aerospace physiology - university of maryland · aerospace physiology enae 483/788d - principles of...

55
Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Aerospace Physiology Lecture #14 – October 10, 2019 Cardiopulmonary physiology – Respiratory – Cardiovascular • Musculoskeletal • Vestibular • Neurological Environmental Effects 1 © 2019 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Upload: others

Post on 15-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Aerospace Physiology• Lecture #14 – October 10, 2019 • Cardiopulmonary physiology

– Respiratory – Cardiovascular

• Musculoskeletal • Vestibular • Neurological • Environmental Effects

1

© 2019 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Page 2: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

The Human Respiratory System

2

Page 3: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Lung Measurements

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

3

Page 4: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Respiratory Volume vs. Exertion

4

Page 5: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Metabolic Processes• Respiratory Quotient (“RQ”)

• Function of activity and dietary balance – Sugar: – Protein: – Fat:

• For well-balanced diet, RQ~0.85

5

RQ =Exhaled volume of CO2

Inhaled volume of O2

C6H12O6 + 6O2 → 6CO2 + 6H2O (RQ = 1.0)2C3H7O2N + 6O2 → 5CO2 + 5H2O (RQ = 0.83)

C57H104O6 + 80O2 → 57CO2 + 52H2O(RQ = 0.71)

Page 6: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

The Human Circulatory System

6

Page 7: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Blood Pressure in Circulatory System

7

Page 8: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Gas Exchange in the Lungs

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

8

Page 9: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Gas Exchange in the Tissues

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

9

Page 10: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Respiratory Problems• Hypoxia

– Hypoxic – Hypemic – Stagnant – Histotoxic

• Hyperoxia • Hypocapnia • Hypercapnia

10

Page 11: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Types of Hypoxia• Hypoxic (insufficient O2 present)

– Decompression – Pneumonia

• Hypemic (insufficient blood capacity) – Hemorrhage – Anemia

• Stagnant (insufficient blood transport) – Excessive acceleration – Heart failure

• Histotoxic (insufficient tissue absorption) – Poisoning

11

Page 12: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Pressure Effects on Blood Oxygenation

12

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1996

Page 13: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Pressure Effects on Blood Oxygenation

13

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1996

Page 14: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Effects of Supplemental Oxygen

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

14

Page 15: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Hypoxia Effective Performance Time

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

15

Page 16: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Lung Overpressure Following Decompression

16

From Nicogossian and Gazenko, Space Biology and Medicine - Volume II: Life Support and Habitability, AIAA 1994

Page 17: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Oxygen Toxicity

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

17

Page 18: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Effects of ppCO2

18

From James T. Joiner, NOAA Diving Manual, Fourth Edition, 2001

Page 19: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Acute Effects of Hyperventilation

19

From James T. Joiner, NOAA Diving Manual, Fourth Edition, 2001

Page 20: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Gravity Effects on Arterial Pressure

120/80 mmHg

95/55 mmHg

210/170 mmHg

320 mm

1200 mm

1000 mmH2O = 74.1 mmHg

20

Page 21: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

The Human Circulatory System, Revisited

21

Page 22: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Cardiovascular Effects of Microgravity• Cardiovascular deconditioning • Upper body blood pooling • Changes in blood volume • Increased calcium content

22

Page 23: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Acceleration Effects on Arterial Pressure

120/80 mmHg

25/–– mmHg

475/435 mmHg

320 mm

1200 mmAt 4 g’s longitudinal: 1000 mmH2O = 296 mmHg

23

Page 24: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Supersaturation of Blood Gases• Early observation that “factor of two” (50% drop

in pressure) tended to be safe • Definition of tissue ratio R as ratio between

saturated pressure of gas compared to ambient pressure

• 50% drop in pressure corresponds to R=1.58 (R values of ~1.6 considered to be “safe”)

24

R =PN2

Pambient= 0.79 (nominal Earth value)

Page 25: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Tissue Models of Dissolved Gases• Issue is dissolved inert gases (not involved in

metabolic processes, like N2 or He) • Diffusion rate is driven by the gradient of the

partial pressure for the dissolved gas

where k=time constant for specific tissue (min-1) P refers to partial pressure of dissolved gas

25

dPtissue(t)dt

= k [Palveoli(t)� Ptissue(t)]

Page 26: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Solution of Dissolved Gas Differential Eqn.• Assume ambient pressure is piecewise constant

(response to step input of ambient pressure) • Result is the Haldane equation:

