advancing atmospheric chemistry the use of cross infrared

44
Advancing Atmospheric Chemistry Through the Use of Satellite Observations from the Crosstrack Infrared Sounder (CrIS) CrIS Atmospheric Chemistry Data User’s Workshop Report Sept. 1819, 2014. College Park, MD. doi:10.7289/V50V89SS Published: August 2015 NOAA Climate Program Office Atmospheric Chemistry, Carbon Cycle, & Climate Program (AC4)

Upload: others

Post on 24-Mar-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

Advancing Atmospheric Chemistry Through the Use of Satellite Observationsfrom the Cross‐track Infrared Sounder (CrIS)

CrIS Atmospheric Chemistry Data User’s Workshop ReportSept. 18‐19, 2014. College Park, MD.

doi:10.7289/V50V89SSPublished: August 2015

NOAA Climate Program OfficeAtmospheric Chemistry, Carbon Cycle, & Climate Program (AC4)

Acknowledgements

Arlyn Andrews1

ChrisBarnet2

KevinBowman3

KarenCady‐Pereira4

Joost DeGouw1

DavidFahey1

EmilyFischer5

AntoniaGambacorta6

DylanJones7

AnnaKarion1

Si‐WanKim1

Quanhua Liu6

Jingqiu Mao8

Aronne Merrelli9

DylanMillet10

NicholasNalli6

AndrewNeuman1

JohnNowak11

ViviennePayne3

BradleyPierce6

KarenRosenlof1

Eri Saikawa12

Awdhesh Sharma6

MarkShephard13

NadiaSmith9

Colm Sweeney1

DanielTong14

JunWang15

Juying Warner16

WalterWolf6

HelenWorden17

Xiaozhen Xiong6

LeonidYurganov18

Liye Zhu5

1 NOAAEarthSystemResearchLaboratory2 ScienceandTechnologyCorporation3 NASAJetPropulsionLaboratory4 AtmosphericandEnvironmentalResearch5 ColoradoStateUniversity6 NOAANatl.Env.Satellite,Data,andInfo.Svc.7 UniversityofToronto8 NOAAGeophysicalFluidDynamicsLaboratory9 UniversityofWisconsin,Madison10 UniversityofMinnesota,TwinCities11 AerodyneResearch12 EmoryUniversity13 EnvironmentCanada14 NOAAAirResourcesLaboratory15 UniversityofNebraska,Lincoln16 UniversityofMaryland,CollegePark17 NationalCenterforAtmosphericResearch18 UniversityofMaryland,BaltimoreCounty

WorkshopReportAuthorsandAffiliations

MatthewAlvarado,AtmosphericandEnvironmentalResearch,131HartwellAvenue,Lexington,MA02421Leadauthorandworkshopchair([email protected])

TheworkshopandthepublicationofthisreportweresupportedbytheNOAAClimateProgramOffice’s,AtmosphericChemistry,CarbonCycle&Climate(AC4)(ProgramManagers:KenMooneyandMonikaKopacz),withspecialthankstoNinaRandazzowhoactedasreporteditorandworkshopscribe,andtoHunterJonesforpublicationlayoutanddesign.

AllphotosretrievedfromNOAAJPSSmediagallery,creditBallAerospace&TechnologiesCorp.,withtheexceptionofthecoverpagemap,creditNASA/NOAA.

Front Matter Report of the CrIS Atmospheric Chemistry Data User’s Workshop

1

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Contents

 

2

TableofContents

1 ExecutiveSummary.....................................................................................................................................................3

1.1 ConclusionsandRecommendations...........................................................................................................4

2 Introduction....................................................................................................................................................................6

3 UsersandApplicationsofTIRTraceGasRetrievals......................................................................................9

3.1 GreenhouseGases..............................................................................................................................................9

3.2 AirQuality............................................................................................................................................................10

4 CurrentCrISTraceGasProducts..........................................................................................................................13

4.1 OverviewofNUCAPS.......................................................................................................................................13

4.2 AER/NCARCrISRetrievalsofNH3andCO.............................................................................................13

5 ValidationNeedsandDataSources.....................................................................................................................15

5.1 OngoingMeasurementPrograms..............................................................................................................16

5.2 EpisodicAtmosphericChemistryAircraftCampaigns......................................................................18

5.3 SurfaceMeasurementCampaigns.............................................................................................................20

5.4 OtherPlatforms.................................................................................................................................................21

6 ProductChangesandRefinements......................................................................................................................22

6.1 CurrentProductFormatandDistribution.............................................................................................22

6.2 RecommendedRefinements........................................................................................................................23

7 PotentialNewProducts............................................................................................................................................25

7.1 ProductsNeededtoContinuetheRecordsofOtherTIRSounders.............................................25

7.2 PossibleNewProductsFromCrIS.............................................................................................................25

7.3 AdditionalProductsPossibleifJPSS‐2SpectralGapWereClosed..............................................28

7.4 ValidationofNewProducts..........................................................................................................................28

8 References......................................................................................................................................................................29

9 GlossaryofAcronyms................................................................................................................................................38

Section 1.   Executive Summary and Recommendations 

 

1 ExecutiveSummary

The scientific communities studyingatmospheric chemistry and its effects on airquality and climate change extensively usetracegasretrievalsfromthermalinfrared(TIR)satellite observations. These products havebeen provided by NASA Earth ObservingSystem (EOS) instruments, such as theTroposphericEmissionSpectrometer(TES),theAtmospheric Infrared Sounder (AIRS), and theMeasurementsofPollutionInTheTroposphere(MOPITT) instruments, as well as by theInfraredAtmosphericSounding Interferometer(IASI) aboard theEUMETSATMetOp satellites.However, all of the EOS TIR sounders arecurrently well past their expected designlifetimes,andNASAdoesnothavecurrentplansto replace these instruments. This placescriticaldataproductsat risk.The lossof theseproducts would substantially harm keyscientificstudiesfocusedonairquality,climatechange,andEarthsystemprocesses.

There is, however, a solution. The Cross‐trackInfrared Sounder (CrIS) instrument, a FourierTransform Infrared (FTIR) spectrometercurrently flying aboard the joint NOAA, NASAand DOD Suomi National Polar‐orbitingPartnership (Suomi‐NPP) satellite, has thepotential to continue many of these trace gasdatarecords.AsCrISwillalsobeflownaboardtheupcomingNOAAJointPolarSatelliteSystem(JPSS) satellites, it could continue to produce

TIRtracegasretrievalsthroughoutthecomingdecadeandbeyond.

The CrIS Atmospheric Chemistry Data UsersWorkshop, held at NOAA Center for WeatherandClimatePredictioninCollegePark,MD,wasdesignedtoensurethatCrIScouldreachitsfullpotential as an atmospheric compositioninstrument.Thegoalsoftheworkshopwereto:

• Generate communication between theCrIS retrieval algorithm developmentcommunity and the atmosphericchemistryusercommunity;

• Identify users and applications ofcurrentandfutureretrievals;

• Ensure sufficient validationof retrievalproducts;

• Identifylimitationsofcurrentproducts;and

• Identify potential new retrievalproducts.

The workshop generated extensive discussionbetweenresearchersonalloftheaboveissues,and this report summarizes our majorconclusions and recommendations on the use,validation, improvement, and expansionof thecurrent CrIS trace gas retrieval product suite.More details on each conclusion andrecommendation are provided in the notedsectionsofthefullreport.

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 1. 

 

4

1.1 ConclusionsandRecommendationsConclusion1:

We find that the primary limitation of theoperational CrIS trace gas product suite is thedegraded spectral resolution of the mid‐waveandshort‐wavebands.Fullresolutionrawdatais now available from CrIS as of December2014, but current processing plans do notinclude producing calibrated radiances at thisresolution.

Recommendation1:

Calibratedradiances(Level1b)shouldbeprovided at the full CrIS spectralresolutionforuseintheretrievaloftracegases as soon as possible, and thisproduct should also be provided for theCrISsensorsforallfutureJPSSmissions.

Conclusion2:

Wefindthatthereisanextensivecommunityofresearchandoperationalusers,includingNOAAcentersandNOAA‐fundedresearchers,who(a)depend on TIR trace gas retrievals for theirworkand(b)wanttoandwouldbeabletouseCrIS trace gas retrievals in their work (seeSection 3). However, the number of currentusers of operational CrIS trace gas retrievalproducts is small. We make the followingrecommendations to expand the use of CrIStracegasretrievalproducts(seeSection6):

Recommendation2a:

The National Environmental Satellite,Data, and Information Service (NESDIS)shouldprovidereducedfiles,modeledonthe TES “lite” products that provide theretrievals for individual trace gases andtheirobservationoperatorsata reducedvertical resolution. These would be inaddition to the granule files provided atthe full vertical resolution of the CrISforwardradiativetransfermodelthroughthe Comprehensive Large Array‐dataStewardshipSystem(CLASS).

Recommendation2b:

The reduced product files fromRecommendation 2a need to provide ameans to build an observation operatorforeachretrieval.Thisshouldincludetheaveragingkernel, the estimated retrievalerror, and the a priori profile. Thisinformation is essential to using CrIStrace gas retrievals in atmosphericchemistry studies. We furtherrecommend that the NESDIS and CLASSteams explore approaches to reducingthesizeofthesefiles,forexampleusingasingular value decomposition (SVD)approach.

Recommendation2c:

TheCLASSarchiveshouldbeupdated tosupport convenient and rapid multi‐filedownloadofthereducedproductfiles.

Conclusion3:

We find that the current state of validation ofthe NOAA Unique CrIS/ATMS ProcessingSystem (NUCAPS) trace gas retrievals isinsufficient for the use of these retrievals inmost atmospheric chemistry applications (seeSection 5). We make the followingrecommendationstoaddressthisneed:

Recommendation3a:

The CrIS retrieval developmentcommunity should closely coordinatewith theproject teamsofupcoming fieldcampaigns(aircraft,surface,balloon,etc.)on trace gas validation activities,includingUS‐ledaswellasEuropeanandother non‐US campaigns. Thiscoordination should include (i) workingwith the flight planning teams, (ii)ensuring timely data access, and (iii)fielding remote sensing instruments toaugmentthecampaigns.

