart, ed., Fundamentals of Aerospace

Medicine, Second Edition Williams and Wilkins, 1996 • A. E. Nicogossian, C. L. Huntoon, and S. L. Pool, Space

Physiology and Medicine, Third Edition Lea and Febiger, 1994

• A. E. Nicogossian, S. R. Mohler, O. G. Gazenko, and A. I. Grigoriev, eds., Space Biology and Medicine (Volume III, Book 1: Humans in Spaceflight) American Institute of Aeronautics and Astronautics, 1996

• J. T. Joiner, ed., NOAA Diving Manual: Diving for Science and Technology, Fourth Edition Best Publishing, 2001

57