• Need to consider value of Palveoli

where Q=fraction of dissolved gas in atmosphere ΔPO2=change in ppO2 due to metabolism

26

Ptissue(t) = Ptissue(0) + [Palveoli(0)� Ptissue(0)]�1� e�kt

Palveoli =�

Pambient � PH2O +1�RQ

RQPCO2

⇥Q

Palveoli = (Pambient � PH2O � PCO2 + �PO2)Q

Page 27: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Linearly Varying Pressure Solution• Assume R is the (constant) rate of change of

pressure - solution of dissolved gases PDE is

• This is known as the Schreiner equation • For R=0 this simplifies to Haldane equation • Produces better time-varying solutions than

Haldane equation • Easily implemented in computer models

27

Pt(t) = Palv0 + R

�t� 1

k

⇥�

�Palv0 � Pt0 �

R

k

⇥e�kt

Page 28: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Haldane Tissue Models• Rate coefficient frequently given as time to

evolve half of dissolved gases:

• Example: for 5-min tissue, k=0.1386 min-1

• Haldane suggested five tissue “compartments”: 5, 10, 20, 40, and 75 minutes

• Basis of U. S. Navy tables used through 1960’s • Three tissue model (5 and 10 min dropped) • 1950’s: Six tissue model (5, 10, 20, 40, 75, 120)

28

T1/2 =ln (2)

kk =

ln (2)T1/2

Page 29: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Workman Tissue Models• Dr./Capt. Robert D. Workman of Navy

Experimental Diving Unit in 1960’s • Added 160, 200, 240 min tissue groups • Recognized that each type of tissue has a

differing amount of overpressure it can tolerate, and this changes with depth

• Defined the overpressure limits as “M values”

29

Page 30: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Workman M Values• Discovered linear relationship between partial

pressure where DCS occurs and depth

M=partial pressure limit (for each tissue compartment) M0=tissue limit at sea level (zero depth) ΔM=change of limit with depth (constant) d=depth of dive

• Can use to calculate decompression stop depth

30

M = M0 + �Md

dmin =Pt �M0

�M

Page 31: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Effect of Multiple Tissue Times

31

Page 32: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Physics of Bubbles• Pressure inside a bubble is balanced by exterior

pressure and surface tension

where γ=surface tension in J/m2 or N/m (=0.073 for water at 273°K)

• Dissolved gas partial pressure Pg=Pamb in equilibrium

• Gas pressure in bubble Pint>Pamb due to γ • All bubbles will eventually diffuse and collapse

32

Pinternal = Pambient + Psurface = Pambient +2�

r

Page 33: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Critical Bubble Size• Minimum bubble size is defined by point at

which interior pressure Pint = gas pressure Pg

• r<rmin - interior gas diffuses into solution and bubble collapses

• r>rmin - bubble will grow • r=rmin - unstable equilibrium

33

rmin =2�

Pg � pambient

Page 34: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Historical Data on Cabin Atmospheres

34

from Scheuring et. al., “Risk Assessment of Physiological Effects of Atmospheric Composition and Pressure in Constellation Vehicles” 16th Annual Humans in Space, Beijing, China, May 2007

Page 35: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Spacecraft Atmosphere Design Space

35

from Scheuring et. al., “Risk Assessment of Physiological Effects of Atmospheric Composition and Pressure in Constellation Vehicles” 16th Annual Humans in Space, Beijing, China, May 2007

Page 36: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Effect of Pressure and %O2 on Flammability

36

from Hirsch, Williams, and Beeson, “Pressure Effects on Oxygen Concentration Flammability Thresholds of Materials for Aerospace Applications” J. Testing and Evaluation, Oct. 2006

Page 37: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Atmosphere Design Space with Constraints

37

from Scheuring et. al., “Risk Assessment of Physiological Effects of Atmospheric Composition and Pressure in Constellation Vehicles” 16th Annual Humans in Space, Beijing, China, May 2007

Page 38: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

0.0#

2.0#

4.0#

6.0#

8.0#

10.0#

12.0#

14.0#

0# 200# 400# 600# 800# 1000# 1200#

Tissue

&Nitrogen

&Pressure&(psi)&

Time&(min)&

5*min#.ssue# 80*min#.ssue# 240*min#.ssue#

EVA Denitrogenation - 14.7 psi Cabin

38

Suit Pressure 4.3 psi 100% O2

Cabin Atmosphere 14.7 psi 21% O2

R Value = 1.4

Page 39: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

0.0#

1.0#

2.0#

3.0#

4.0#

5.0#

6.0#

0# 200# 400# 600# 800# 1000# 1200#

Tissue

&Nitrogen

&Pressure&(psi)&

Time&(min)&

5+min#/ssue# 80+min#/ssue# 240+min#/ssue#

EVA Denitrogenation - 8.3 psi Cabin

39

Suit Pressure 4.3 psi 100% O2

Cabin Atmosphere 8.3 psi 32% O2

R Value = 1.4

Page 40: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Constellation Spacecraft Atmospheres