Section 1.   Executive Summary and Recommendations 

 

Recommendation3b:

More frequent NOAA Earth SystemResearch Laboratory (ESRL) aircraftflights are needed for validationof tracegas retrievals fromCrIS (aswellas fromother satellite observations) for bothclimate‐relevant and air quality‐relevantspecies, including flights designed toinvestigate apparent anomalies in theCrIS trace gas retrievals. Since CrIS issensitive to different altitude ranges fordifferent gases, fights of a variety ofaircraft with different instrumentationand altitude ranges will be required tovalidateallofthetracegasesretrievedbyCrIS.

Recommendation3c:

In addition to the above activities,additionalfieldcampaignsandvalidationactivities should be performed to fullyvalidate the CrIS trace gas products,including products from future JPSSmissions. These campaigns shouldinvolve both the retrieval developmentandtheproductusercommunity.

Recommendation3d:

AllvalidationdatashouldbeaddedtotheNESDIS Validation Archive (VALAR) sothat future CrIS retrieval algorithms canbe more easily evaluated against thesedatasets.

Conclusion4:

We find that CrIS can continue most of theNASAEOSTIR tracegasdatarecords(e.g.,CO,O3, CH4, CO2, NH3, N2O, SO2, HNO3, CH3OH; seeSections4and7.1),with thekeyexceptionsof

formic acid (HCOOH) and peroxyacetyl nitrate(PAN), which fall in the CrIS spectral gaps. Inaddition, the remarkably low noise of CrISopens thepossibility for severalnewtracegasretrieval products (see Section 7.2), includingimportant species such as ethane (C2H6),acetylene (C2H2), ethylene (C2H4), hydrogencyanide(HCN),andaceticacid(CH3COOH).

Recommendation4a:

We recommend that the CrIS retrievalcommunityexplorethedevelopmentandvalidation of retrievals for the potentialnew species in close coordination withatmospheric chemistry research userswhodesiretheseproducts.

Recommendation4b:

Werecommendthatthecurrentspectralgap between the long‐wave and mid‐wavebandsofCrISbe closed for JPSS‐2,allowing the continuation of the EOStrace gas data records for HCOOH andPAN.Wenote that closing thesespectralgaps was also a recommendation of the“JPSS 2 and Beyond: InstrumentImprovements for Science Benefits”WorkshopheldonOctober23,2014.

Recommendation4c:

We recommend that for post‐JPSSplanning, NOAA continue the polar‐orbiting IR sounder program, and thatNOAA consider approaches to bothreduce the noise and increase theresolutionoffutureversionsofCrIS,asisbeing done in the New Generation ofInfrared Atmospheric SoundingInterferometer(IASI‐NG)program.

Report of 

 

2 In

The CrISWorkshoand potefromtheapplicatiocompositclimate.atmosphecycle, niextensivesatelliteLoganetal., 20092010, KoWecht etCrevoisierZhuetal.,StavrakouhavebeesuchasTaboardHowevercurrently

Figure1.AIRS.Figu

the CrIS Atm

ntroduc

S Atmospherp was orgaential usesCrISinbothons focustionand its iThe scientiferic chemisitrogen cycely use traceobservationsal.,2008;Jon9; Pierce etopacz et al.,t al., 2012;retal.,2013,2013;Cadyu et al., 201nprovidedbTES,AIRS,anthe EUME

r, all of they well past

CrISnoise‐eurereproduc

mospheric Che

ction

ric Chemistranized to idof satellite

hresearchansed onimpactsonafic communstry, air qucle, and clie gas retrievs [e.g., Zhangnesetal.,200al., 2009, M2010; HealdWells et al.,;Worden,J.ey‐Pereiraeta11, 2012]. ThbyNASAEOndMOPITT,aETSAT MetOe EOS TIRt their exp

quivalentbrcedfromZavy

emistry Data U

ry Data Useentify curreobservatio

ndoperationatmospher

airqualityannities studyinuality, carboimate chanvals from Tg etal., 20009;BowmanMcMillan et ad et al., 201, 2012, 201etal.,2013a,l.,2012,201hese producSinstrumenaswellasIAOp satellitesounders apected desig

ightnesstemyalovetal.[2

User’s Works

ersentnsnalricndngongeTIR06;etal.,12;14;,b;14;ctsts,ASIes.aregn

lifetimto recriticaproduscientichang

HowevspectrSuomicontinsuchaNH3 [SCrIS cinthrecm‐1,mshort‐spectr2200karray(nadirsmallatmos(~1:30

mperaturediff2013].

shop 

mes,andNASeplace theseal data produucts wouldificstudiesfe,andEarth

ver, therometer curi‐NPP satellnuemany ofasCO,O3,CHStrowetal.,canprovide seebands(lonmid‐wavebe‐wave betweral resolutionkmswathwofcircularprspatial resopixel size

spheric retri0 AM/PM

fference(NEd

Adoesnothe instrumenucts at risk.substantia

focusedonasystemproc

CrIS instrurrently flyinlite, has thf these data4,CO2,N2O,H2013; Bowmsoundings ong‐wavebetetween1210een 2155 –n of 0.625 c

width(+/‐50pixelsof14kolution).Theof CrIS alloievals globaM local

dT,K)ascom

havecurrentnts. This pThe loss ofally harmirquality,clicesses.

ument, ang on boardhe capabilitrecords forHNO3,CH3OHmanetal., 2f the atmosptween650–0–1750cm‐1

2550 cm‐1)cm‐1. CrIS scdegrees)wikmdiametere largeswathow it to prally twice a

solar t

mparedto IA

Section 2.

6

plansplacesf suchkey

imate

FTIRd thety togasesH,and2011].phere10951,and at aans aithanreachhandovidea daytime).

ASIand

Section 2.   Introduction 

 

Current operational CrIS measurements havedegraded the CrIS spectral resolution in themid‐wave and short‐wavebands (a factorof2and4,respectively,comparedtothelong‐waveband) so as to reduce the amount of dataprocessed by the ground stations. Plans toincreasethemid‐waveandshort‐wavespectralresolution to match the long‐wave spectralresolution are being implemented and fullresolutionrawCrISdatabecameoperationalinDecember 2014. The full CrIS spectralresolution isbetter thanAIRSand comparableto IASI, and thespatial coverage is superior tothatofTES.Itsequatorialcrossingtimes(~1:30AM and 1:30 PM) are very close to those ofAIRS and TES; the daytime crossing time isoptimal for retrieving species with highconcentrations near the surface, as theseretrievalsworkbestwhenthethermalcontrastbetween the surface and the target species ishigh. CrIS has a significantly higher signal tonoiseratio(SNR)thanTES,IASIorAIRS(Figure1);thishighSNRcanpartiallycompensateforapoorerspectralresolutioncomparedtoTES.

AsCrISwillalsobeflownaboardtheupcomingNOAA JPSS satellites, it has the potential tocontinue to produce TIR trace gas retrievalsthroughout the coming decade and beyond.However, there are currently severallimitationspreventingtheuseofCrIStracegasproducts by the atmospheric science andoperationalapplicationendusers.First,thereisa need for better communication andcollaboration between the CrIS retrievalcommunitiesandthepotentialendusersofthetrace gas retrievalproducts. Second, there is aneed for a coordinated strategy to validatetracegasproductsfromCrISandtoidentifyanyneeded changes to the current CrIS trace gasproductstofacilitatetheirusebyscientificandoperationalendusers.

The CrIS Atmospheric Chemistry Data UsersWorkshop addressed these needs by bringingtogether the retrieval algorithm, scientific, andoperational communities working with TIRtrace gas retrievals (see Table 1) to develop astrategic plan for the development, validation,dissemination, and use of CrIS trace gasproducts.Thegoalsoftheworkshopwereto:

• Generate communication between the CrISretrieval algorithm developmentcommunity and the atmospheric chemistryusercommunity;

• Identify users and applications of currentandfutureretrievals;

• Ensure sufficient validation of retrievalproducts;

• Identifylimitationsofcurrentproducts;and

• Identifypotentialnewretrievalproducts.

This community report summarizes thefindings and recommendations of theworkshop.Section3listscurrentandpotentialresearch and operational users of trace gasretrieval products from CrIS. Section 4summarizes the status of the current CrISretrieval products. Section 5 describes thevalidation needs for these products anddiscusses current data sources and plannedmeasurementcampaignsthatcanaddresstheseneeds.Section6describeschangesthatneedtobe made to the CrIS retrieval product files,includingsuggestionsforreducingfilesizeandfacilitating the use of the data. Section 7 thendiscusses potential new products that may beable to be retrieved given the remarkably lownoise of CrIS, and two products (HCOOH andPAN)thatcouldberetrievedifthespectralgapbetween the long‐wave and mid‐wave CrISbands were removed for JPSS‐2 and beyond.

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 2.

 

8

Table1.WorkshopAttendees

Name InstitutionExtramural

1 Alvarado,Matthew(Chair) AtmosphericandEnvironmentalResearch,Inc.2 Barnet,Chris ScienceandTechnologyCorporation3 Bowman,Kevin NASAJetPropulsionLaboratory4 Jones,Dylan UniversityofToronto5 Merrelli,Aronne UniversityofWisconsinSSEC/CIMSS6 Millet,Dylan UniversityofMinnesota7 Nowak,John AerodyneResearch,Inc.8 Saikawa,Eri EmoryUniversity9 Smith,Nadia UniversityofWisconsinSSEC/CIMSS10 Warner,Juying UniversityofMaryland11 Worden,Helen NationalCenterforAtmosphericResearch12 Yurganov,Leonid University ofMarylandBaltimore County Joint Center for

EarthSystemsTechnology13 Zhu,Liye(Juliet) ColoradoStateUniversity

NOAAOAR14 DeGouw,Joost NOAAESRLChemicalSciencesDivision15 Fahey,David NOAAESRLChemicalSciencesDivision16 Kim,Si‐Wan NOAAESRLChemicalSciencesDivision17 Mao,Jingqiu NOAAGeophysicalFluidDynamicsLaboratory18 Neuman,Andrew NOAAESRLChemicalSciencesDivision19 Rosenlof,Karen NOAAESRLChemicalSciencesDivision20 Tong,Daniel NOAAAirResourcesLaboratory

NOAA/NESDIS21 Goldberg,Mitch NOAANESDISJointPolarSatelliteSystem22 Gambacorta,Antonia NOAA NESDIS Center for Satellite Applications and

Research(CSAR,CollegePark,MD)23 Liu,Quanhua(Mark) NOAANESDISCSAR(CollegePark,MD)24 Nalli,Nicholas NOAANESDISCSAR(CollegePark,MD)25 Wolf,Walter NOAANESDISCSAR(CollegePark,MD)26 Xiong,Xiaozhen NOAANESDISCSAR(CollegePark,MD)27 Pierce,Bradley NOAANESDISCSAR(Wisconsin)28 Sharma,Awdhesh NOAANESDISCSAR(CollegePark,MD)

Remote1 Andrews,Arlyn NOAAESRLGlobalMonitoringDivision2 Fischer,Emily ColoradoStateUniversity3 Henze,Daven UniversityofColorado,Boulder4 Karion,Anna NOAAESRLGlobalMonitoringDivision5 Sweeney,Colm NOAAESRLGlobalMonitoringDivision6 Wang,Jun UniversityofNebraska,Lincoln

NOAACPO1 Kopacz,Monika NOAAClimateProgramOffice2 Mooney,Kenneth NOAAClimateProgramOffice3 Randazzo,Nina NOAAClimateProgramOffice4 Sagar,Amrith NOAAClimateProgramOffice

Section 3.   Users and Applications of TIR Trace Gas Retrievals 

 

3 UsersandApplicationsofTIRTraceGasRetrievals

PrimaryAuthors:DylanMillet,BradPierce,DylanJones,KevinBowman,JingqiuMao,ArlynAndrews,EriSaikawa,ChrisBarnet,ShawnXiong,JuyingWarner,EmilyFischer,JulietZhu

Potential uses for CrIS trace gas data include source attribution studies and trend analyses toquantifybudgetsofkeyclimateandairqualitygases,aswellasdataassimilationstudiestoimproveemission estimates and forecasts of air quality and climate impacts. As we highlight below, TIRtracegasretrievalsfrominstrumentssuchasMOPITT,AIRS,TES,andIASIhaveprovidedpowerful,global information forunderstandingatmospheric composition,airquality, andclimate.With theexceptionof the second IASI instrumentonMetOp‐B, allof these instrumentsarewellpast theirdesign lifetime.Developing similar dataproducts fromCrIS is thus a critical aspect of the globalobservingnetworkthatisneededtoadvancepresentknowledgeoftheatmosphere‐climatesystem.

Belowwedivideourdiscussionintogreenhousegasretrievalproducts(e.g.,CO2,CH4,O3,andN2O)and air quality retrieval products (e.g., CO, O3, SO2, NH3, and CH4). Note that there are severalspecies,mostnotablyO3andCH4,thathaveimportantimplicationsforbothclimateandairquality.

3.1 GreenhouseGases3.1.1 Operational

There are two separate potential operationaluses for CrIS retrievals of greenhouse gases.Thefirstistousetheretrievedgreenhousegasconcentrations of O3, CO2, CH4, and N2O inchemical data assimilation into operationalweather,carboncycle,andclimatemodels,suchas is done by the EUMonitoring AtmosphericComposition and Climate (MACC‐III) project[https://www.gmes‐atmosphere.eu/about/project/macc_input_data/] for IASI retrievalsof CO, CO2 and CH4. The second potentialoperational use is in the radiation scheme ofnumericalweatherpredictionandothermodelspriortoassimilationofCrISradiances.

It is appropriate to differentiate between“operational” and “real‐time” applications forcases when data latency is important.

Real‐time availability and display of trace gasobservations can be important in monitoringapplications, such as disaster tracking or infield campaigns. The need for real‐timeobservational data is recognized in theUniversity of Wisconsin‐Madison (UW)Community Satellite Processing Package(CSPP), which is funded by NOAA to prepareand release a direct‐broadcast version of theNUCAPS software (and other sciencealgorithms, such as the UW Dual‐Regressionalgorithm) to the international community sothat they may run this on their own localsystemsasdataarereceivedthroughantennae.

3.1.2 Research

The primary research use of greenhouse gasretrievals is in data assimilation and sourceattribution studies to establish constraints onthechangingsourcesandsinksofatmosphericCO2, CH4, and N2O. This research is beingcarried on by a large number of researchgroups worldwide; rather than attempt topresentanexhaustivelistoftheseefforts,herewe focus on a few key examples of research

effortsledbyfederallaboratoriesatNOAAandNASA,aswellasrelatedresearcheffortsledbytheparticipantsintheCrISworkshop.

Dr.VaishaliNaikoftheNOAAGeophysicalFluidDynamics Laboratory (GFDL) is working onimprovingtherepresentationofCH4withintheGFDL AM3 global model and applying thismodel to analyze the long‐term trends andvariability in atmospheric CH4 concentrations.

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 3.

 

10

CrIS CH4 observations would provideconstraints on source estimates asimplemented in AM3. The extended TIR CrISrecordwouldalsoassist intheinvestigationoflong‐termtrendsandvariabilityinCH4.

The NASA CMS‐Flux Project, led by Dr. KevinBowmanfromNASAJPL,dependsonthermalIRCO2measurements from satellites, alongwithotherobservations, to attribute changes in theatmospheric growth rate of CO2 to spatiallyexplicit fluxes across the entire carbon cycle[Liuetal.,2014].Furthermore,Dr.Bowmanhaspioneeredthedevelopmentandexploitationofobserved outgoing long‐wave radiationproductsfromAuraTESandtheirsensitivitytotropospheric ozone to evaluate chemistry‐climate models [Worden, H. M. et al., 2008;Aghedo et al., 2011; Bowman et al., 2013;Shindelletal.,2013a,b;Youngetal.,2013]andattribute ozone radiative forcing to spatially‐resolvedemissions[BowmanandHenze,2012].CrIScouldbeusedtoextendthiswork.

Prof.DylanMilletoftheUniversityofMinnesotais applying global surface and airborneobservationsinanadjointmodelingframeworkto establish new constraints on the surfaceemissions and stratospheric loss ofatmosphericN2OaspartofaNOAACPOfundedproject.Thisandrelatedprojectswouldbenefit

significantly from robust space‐basedmeasurements in assessing the impact ofstratosphere‐troposphere exchange onatmosphericN2O.

Prof.EriSaikawaofEmoryUniversityisworkingonaNOAACPO fundedproject to assesswhatdrivestheseasonalandinter‐annualvariabilityof N2O emissions and the atmosphericmixingratio of N2O. This project would also benefitfromCrISTIRobservationsofN2O.

Prof.DylanJonesoftheUniversityofTorontohasused retrievals of CO2 from the TIR TESinstrument to constrain surface fluxes of CO2[Nassar et al., 2011]). He has found that theinformationonfreetroposphericCO2providedby TIR sounders provides additionalconstraints beyond the surface observationnetwork, and that these can be particularlyuseful in improving features such as the CO2distributionintheAsianmonsoonregion.

Dr.JuyingWarneroftheUniversityofMaryland‐Baltimore County (UMBC) uses AIRSobservationsofCH4 to investigate the sourcesanddistributionof this gas in theatmosphere.Continuing the AIRS CH4 record with CrISwouldsubstantiallystrengthenresearcheffortsaimed at understanding the inter‐annualvariabilityofthisgas.

3.2 AirQuality3.2.1 Operational

ThekeypotentialoperationalairqualityuseforCrIS trace gas retrievals is near‐real‐time airqualityandchemicalweatherforecasting.SuchworkiscarriedoutbyadiversegroupofusersbothwithinandoutsidetheUS.OutsidetheUS,the Composition component of the EuropeanCenter forMedium‐rangeWeatherForecasting(ECMWF) Integrated Forecasting System (C‐IFS)representsthecurrentstateofthesciencewith regard to global air quality assimilationand forecasting. C‐IFS has fully integratedchemistry, aerosol, and greenhouse gaspredictions; it assimilates atmosphericcomposition observations to simulate globalatmospheric chemistry, including feedbacks

betweenatmosphericcompositionandweather[Flemming et al., 2013]. C‐IFS currentlyassimilatesIASICOandO3retrievals.Likewise,Environment Canada provides operational airquality forecasts using the GlobalEnvironmental Multi‐scale ‐ Modeling Airquality and CHemistry (GEM‐MACH) forecastsystem, which is run over North America toprovide guidance for Canadian air qualityforecasts.Testingof assimilationof surfaceairqualitymeasurementshasbeenconductedwiththeGEM‐MACHsystem[RobichaudandMénard,2014].

In theUS, theNOAANationalWeather Service(NWS) and Air Resources Laboratory (ARL)

Section 3.   Users and Applications of TIR Trace Gas Retrievals 

 

11 

provide daily forecasts of surface ozone usingtheCommunityMulti‐scaleAirQuality(CMAQ)modeldrivenwithmeteorologyfromtheNorthAmerican Model (NAM) through the NationalAirQuality Forecasting Capability.NAM‐CMAQassimilationexperimentshavebeenconductedtoassesstheimpactofassimilatingGOESTotalColumn Ozone retrievals within NAM‐CMAQ[Pierceetal.,2011],andsimilarassimilationofO3andCOproductsfromCrIScouldbeusedtoimprove the O3 forecast. NOAA ARL is alsodeveloping a surface PM2.5forecasting system,and CrIS NH3 observations will be extremelyuseful in constraining the highly uncertainemissionsofthisPM2.5precursor.

Other potential near‐real‐time CrIS air quality

datausersinclude:

NOAAGlobalForecastSystem(GFS) NASA Goddard Earth Observing SystemModel(GEOS‐5)

US Naval Research Laboratory NavyOperational Global Atmospheric PredictionSystem(NOGAPS)

Various regional air quality forecastingorganizations,forexampleatGeorgiaTech.,NorthCarolina,andWashingtonState.

In addition, near‐real‐time CrIS data could beuseful in planning future aircraft samplingmissions by providing information that allowsthe targeting of scientifically interestinglocations.

3.2.2 Research

A number of research air quality modelingsystems have conducted chemical dataassimilation experiments using IR trace gasretrievals that are analogous to the CrISproducts.IRtracegasassimilationstudieshavefocusedonassimilationofCO [Lamarqueetal.,1999] and the use of inverse modeling toconstrainCO [Kopaczetal., 2010],NH3 [Zhuetal.,2013]andCH3OH[Wellsetal.,2014],aswellas on joint O3/CO assimilation [Pierce et al.,2009] and adjoint emission constraintexperiments [Jones et al., 2009]. As above,ratherthanattemptanexhaustivelistofusers,we focusoneffortsat federal laboratoriesandrelated research efforts by the workshopparticipants. Potential users of CrIS trace gasretrievals for air quality research and forecastsystem development include: NOAA ESRL,which focuses on pollution source analysisusing the Weather Research and Forecastingwith Chemistry model (WRF‐Chem) and theFlexibleParticle(FLEXPART)dispersionmodel,airpollution forecastsusing theRapidRefreshwith chemistry (RR‐Chem1) modeling system,and trend analysis of ozone and ozoneprecursors.