40

from Scheuring et. al., “Risk Assessment of Physiological Effects of Atmospheric Composition and Pressure in Constellation Vehicles” 16th Annual Humans in Space, Beijing, China, May 2007

Page 41: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Categories of Sensing• Proprioception (internal to body)

– “Self-Sensing” – Vestibular (inertial forces) – Muscle and tendon sensors (extension) – Joint sensors (angle)

• Exteroception (external to body) – Visual – Auditory – Cutaneous

41

Page 42: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Anatomy of the Ear

42

From James T. Joyner, ed., NOAA Diving Manual, Best Publishing, 2001

Page 43: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Vestibular System

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

43

Page 44: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Vestibular Sense Organs

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

44

Page 45: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Thresholds of Rotational Perception

45

• Rotational accelerations – Yaw: 0.14 deg/sec2 – Roll and Pitch: 0.5 deg/sec2

• Mulder’s Constant – Acceleration x excitation time = 2 deg/sec – 5 deg/sec2 x 0.5 sec -> sensed – 10 deg/sec2 x 0.1 sec -> not sensed

• Rotational velocities - minimum perceived rotation rates 1-2 deg/sec (all axes)

Page 46: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Otolith Responses

From Roy DeHart, Fundamentals of Aerospace Medicine, Lea & Febiger, 1985

46

Page 47: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Thresholds of Translational Perception• ax: 0.006 g • ay: 0.006 g • az: 0.01 g • Apparent change in direction of g vector = 1.5°

47

Page 48: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Space Motion Sickness• “Space Adaptation Syndrome” • 2/3 of astronauts report some effects • Symptoms

– Primary: stomach discomfort, nausea, vomiting – Secondary: pallor, cold sweats, salivation, depressed

appetite, fatigue • No correlation to susceptibility to motion

sickness • Primary hypothesis: sensory conflict (Treisman’s

Theory)

48

Page 49: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Progression of Space Motion Sickness

49

From Roy DeHart, Fundamentals of Aerospace Medicine, Williams and Wilkins, 1996

Page 50: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

SAS Experience of First 34 Shuttle Flights

50

0

24

48

72

96

120

First Flight Subsequent FlightNone Mild Moderate Severe

Page 51: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

SAS Experience of First 34 Shuttle Flights

51

0.00

0.25

0.50

0.75

1.00

First Flight % Subsequent Flight %

None Mild Moderate Severe

Page 52: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Space Motion Sickness Countermeasures• Preflight training

– Desensitization – Autogenic feedback training (AFT)

• Pharmaceuticals – Oral - scopolamine/dex-amphetamine (Scopdex) – Transdermal - scopolamine – Intramuscular - promethazine

• Mechanical systems – Pressurized insoles – Load suits – Neck restraints

52

Page 53: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

1

10

100

1000

10000

0 2 4 6

Rotation Rate (rpm)

Lunar gravityMars gravity0.5*Earth gravity0.75*Earth gravityEarth gravity

Artificial Gravity

grotation =ω 2r

53

Page 54: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Allowable Rotation Rates• Select groups (highly trained, physically fit) can

become acclimated to 7 rpm • 95% of population can tolerate 3 rpm • Sensitive groups (elderly, young, pregnant

women) may have tolerance levels as low as 1 rpm

54

Page 55: Aerospace Physiology - University Of Maryland · Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Solution of Dissolved Gas

Aerospace Physiology ENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

References• R. L. DeHart, ed., Fundamentals of Aerospace

Medicine, Second Edition Williams and Wilkins, 1996 • A. E. Nicogossian, C. L. Huntoon, and S. L. Pool, Space

Physiology and Medicine, Third Edition Lea and Febiger, 1994

• A. E. Nicogossian, S. R. Mohler, O. G. Gazenko, and A. I. Grigoriev, eds., Space Biology and Medicine (Volume III, Book 1: Humans in Spaceflight) American Institute of Aeronautics and Astronautics, 1996

• J. T. Joiner, ed., NOAA Diving Manual: Diving for Science and Technology, Fourth Edition Best Publishing, 2001

55