1http://ruc.noaa.gov/wrf/WG11_RT/

TheUW‐Madison/NESDISReal‐timeAirQualityModeling System (RAQMS2), which currentlyassimilates real‐time O3 retrievals from theNASAOzoneMonitoringInstrument(OMI)andtheMicrowaveLimbSounder(MLS)andwillbeused to assimilate AIRS CO, CH4, and O3retrievals as part of a multi‐sensor chemicalreanalysisproject.

TheNOAAGFDLAM3modeldevelopment teamis conducting on‐going work on nitrogencycling that would benefit from CrISobservations of NH3, and could use CrISretrievals of CO andO3 to improve the spatialand temporal variability of these species inAM3.Inparticular,theyplantouseCrISfortheupcoming NOAA field campaign FIREX 3 tobetter constrain biomass burning emissionsand ozone production from biomass burningplumes.

The National Center for Atmospheric Research(NCAR), which currently assimilates IASI COand O3 observations into CommunityAtmosphere Model with Chemistry (CAM‐Chem) and WRF‐Chem simulations, and alsoprovidesairqualityforecastsusingassimilationof MOPITT CO into the Model for OZone And2http://raqms‐ops.ssec.wisc.edu/index.php3http://www.esrl.noaa.gov/csd/projects/firex/

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 3.

 

12

Related chemical Tracers (MOZART‐4)[Emmons et al., 2010]. In addition, Dr. HelenWordenofNCARusessatelliteobservations toinvestigate the trends in CO, which haveimportant implications forbothairqualityandclimate. Continuing the record of COmeasurements from MOPITT is critical forunderstandingthemulti‐decadalchangesinCO[Worden,H.M.etal.,2013a].

The GEOS‐Chem research community, whichfocuses on use of the adjoint of the GoddardEarth Observing System‐Chemical transportmodel (GEOS‐Chem) 4 for source inversionstudiesofmultiplegases,suchasCO[Kopaczetal.,2010],O3,andNH3[Zhuetal.,2013].

Prof.DylanMilletoftheUniversityofMinnesota,whose ongoing work employs TIRmeasurements of CH3OH (TES, IASI), HCOOH(TES, IASI) and CO (MOPITT) to betterunderstand the sources and chemical impactsof these species and the constraints that thesemeasurements can provide on the overallreactive carbon budget of the atmosphere[Cady‐Pereiraetal.,2012,2014;Chaliyakunneletal.,2013;Wellsetal.,2012,2014a,b].

Dr. Matthew Alvarado and Ms. Karen Cady‐Pereira of AER, who are currently funded byNOAA CPO to use AER’s CrIS NH3 retrieval tostudy the emissions of NH3 during the NOAASENEX(SouthEastNEXusofclimatechangeandairquality)campaignandoverCaliforniainthesummerof2012.

Prof.EmilyFischerandDr.JulietZhuofColoradoStateUniversityandDr.ViviennePayneofNASAJPL,whoareusingnewPANretrievalsfromTES[Payne et al., 2014] to investigate the role offires in driving observed inter‐annualvariabilityofPANathighlatitudes,therelativeimportance of lightning versus fires in drivingthe austral spring PAN distribution, and theimpactofPANon the transpacific transportofO3.

Environment Canada, which utilizes TIRsatellitemeasurementsaspartoftheirongoing

4http://wiki.seas.harvard.edu/geos‐chem/index.php/GEOS‐Chem_Adjoint

modeling and analysis efforts. This agency isinterested in using CrIS measurements forchemical data assimilation to improve surfaceairqualityanalysesandforecastsaswellasUVindex forecasts, either directly or throughsynergywithotherdatasets.TheretrievedCrISconstituent data (i.e. ozone) would contributein the validation of the assimilation andforecastingproducts. Inaddition,EnvironmentCanada’s Dr. Mark Shephard and Dr. ChrisMcLinden are collaborating with AER tocontinue NH3 emission research over NorthAmerica [Shephard and Cady‐Pereira, 2014],includingNH3modelvalidation.

Section 4.   Current CrIS Trace Gas Products 

 

13 

4 CurrentCrISTraceGasProducts

PrimaryAuthors:MattAlvarado,KarenCady‐Pereira,AntoniaGambacorta,ShawnXiong,NickNalli

HerewebrieflydescribetwoalgorithmsthatarecurrentlyusedorindevelopmentfortheretrievaloftracegasesfromCrIS:theNUCAPSalgorithm(Section4.1)developedbyNOAANESDISandtheAER/NCARretrievalsofNH3andCO(Section4.2).

4.1 OverviewofNUCAPSTheNUCAPS algorithm currently retrieves thetrace gases H2O, O3, CO, CO2, CH4, N2O, HNO3,andSO2fromCrISspectra[e.g.,GambacortaandBarnet,2013]using339channelschosenbasedon their spectral properties, including spectralpurity, independent information content,verticalsensitivity,lowinstrumentalnoise,andglobal optimality [Gambacorta and Barnet,2013].Table2showsthetracegasesretrievedby the NUCAPS algorithm, along with theestimated precision, degrees of freedom forsignal (DOFS, representing the number of

independent pieces of information in theretrieved profile [Rodgers, 2000]), and theverticalregionofmaximumCrISsensitivityforeach gas. Note that the current, degradedresolution of the short‐wave band (2.5 cm‐1)does not allow CrIS to provide meaningfulinformation on CO [Gambacorta et al., 2014],and thus the full‐resolution (0.625 cm‐1) CrISdata are necessary for the optimal retrieval ofCO, aswell as for the retrievals of other gasesthat use channels in the mid‐wave and short‐wavebands(e.g.,CH4andN2O).

4.2 AER/NCARCrISRetrievalsofNH3andCOMs. Karen Cady‐Pereira of AER and Dr. HelenWorden of NCAR are leading an effort todevelopoperationaloptimalestimationCOandNH3 retrievals from CrIS based upon theheritage from the TES and MOPITT retrievalalgorithms.Atmosphericammonia(NH3) isthedominantbase in theatmosphere. Itplayskeyrolesinatmosphericchemicalprocessing:asanimportant source of PM2.5 particles, it cansignificantlyaffectairquality,anddepositionofthisspeciescancontributetomajorchangesinecosystemhealth.TheNH3retrievalsfromTEShavebeenused in conjunctionwith theGEOS‐ChemadjointmodeltoconstrainNH3emissions[Zhuetal.,2013].TESNH3valuesaregenerallyhigher than initial model NH3 distributions intheUSandthisindicatesthatNH3sourcesmaybe widely underestimated. NH3 observationsfrom CrIS provide a new opportunity forreducing persistent uncertainties of thedistributionofatmosphericNH3.

In addition, measurements of CO from spacehave been essential for understanding globalatmospheric chemistry, transport, and

emissions. Due to its medium‐scale lifetime(weeks to months) CO is a useful tracer ofpollution. It is transported globally but is notevenly mixed, allowing measurements ofelevatedCO that are easilydistinguished abovebackground levels. CO also serves as thereferencegasfortheemissionsofmanydifficult‐to‐measure species, such as those co‐emittedfromcombustionprocesses[Luoetal.,2015].

The AER/NCAR retrieval algorithms for NH3and CO will use the same optimal estimationapproach adopted for TES [Bowman et al.,2006; Shephard et al., 2011] and MOPITT[Deeter et al., 2003; Deeter et al., 2007], withsimilar microwindows and the same a priorivectors and constraint matrices, providingcontinuitywiththeTESandMOPITTdatabases.A prototype CrIS NH3 algorithm has alreadybeendevelopedaspartofaNOAACPOproject,andlimitedtestinghasshowngoodagreementwith TES and surface observations. The highspatialandtemporalcoverageprovidedbyCrISis a significant advantage over TES [ShephardandCady‐Pereira,2014].

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 4.

 

14

Table2.Spectralranges,precision,andsensitivityoftheNUCAPSretrievalsoftracegases.

SpectralRange(cm‐1)

RetrievalPrecision

d.o.f. InterferingSignals Sensitivity

H2O 1200‐1600 15% 4‐6 CH4,HNO3 Surf.to300mb

O3 1025‐1050 10% 1+ H2O, surfaceemissivity

Lowerstrat.

CO 2080‐2200 15% 1 H2O, N2O Mid‐trop

CH4 1250‐1370 1.5% 1 H2O, HNO3, N2O Mid‐trop

CO2 680‐795

2375‐2395

0.5% 1 H2O, O3

T(p)

Mid‐trop

VolcanicSO2

1340‐1380 50%?? <1 H2O, HNO3 DetectionFlag

HNO3 860‐920

1320‐1330

50%?? <1 emissivity

H2O,CH4,N2O

Uppertrop

N2O 1250‐1315

2180‐2250

5%?? <1 H2O

H2O,CO

Mid‐trop

Section 5.   Validation Needs and Data Sources 

 

15 

5 ValidationNeedsandDataSources

PrimaryAuthors:ArlynAndrews, JoostdeGouw,KarenRosenlof, JohnNowak,BradPierce,DylanMillet,AndyNeuman,EriSaikawa,NickNalli

Herewe briefly describe several ongoing, recent, and upcoming field campaigns andmonitoringprogramsthatcanprovidedataforthevalidationofcurrent(Section4)andfuture(Section7)CrISproducts. We do not attempt to make an exhaustive list of all past and future validationopportunities, but simply demonstrate what required validation data is available. These areorganized into campaigns that involve ongoing frequent aircraft flights (Section 5.1), episodiccampaigns that are focused on atmospheric chemistry (Section 5.2), long‐term surfacemeasurementcampaigns(Section5.3),andcampaignsusingplatformsotherthansurfacesitesandaircraft(e.g.,balloons,unpilotedaerialvehicles(UAVs),Section5.4).

While extensive efforts have been made tovalidate the temperature and H2O retrievalproducts from CrIS, very little work has beendone to evaluate the trace gas speciesretrievals. CrIS O3 retrievals are currentlybeing evaluated usingworld‐wide ozonesondedatafromtheSouthernHemisphereADditionalOZonesondes (SHADOZ) networks and othersources,andbothO3andCOproductsarebeingevaluated using Measurement of OZone andwater vapor on AIrbus in‐service airCraft(MOZAIC)andIn‐serviceAircraftfortheGlobalObserving System (IAGOS) aircraft data. OtherCrIStracegasproductshavenotbeenvalidatedeven to this extent. Validating these productswith reliable surface, aircraft, balloon, andother data is critical to the scientific andoperationaluseoftheseproducts.

WhilelittleworkhasbeendonetovalidateCrIStrace gas products to date, a large amount ofdata from recent and upcoming aircraft,balloon, and surface‐based instruments isavailable for such efforts. For example, theairborne and surfacemeasurement campaignsperformed by NOAA ESRL, both by theChemical Sciences Division (CSD) and theGlobal Monitoring Division (GMD), areimportantpotential sources forCrISvalidationdata. Figure 2 shows an example payload forthe WP‐3 aircraft used by CSD. The payloadincludes instruments to measure O3, CO, CO2,CH4, NH3, HNO3, SO2, and several other gasesthat can be detected by CrIS. NOAA ESRL CSDhasalsoprovidedO3andH2Oinstrumentsforanumber of NASA and NSF aircraft campaigns.

Air samples from aircraft sites in the NOAAESRL GMD Global Greenhouse Gas ReferenceNetworkprovide regularmeasurementsof thevertical profiles of CO2, CH4,N2O, and CO overNorth America and from a single site in theSouthern Hemisphere (Raratonga), andcontinuous O3 measurements are made on asubsetoftheseflights.

Field campaigns run by other US (e.g., NASA,NCAR,NSF)andinternationalagencies,aswellascampaignsorganizedbyuniversityscientists,canalsoprovideawealthofinsitudataforthevalidationofCrIStracegasretrievals.TheCrISretrieval development and validationcommunity needs to establish stronger tieswith the leadership of these US andinternational field campaigns to ensure, forexample, a lineup of data collection withsatellite overpass times and rapid access tofielddata.

Satellite inter‐comparisons, such as have beenperformed for CO and O3 data from IASI, TES,AIRS, MOPITT, andMLS, can also be useful inidentifyingproblemsinnewretrievalproducts.Such inter‐comparisons should be extended toincludetheCrIStracegasdata,buttheyarenota replacement for rigorous validation effortswith insitumeasurements and surface remotesensingobservations.

Inaddition,itisrecommendedthatinformationregarding CrIS be added to the NOAA NESDISCenter for Satellite Applications and Research(STAR) VALAR (VALidation ARchive). VALARmatches validation data from a variety of

Report of 

 

sourcescorrespocontainretrievalretrievalnumerica

Figure2.

5.1 OOngoingthat havebelow,aron the strace gaprovide aCrISretrithe CrIScommuniteamson

The GMDNetwork’sto collecoverNort12 flaskapproxim

the CrIS Atm

(sondes, anding CrISthe informavalidationalgorithms.

al weather

NOAAESRLC

OngoingMcampaigns ae frequent flrecriticalforseasonal ands mixing raa wealth ofievalsofCO,S retrievality shouldvalidationa

D Global G’saircraftprocting air samthAmerica.Msamples at

mately8km.

mospheric Che

aircraft, etcgranule “

ation neededand evaluat Model fielr predicti

CSDWP‐3air

Measuremand monitorights, such arprovidingld inter‐annuatios. Thesedata for theO3,CO2,N2Odevelopmework closelactivities.

Greenhouse Gogramhasbmples in veMostofthesedifferent alThesesamp

emistry Data U

c.) with th“stamps” thd to perforte updatesds (e.g., froion model

rcraftwitha

mentProgring programas those listong‐termdaual changese flights the validationO,andCH4,annt and usly with the

Gas Referenbeendedicateertical profileflightscolleltitudes upplesarestore

User’s Works

hehatrmtoomls)

corresvalidaincludVALARimpro

representati

gramsmsedatainusofndserese

nceedlesecttoed

inglasand Cessenttheseencou

GMD hCoastwhereconduArcticflyingback.flaskpacontandaboard

shop 

sponding toation data anded inVALARR, it can bovementstor

ivepayload.

ssflasksforH4, among otial to the vagases, andraged.

has also beeGuard on

e a Coast Guucts biweekl

Domain AfromAirStaThe aircraftpackagessimtinuousCO2/continuousthisaircraft

the time anndCrIS retriR.Oncedatabe used toretrievalalgo

lateranalysiother gases.alidation ofadditional f

en collaboraa special puard Hercully missionsAwarenessationKodiakt group at Gmilartothose/CH4/H2OaO3monitort.

nd location oevals can ala isplacedwevaluate f

orithms.

isofCO2,CO,These flightCrIS retrievaflights shoul

ating with thproject in Aes C‐130 airas part ofmission, usuptoBarrowGMD has instedescribedanalyzer(Pica(2BSystem

Section 5.

16

of theso bewithinfuture

,N2O,ts areals ofld be

he USAlaskarcrafttheirsuallywandtalledabove,arro),

ms)on

Section 5.   Validation Needs and Data Sources 

 

17 

In addition, GMD is leading a compilation ofaircraft observations of greenhouse gases aspartof theCarbonTrackereffort.Thedatawillbepackagedinaconvenientformatwithpoint‐of‐contact information and metadata forindividual datasets. An initial data productshouldbeavailablein2015.

The Alpha Jet Atmospheric eXperiment (AJAX)Project at NASA Ames makes frequentmeasurements of the profiles of O3, CH4, andCO2overCaliforniaandNevadauptoaltitudes>10km in support of NASA's Orbiting CarbonObservatory(OCO‐2).

Prof. Takakiyo Nakazawa’s group at TohokuUniversity, in collaboration with the NationalInstitute of Environmental Studies, hasmeasured CO2, CH4, N2O, SF6, CO, and H2 ateightvertical levelsusinganaircraft inSurgut,RussiasinceJuly1993.

Severalresearcheffortsuseobservingsystemsaboard passenger aircraft to make frequentobservations of atmospheric trace gasescoveringthemajorairtrafficareasoftheglobe.

MOZAIC5made airborne in‐situ measurementsfor O3 and CO from August 1994 – November2014 during round‐trip international flights(ascent, descent and cruise phases) fromEurope to America, Africa, Middle East, andAsia.

IAGOS6is the currently operating follow‐on toMOZAIC. This campaign includes observationsofO3andCOmadebyfivecommercialaircraft,with plans to add CH4 observations andadditional aircraft. Aerosol and cloud‐particlemeasurements are also available from IAGOSand may provide information needed toinvestigateunderwhatconditionsaerosolsandcloudsmayinterferewithCrISretrievals.

CARIBIC 7 (Civil Aircraft for the RegularInvestigation of the atmosphere Based on anInstrument Container) has been measuringmany trace gases, including CO, O3, CO2, N2O,CH4,CH3OH,SO2,C2H2,C2H4,C2H6,andaromatic

5http://www.iagos.fr/web/6http://www.iagos.org/IAGOS7http://www.caribic‐atmospheric.com

species aboard an Airbus A340‐600 fromLufthansasince2004.

CONTRAIL 8 (Comprehensive ObservationNetwork for TRace gases by AIrLiner) is acommercial aircraft trace gas samplingprogram jointly conducted by Japan’s NIES(National Institute for Environmental Studies),the MRI (Meteorological Research Institute),JAL (Japan Airlines), JAMCO (JAMCOCorporation), and JAL‐F (JAL Foundation).CONTRAIL data includes continuousobservations of CO2 along with whole‐airsamples analyzed for CO2, CH4, CO, and N2O.ContinuousCH4measurementsareplannedforfutureflights.

8http://www.cger.nies.go.jp/contrail/contrail.html

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 5.

 

18

5.2 EpisodicAtmosphericChemistryAircraftCampaignsThere were several NOAA, NASA, NSF, andNCARaircraftcampaignsin2013and2014thatmeasuredprofilesofsomeorallofthecurrentand potential future CrIS trace gas retrievalsproducts and thus should be analyzed forvalidationoftheCrIStracegasretrievals.Thesecampaignsinclude:

The NOAA CSD SENEX9campaign, which usedthe NOAA WP‐3 aircraft (see Figure 2,maximum altitude ~6 km) to measure manytrace gases in the Southeast US during thesummer of 2013. Additional measurementsduring this time were made from theNSF/NCAR C‐130 aircraft as part of theSoutheast Atmosphere Study 10 , andcorresponding surface observations of manytrace gaseswere alsomadeduring thisperiodas part of the Southern Oxidant and AerosolStudy(SOAS).

The NASA DISCOVER‐AQ11campaign, (DerivingInformationonSurfaceconditionsfromColumnandVertically ResolvedObservationsRelevantto Air Quality) which was a multi‐aircraftcampaign that had deployments in California(January 2013), Texas (September 2013), andColorado (summer 2014). These campaignsincludedinsituobservationsofCO,CO2,O3,CH4,and CH3OH aboard the NASA P3‐B aircraft,along with coordinated surface and aircraftremote sensing observations and ozonesondelaunches.

The NASA SEAC4RS 12 campaign (Studies ofEmissions and Atmospheric Composition,Clouds and Climate Couplingby RegionalSurveys),whichwas amulti‐aircraft campaignduring the summer of 2013 that targeted twomajor regional sources of summertimeemissions: intense smoke from forest fires intheUSWestandnaturalemissionsof isoprenefrom forests in the Southeast. The NASADC‐8

9http://www.esrl.noaa.gov/csd/projects/senex/10http://www.eol.ucar.edu/field_projects/sas11http://discover‐aq.larc.nasa.gov12http://www.nasa.gov/mission_pages/seac4rs

carried instruments to measure several tracegases, including CO, O3, CO2, CH4, C2H6, C2H4,C2H2,SO2,andCH3OH,andtheNASAER‐2madeinsitu measurements of CO, O3, CO2, and CH4.There was also an associated ozonesondecampaign (SEACIONS), and frost point watervapor sondes were launched from Houstonduringtheaircraftcampaign.

TheNCARFRAPPE13campaign(FrontRangeAirPollution and Photochemistry Experiment),wasinthesummerof2014concurrentwiththeNASA DISCOVER‐AQ Colorado deployment. Inthis campaign, the NSF/NCAR C‐130 aircraftmade insitumeasurementsofCO,O3,CO2,CH4,NH3, SO2, HNO3, HCN, CH3OH, C2H6, C2H4, andC2H2.Thecampaignalsoincludedground‐basedinsituandremotesensingmeasurementsmadeattheBoulderAtmosphericObservatory(BAO)tower, including the UWAtmospheric EmittedRadiance Interferometer (AERI) andradiosondelaunchesfromBAO.

TheNASAESPO (EarthScienceProgramOffice)ATTREX 14 campaign(AirborneTropicalTRopopauseEXperiment, aNASAEarthVenturemission),whichtookplaceover the past 3 years, most recently duringwinter2014basedinGuam.Thismissionuseda high altitude unmanned aircraft system (theNASA Global Hawk) to make in situmeasurements of several trace species in thetropicaltropopause, includingCO,O3,CO2,CH4,andN2O.

In addition, there are several upcoming fieldcampaigns in their planning stages that couldbe used for validation of the CrIS trace gasretrievals, and thus the CrIS retrievaldevelopment and atmospheric chemistry usercommunity should closely coordinate withthesecampaigns:

NOAA ESRL CSD SONGNEX15 (Shale Oil andNatural Gas NEXus: Studying the Atmospheric

13http://catalog.eol.ucar.edu/frappe14https://espo.nasa.gov/missions/attrex/15http://www.esrl.noaa.gov/csd/projects/songnex/

Section 5.   Validation Needs and Data Sources 

 

19 

EffectsofChangingEnergyUseintheUSattheNexusofAirQualityandClimateChange,March– May 2015), which will use the NOAAWP‐3aircraft based out of Colorado and Texas toinvestigate the air quality and climate impactsofoilandgasdevelopment.

NOAA ESRL CSD FIREX16 (Fire Influence onRegionalandGlobalEnvironmentsExperiment)campaign,whichwill study theairquality andclimateimpactsofwildfiresandotherbiomassburningintheUSusingtheNOAAWP‐3.

NASAATom(AtmosphericTomography),whichwill use the NASA DC‐8 in several campaignsbetween2016‐2020tomeasuretracegasesandaerosolsinmultiplesequentialverticalprofiles(fromtheboundary layer to12km).FromtheArmstrongFlightResearchCenter inPalmdale,California, the aircraft will fly north to thewesternArctic, south to theSouthPacific, eastto theAtlantic, north toGreenland, and returntoCaliforniaacrosscentralNorthAmerica.

NCAR/NSF WINTER 17 campaign (WintertimeINvestigation of Transport, Emissions, andReactivity, January ‐ March 2015), which willuse the NSF/NCAR C‐130 aircraft and severalinstruments from NOAA ESRL CSD to makemeasurements of CO, O3, CO2, CH4, HNO3, NH3,and several other gases over the Mid‐Atlanticregion.

NOAAESRLCalWater218(January‐March2015),whichwill use theNOAAG‐IV and include theNOAA CSD O3 instrument as well as watervapormeasurements.

CAST (Coordinated Airborne Studies in theTropics) ATTREX flights (March 2015), whichwill fly theNASAGlobalHawkoutofSouthernCalifornia(NASAArmstrong).TheseflightswillincludetheNOAACSDO3andH2Oinstrumentsand the GreenHouse Observations of theStratosphere and Troposphere (GHOST)instrument,whichwillmeasuregreenhousegascolumns. CAST is funded by the Natural

16http://www.esrl.noaa.gov/csd/projects/firex/17http://www.esrl.noaa.gov/csd/groups/csd7/measurements/2015winter/18http://www.esrl.noaa.gov/psd/calwater/

Environment Research Council (NERC) in theUnitedKingdom.

The planned NASA Coastal Northwest PacificFieldStudyin2016,whichwillincludeasuiteofsurface and airborne instruments to validatesatellite observations and to examinetransboundary transport and modification ofgaseous and aerosol pollutants. This campaignwillfocusonaregionofstronggradientsdrivenby large megacity population centers,rural/agriculturalareas,andcoastalzones.

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 5.

 

20

5.3 SurfaceMeasurementCampaignsSeveral long‐term surface measurementnetworks make routine measurements ofrelevant trace gases. These networks includetheNOAAESRLGMDCooperativeAirSamplingNetwork19(whichmeasures CO2, CH4, CO,N2O,andothertracegases)andtheNASAAdvancedGlobalAtmosphericGasesExperiment(AGAGE)network (which measures CO, CH4, N2O, C2H2,C2H4, and C2H6). Other long‐term surfacedatasets are also available. For example, Prof.DylanMilletoftheUniversityofMinnesotaalsomakes regular tall tower measurements ofseveral trace gas species, including N2O,acetone, CH3OH, and CO in the US UpperMidwest [Griffis et al., 2013; Hu et al., 2011,2013; Kimetal., 2013]. This surface data canalso be useful for evaluation of satellite data,either directly or using chemical transportmodelsasatransferstandard.However,directcomparisonofsurfacemeasurementswithTIRretrievals can be complicated because manyTIR averaging kernels have maximumsensitivity in the mid‐troposphere and lowsensitivity to the planetary boundary layer.Carefulmodeling studies are thereforeneededto investigate the consistency of surface andTIRdatasets.

In addition to the long‐term surface in situmeasurement campaigns, there are two short‐termsurfacemeasurementcampaignsplannedfor the near future that could provide usefulvalidationdata:

BetweenApril6andMay13,2015, a researchteam led by Prof. Robert Yokelson at theUniversity of Montana will be conducting aground‐based field campaign in Nepal,measuringsurfaceconcentrationsandemissionratiosofcombustionsourcesformanychemicalspecies including, but not limited to, aerosols,H2O,CO2,CO,CH4,NH3,C2H2,C2H4,C3H6,O3,andSO2.

Prof.EmilyFischerandProf.DelphineFarmeratColorado State University have two

19http://www.esrl.noaa.gov/gmd/ccgg/flask.php

measurementscampaignsplannedfortheBAOtower. These are planned for mid‐March –early‐May2015 (firm) and July –August2015(tentative). Thesewill provide boundary layerprofiles(surfaceto300m)ofCH4,CO,CO2andH2O.

Furthermore, surface remote sensinginstruments can also be used for satellitevalidation. For example, the Total CarbonColumnObservingNetwork20(TCCON) obtainstotal column amounts of CO2 and othergreenhouse gases and has been used as avalidation method for other satelliteinstruments,whilesitesintheNetworkfortheDetection of Atmospheric Composition Change(NDACC)21 include FTIR retrievals of manytracegasessuchasCH4,N2O,H2O,andO3,alongwith LiDAR O3 profiles and ozonesondelaunches at several sites. The planned GlobalClimate Observing System (GCOS) ReferenceUpper‐Air Network (GRUAN) sites22will alsoprovide quality‐controlled profiles oftemperature,winds,watervapor,andozone.Inaddition, the University ofWisconsin‐MadisonSSEC, in collaboration with NESDIS, hascapabilities for mobile deployment of variousground‐based remote sensing instrumentsincluding the SSEC High Spectral ResolutionLiDAR (HSRL) and the AERI, which wererecently deployed at the NOAA BoulderAtmosphericObservatoryduringFRAPPE.

20http://www.tccon.caltech.edu21http://www.ndsc.ncep.noaa.gov22http://www.wmo.int/pages/prog/gcos/index.php?name=GRUAN

Section 5.   Validation Needs and Data Sources 

 

21 

5.4 OtherPlatformsIn addition to the surface and aircraftmeasurements mentioned above, weatherballoonnetworksaroundtheglobeareusedtocarryavarietyoftracegasinstrumentsthatcanbe useful for validation of CrIS trace gasretrievals. For example, ozonesonde andground‐based remote sensing data collectedunder the Network for Detection ofAtmospheric Composition Change (NDACC)23have long served for evaluation satellitemeasurementsofO3.Regional augmentation isprovided by the NDACC cooperating networkSHADOZcampaignrunbyDr.AnneThompsonof NASA GSFC (Goddard Space Flight Center),which has long‐term records of ozonesondedata frommultiple locations in the tropicsandsouthernhemisphere[Thompsonetal.,2003a,b,2007].

TheNOAAESRLGMDAirCoresamplingsystemforCO,CO2,CH4,andother tracegases[Karionet al., 2010] can be used on a variety ofplatforms, including balloons, UAVs andaircraft. Itusesalongstainlesssteeltube,openatoneendandclosedattheother.TheAirCoreevacuates while ascending to a high altitudeand collects a sample of the ambient air as itdescends. It is sealed upon recovery andmeasuredwithacontinuousanalyzer for tracegas mole fraction. Presently about 20 verticalprofiles of trace gases are collected globallyeachweekbyNOAAESRL.

Remotesoundersforballoonplatformscanalsobe used for validation; one example is the JPLMark IV Balloon Interferometer 24 of Dr.Geoffrey Toon (flown most recently in Sept.2014). Sophisticated insitu instruments, suchas the NOAA ESRL GMD Unmanned AircraftSystems(UAS)ChromatographforAtmosphericTraceSpecies(UCATS),arealsoreadytofly.Inaddition, balloons can be launched from shipstoassistinthevalidationofH2OandO3overtheocean,suchasintheNOAAAEROSE(AERosolsand Ocean Science Expeditions) campaign,23http://www.ndsc.ncep.noaa.gov/24https://espo.nasa.gov/missions/instrument/MkIV

whichusestheblue‐waterNOAAshipRonaldH.Brown to acquire simultaneous in situ andremotely sensedmarine data during intensiveobservingperiods in the tropicalAtlantic.Thiscampaign includes the launch of radiosondesand ozonesondes. NOAA ESRL CSD and GMDare also currently developing small,inexpensive packages to measure ozone andaerosols from balloons or UAVs. Thesepackages could be used for validation in thefuture.

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 6.

 

22

6 ProductChangesandRefinements

Primary Authors: ChrisBarnett,AK Sharma,HelenWorden, JuyingWarner,Nadia Smith,AronneMerrelli

6.1 CurrentProductFormatandDistributionTheNUCAPSEnvironmentalDataRecord(EDR)product canbeordered fromCLASSunder thedata family Suomi‐NPP Data ExploitationGranule Data (NDE_L2) 25 . The CLASS(ComprehensiveLargeArray‐dataStewardshipSystem) product distribution has a latencyperiod of about 3hours. The NUCAPS EDRproduct consists of retrieved estimates ofhydrological variables including temperature,water vapor, cloud fraction, and cloud toppressure, along with the following 100‐leveltracegasprofilescalculatedoneachCrISfield‐of‐regard(i.e.,the3x3arrayofindividual14kmcirclefields‐of‐view):

O3layercolumndensity O3mixingratio FirstGuessO3layercolumndensity FirstGuessO3mixingratio CH4layercolumndensity CH4mixingratio CO2mixingratio HNO3layercolumndensity HNO3mixingratio COlayercolumndensity COmixingratio N2Olayercolumndensity N2Omixingratio SO2layercolumndensity SO2mixingratio

The NUCAPS EDR products are distributed innetCDF‐4 file format with metadata attributesincluded. Each file contains one 32‐secondgranuleofCrISdata.

To obtain the near real time NUCAPS data, auser needs to fill out the Data Access Request

25 http://www.nsof.class.noaa.gov/saa/products/search?sub_id=0&datatype_family=NDE_L2&submit.x=25&submit.y=11

FormlocatedattheOSPOwebsite26andsubmitit to the Sounding Product Area Lead([email protected]) with a copy [email protected].

Real‐time NUCAPS products can also begenerated locally on user systems by runningtheNUCAPSretrievalsoftwarepreparedbytheUniversityofWisconsin (UW)‐Madisonaspartof the stand‐alone, open‐source CSPP. FromFebruary 2015 onwards, CSPP 27 (a NOAAfunded UW‐Madison initiative) will distributethe NUCAPS algorithm as a stand‐alonesoftware package to any registered user, fromscientific to direct‐broadcast. In addition, anychanges to the NUCAPS science code can bedistributed as a CSPP version to the scientificcommunityfortestingandevaluation.Thishasthe potential to speed up and streamlinealgorithm development, as CSPP NUCAPS canbe used to explore algorithm changes andproduct enhancements without incurring toomuch cost or degrading the operational datastream with invalidated/interim scienceproducts.TheCSPPdistributionofNUCAPShasthe added advantage that users can reprocesshistoric data with the latest operationalalgorithm updates. This feature is especiallyimportantforclimatestudies.

26www.ospo.noaa.gov/Organization/About/access.html27http://cimss.ssec.wisc.edu/cspp/

Section 6.   Product Changes and Refinements 

 

23 

6.2 RecommendedRefinementsOne of the key limitations of the currentNUCAPS EDR files is that there is insufficientdata provided to construct an observationoperator for each trace gas retrieval, as isneeded for most atmospheric chemistryapplications[e.g.,Jonesetal.,2003;Migliorinietal., 2008]. The observation operator allows anatmosphericprofileofagas,eitherfrominsitumeasurements [e.g.,Worden,H.M.etal., 2007]or a model, to be converted into thecorresponding profile that would have beenretrieved by the satellite, accounting for thevertical smoothing errors and a prioriinformation of the retrieval process. Foroptimal estimation retrievals, this observationoperator is a function of the averaging kerneland a priori profile [e.g., RodgersandConnor,2003].ThemainreasonthisdataisnotalreadyprovidedintheNUCAPSEDRisthatstoringthe100 level a priori profiles and 100x100averagingkernel(AK)arraysforeachtracegasretrievalwouldmakethefilesizeprohibitivelylargefortheCLASSarchive.

However, there are now several methods forreducingthesizeofthedatathatareneededtorebuild theobservationoperator.Forexample,the AK array could be reconstructed fromsingular vectors following a singular valuedecomposition (SVD) processing step. Thiswould result in array sizes of 100x2N + N,where N is the number of singular valuesretained,withleftsingularvector(U=Nx100),right singular vector (V = Nx100) and thesingular values (N) to form a diagonal matrixΛ(NxN).TheAK(A)isthenreconstructedwith:

A=UΛVT

For typical O3 AKs from thermal IR sensors,N~8inordertomaintainerrorslessthan~2%in the reconstructed AK, which would reducethesize from10000 to~1608.For typicalTIRCO AKs, N~4 [Worden, H.M. et al., 2013b],corresponding to a 92% reduction in the AKsize.

Although most analytical data users wouldrequiretheobservationoperatorforeachtrace

gas retrieval (such as for data assimilationapplications),itwouldalsobeusefultoprovideaverage a priori profiles and typical AKs byregion and observation type (e.g., latituderange, land/ocean, day/night). These could beavailableonawebsiteandwouldallowuserstodetermineiftheretrievalsaresuitablefortheiranalyses.TheywouldalsoprovideguidanceforusersthatarereconstructingtheAKsfromSVDinformation.

In addition,most atmospheric chemistryusersof CrIS data will not need the full verticalresolution of 100 vertical levels, nor will theyrequire both the mixing ratio profile and theprofile of the layer column density (as thesecond is mainly useful for radiative transfermodeling). Thus we recommend that ratherthan adding observation operators, etc., to theexistingEDRfiles,NESDISSTARshouldprovidereduced files, modeled on the TES “lite”products available at the JPL TES web site28,that provide the retrievals for individual tracegases and their observation operators (i,e.,averaging kernels compressed as describedabove and a priori profiles) at a reducedvertical resolution sufficient to capture thevertical variations in each species. These litefiles would contain all the data for a givenspecies for a to‐be‐determined chunk of time(e.g., one day) for easier manipulation andwould be in addition to the granule filesprovided at the full vertical resolution of theCrIS forward radiative transfermodel throughCLASS(asdescribedabove).TheTES“lite”filesare in NetCDF format and contain all theobservationsforasingletracegasinamonth.Asimilar IASI “lite” product29providesdaily textfiles (instead of monthly, reflecting the largervolume of data) containing IASI CO data on areduced vertical grid. This product includesretrieved total column density, the a prioriprofile on 19 layers, the averaging kernel

28http://tes.jpl.nasa.gov/data/29Availableathttp://www.pole‐ether.fr/etherTypo/index.php?id=1585&L=1

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 6.

 

24

diagonal vector on 19 layers, and the totaldegreesoffreedomofsignal.

For TES, known bias corrections to theretrievedprofilesareappliedbeforepreparingthe“lite”products.Anybiascorrectionsappliedshouldbeclearlydocumentedineitherthelitefiles themselves (e.g., by providing anuncorrected profile along with the correctedprofile)orintheaccompanyingusersguide.Tofacilitatetheuseofthedata,theCLASSarchiveshould be updated to support easy multi‐filedownloadoftheseliteproducts,ratherthanthecurrent limits of 100‐500 granule files in your“shopping cart”, through tools such as the“wget”utilityusedbyNASA.Example routinesforreadingthedatafilesinFORTRAN,IDL,andothercommonlyusedanalysistoolsshouldalsobe provided. Finally, a CrIS trace gas users’guide should be compiled with recommendedquality flags and other techniques to facilitatethe use of the data and should be providedalongwiththeliteproductfiles.

Section 7.   Potential New Products 

 

25 

7 PotentialNewProducts

PrimaryAuthors:DylanMillet,JulietZhu,EmilyFisher,KarenCady‐Pereira,MattAlvarado,Si‐WanKim,MarkLiu,JunWang,ViviennePayne,KevinBowman,HelenWorden

7.1 ProductsNeededtoContinuetheRecordsofOtherTIRSounders7.1.1 Methanol

Methanol is the most abundant non‐methaneorganic gas in the atmosphere and animportantsourceoftroposphericformaldehydeand carbon monoxide. Space‐based TIRmethanol measurements provide powerfulinformation for diagnosing the sources ofmethanol to the atmosphere as well as thesubsequent impacts on atmospheric chemistry

[Stavrakouetal.,2011;Wellsetal.,2012,2014].Since terrestrial plants provide the dominantnet source of atmospheric methanol, suchmeasurements can also inform ourunderstanding of ecosystem processes andprovide a biogenic tracer for distinguishingsourcesofotheratmosphericspecies.

7.1.2 InstantaneousRadiativeKernels(IRKs)

Using CrIS radiances, Jacobians and ozoneprofiles with hemispherical integration, it ispossible to compute the TOA (Top‐Of‐Atmosphere)fluxfromtheinfraredozoneband(in W/m2) along with instantaneous radiativekernels (IRKs) (in W/m2/ppb). The IRKprovides unique information for questions ofchemistry‐climatecoupling,sincethisisadirectmeasureofthesensitivityoftheTOAfluxtotheozonedistribution.The IRKexplicitlyaccountsformoredominantradiativeprocessessuchasclouds and water vapor due to the spectrallyresolvedabsorptionfeatures.Theseozonebandflux and IRK products can be compared to

climate model predictions of the samequantities and can allow evaluation of modelprocesses that affect ozone radiative forcing[Worden,H.M.etal., 2008, 2011;BowmanandHenze, 2012; Bowman et al., 2013]. TheseproductsfromTEShavebeenappliedtoclimatemodel evaluation for the NASA GFSC GISSAtmospheric Chemistry and Climate ModelIntercomparison Project (ACCMIP) [Lamarqueet al., 2013; Bowman et al., 2013] andincorporated into the findings of the IPCC(Intergovernmental Panel on Climate Change)AR5 (Fifth Assessment Report) [Myhre et al.,2014].

7.2 PossibleNewProductsfromCrIS7.2.1 Dust

Dust particles affect atmospheric radiativetransfer inboththeshort‐waveand long‐wavespectrum and hence are important for theprediction of climate and weather. However,characterization of dust from space can becomplicatedbythefactorssuchasdustparticlesize and morphology and the verticaldistribution of dust, as well as surfacecharacteristics (especially bright desert). Pastremote sensing of dust has used the visible

spectrum (primarily over the ocean anddark/vegetatedsurfaces,as intheMODISDarkTarget algorithm [Levy et al., 2007]), the UV‐blue spectrum (with strengths over visiblybright or arid/semi‐arid surfaces, as in theMODISDeepBlueAlgorithm[Hsuetal.,2006]),theOMIUValgorithm[Torresetal.,2007],andthe infrared spectrum [Ackerman, 1997]. Inaddition, Pierangelo et al. [2004, 2005] havedemonstrated the use of thermal infrared

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 7.

 

26

spectratoretrievedustopticaldepth,size,andaltitude from AIRS over the ocean. Eachtechniquehasitsownstrengthsandweakness,but none of these techniques can retrieve thedustopticaldepth,absorption,particlesize,andcentroidheightatthesametime.Bycombininghyperspectral measurements from the OzoneMapping Profiler Suite (OMPS,UV‐visible) and

CrIS (short‐wave and thermal infrared), thereareopportunitiestohaveaconsistentretrievalalgorithmthatcanbeappliedgloballytobettercharacterize dust properties, including theiroptical depth, single scatting albedo, andcentroid height over both visibly dark andbrightsurfaces.

7.2.2 Ethane

Ethane is ubiquitously present in theatmosphere.Itisthesecondlargestcomponentofnaturalgasaftermethane,andthebulkofitsemissions are associated with natural gasproduction, distribution, and processing [Xiaoet al., 2008]. As such, observations ofatmospheric ethane can yield critical insightsinto the global methane budget and the

changingroleoffossilfuelsasamethanesource[e.g., Simpson et al., 2012; Aydin et al., 2011].Furthermore, sustained ethane measurementscan help constrain the seasonal and spatialdistribution of atmospheric OH, themain sinkfor most atmospheric pollutants andgreenhousegases[e.g.,Goldsteinetal.,1995].

7.2.3 Acetylene

Acetylene (C2H2), the lightest non‐methanehydrocarbon, has similar sources as CO; bothare emitted from incomplete combustion offossil fuel, biofuel, and biomass. C2H2 and COare also both removed by reaction with OHradicals. C2H2 is shorter‐lived than CO (with amean global lifetime of 2 weeks versus 2months), but persistently strong C2H2‐COcorrelations are seen in atmosphericobservations extending to the remote

troposphere. Such C2H2/CO ratios can be usedas a diagnostic of airmass “age” following thelastencounterofanairmasswithacombustionsourceregion.C2H2/COratioscanalsobeusedto constrain OH concentrations [Xiao et al.,2007], and as C2H2 does not have secondarychemicalsourcesintheatmosphere,C2H2couldbeused tohelpquantify the secondary sourceofCOfrom,forexample,isopreneoxidation.

7.2.4 HCN

Hydrogencyanide(HCN)isanimportanttracerfor biomass burning emissions. Duflot et al.[2013] showed that IASI can determine theratioofHCNtoCOinabiomassburningplume,and the lower noise of CrIS in the long‐wavebandshouldallow thedetectionofeven lower

concentrations of HCN. Co‐located CrISretrievalofHCNwithretrievalsofCO,CH4,andother gases would help to constrain thecontributionofbiomassburningtothebudgetsofthesegases.

7.2.5 Ethylene

Ethylene (C2H4) is a highly reactivehydrocarbon that is generally concentrated inthe lower troposphere [Rinsland et al., 2005]and is emitted directly by biomass burning[Akagi et al., 2011]. Other sources of C2H4includebiogenicemissionsfromplantsandthe

ocean,theanthropogenicburningoffossilfuelsand biomass, and petrochemical facilities [e.g.,Goldstein et al., 1996; Broadgate et al., 1997;Folberthetal.,2006].Urbancentersoftenhavehighethyleneconcentrations[e.g.,Altuzaretal.,2001] due to production by cars and trucks.

Section 7.   Potential New Products 

 

27 

C2H4hasa short lifetimedue to rapid reactionwith OH, and its high reactivity and oxidationproductsmakeitakeyprecursorofO3inurbansmog[e.g.,JiangandFast,2004]andinbiomassburningplumes[AlvaradoandPrinn,2009].

There have been several previous studies thathave detected a C2H4 signal in TIR radiancespectra measured by aircraft and satelliteinstruments. Worden et al. [1997] detectedenhancedmixingratiosofC2H4fromforestfiresnearSanLuisObispo,California, on15August1994 using the Airborne EmissionSpectrometer(AES),theairborneprototypeforTES. Enhanced mixing ratios of C2H4 from

biomassburninghavealsobeendetectedbythelimb‐viewing Atmospheric ChemistryExperiment Fourier Transform Spectrometer(ACE‐FTS) [Coheuretal., 2007] and the nadir‐viewingIASI [Coheuretal.,2009;Clarisseetal.,2011].Alvaradoetal.[2011]presentedthefirstdetectionofC2H4fromTES,inafreshCanadianbiomass burning plume observed in thesummerof2008aspartoftheArcticResearchof the Composition of the Troposphere fromAircraft and Satellites (ARCTAS‐B) campaign.TES also detected the residual feature of C2H4during the biomass burning season in tropicalSouthAmerica.

7.2.6 AceticandFormicacids

Formic and acetic acids are the dominantcarboxylicacids in theatmosphere.Theyexertanimportantinfluenceonatmosphericaqueouschemistry through their effect on the pH ofprecipitation, aqueous OH radicalconcentrations,andpossiblysecondaryorganicaerosol (SOA) production [Keene et al., 1983;KeeneandGalloway,1984;Jacob,1986;Andreaeet al., 1998;Millet et al., 2015]. Recent work,includinganalysesofTESsatelliteretrievalsofformic acid, has shown that the atmosphericabundance of both compounds is substantiallylarger than canbe explainedbased on currentunderstandingoftheirbudgets[Cady‐Pereiraetal., 2014; LeBreton et al., 2012; Paulot et al.,2011; Stavrakou et al., 2012]. In turn, thispointstoakeygapinpresentunderstandingof

the atmospheric reactive carbon budget.Atmospheric measurements for both speciesare extremely limited, and space‐based TIRmeasurementsareneededtoclosethebudgetsof atmospheric carboxylic acids, quantify theirimpacts in the atmosphere, and improvecurrent mechanisms of atmospherichydrocarbonoxidation[Stavrakouetal.,2012].TheexceptionallylownoiseofCrIScouldallowthe retrieval of atmospheric acetic acid.Whilethe CrIS instrument aboard Suomi‐NPP doesnot include the channels needed to retrieveHCOOH,closingthisspectralgapforJPSS‐2andbeyond would allow the continuation ofretrievals for this important trace gas (seeSection7.3below).

7.2.7 Benzene

Aromatic volatile organic compounds (VOCs)suchasbenzene(C6H6),toluene(C7H8),xylenes(C8H10; including o‐, m‐, p‐ isomers), andethylbenzene(alsoC8H10)areubiquitousintheatmosphere and are important anthropogenicprecursors of SOAs [Johnson et al., 2005;Martín‐ReviejoandWirtz,2005;Ngetal.,2007;Henzeetal., 2008], PAN [Liuetal., 2010], and,to a lesser degree, ground‐level ozone[Ahmadovetal., 2014; Jaarsetal., 2014;Xueetal.,2014].ThesearomaticVOCs(so‐calledBTEXcompounds) are categorized as hazardous airpollutants (HAPs) under the US Clean Air Act

Amendments of 1990, as they are known orsuspected to cause serious health effects. Forinstance, benzene is classified as a Group 1carcinogen by the International Agency forResearchonCancer[Baanetal.,2009].Despitetheir importance, emissions of aromaticcompounds remain poorly quantified [e.g.,Huet al., 2014; Liu et al., 2012]. Globallycontinuous measurements of benzene andotheraromaticspeciesfromCrISwouldprovideunique and powerful information forquantifying emissions of aromatics and theirenvironmentalandhealthimpacts.

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 7.

 

28

7.3 AdditionalProductsPossibleifJPSS‐2SpectralGapWereClosedThe current spectral gap between the long‐wave and mid‐wave bands in the Suomi‐NPPCrIS instrument prevents the retrieval of twoimportant trace gases, HCOOH and PAN, thatare currently retrieved by TIR sounders [e.g.,Payneetal.,2014;Cady‐Pereiraetal.,2014].Asnoted in Section 7.2.6 above, formic acid isubiquitous in the atmosphere. Ourunderstandingof its chemical formation in theatmosphereispoor,partiallyduetothelimitedatmospheric observations available. Satelliteobservations of formic acid with extensivespatial coverage, such as would be possiblewith the CrIS instrument if the spectral gapswereclosed,arethusneededtounderstandthechemical formation of this gas in order toimprove our understanding of atmosphericoxidationoforganiccompoundsingeneral.

PAN, formed when non‐methane volatileorganic compounds (NMVOCs) are oxidized inthe atmosphere in the presence of NOx, is amajorreservoirofnitrogenoxideradicals(NOx)in the troposphere. It affects the globaldistribution of O3 through the transport andrelease of NOx to the remote troposphere.Global satellite observations of PAN have the

potential to dramatically improve ourunderstandingofO3productionand transport.PANhaspreviouslybeenretrievedintheuppertroposphere from the Envisat MichelsonInterferometer for Passive AtmosphericSounding (MIPAS) instrument and theCanadianACE‐FTS[MooreandRemedios,2010;Tereszchuk et al., 2013]. PAN has also beenobservedin fireplumesbytheTESinstrumentontheAurasatellite[Alvaradoetal.,2011]andby the MetOp‐A IASI [Coheur et al., 2009].Payne et al. [2014] represents the firstretrievalsofPANinthenadirviewontheglobalscale. As discussed above, this new data isbeing used to address a number of openquestions with respect to the sources andglobaldistributionofPAN.ACrISPANproductwould immediately be of benefit because CrIShas better spatial coverage than TES, and thelower noise may also allow a lower detectionlimitforthisspecies.TESisabletodetectonlyelevated(<200pptv)PANmixingratios.Basedonmodelcalculations[e.g.Fischeretal.,2014],muchofthetropospherehasPANmixingratiosbelow200pptv.

7.4 ValidationofNewProductsAll theproducts listed inSections7.1,7.2, and7.3 are currently measured in‐situ, many onaircraftandballoonplatforms.

See the Section 5 on recent and upcomingvalidationcampaignsformoredetails.

Section 8.   References 

 

29 

8 References

Ackerman, S. A. (1997), Remote sensingaerosols using satellite infraredobservations, J. Geophys. Res., 102, 17,069–017,079.

Aghedo,A.M.,K.W.Bowman,D.T.Shindell,andG. Faluvegi (2011), The impact of orbitalsampling, monthly averaging and verticalresolution on climate chemistry modelevaluation with satellite observations,Atmos. Chem. Phys., 11(13), 6493–6514,doi:10.5194/acp‐11‐6493‐2011.

Ahmadov,R.,S.McKeen,M.Trainer,R.Banta,A.Brewer, S. Brown, P. M. Edwards, J. A. deGouw, G. J. Frost, J. Gilman, D. Helmig, B.Johnson, A. Karion, A. Koss, A. Langford, B.Lerner, J. Olson, S. Oltmans, J. Peischl, G.Pétron, Y. Pichugina, J. M. Roberts, T.Ryerson, R. Schnell, C. Senff, C. Sweeney, C.Thompson,P.R.Veres,C.Warneke,R.Wild,E.J.Williams,B.Yuan,andR.Zamora(2014),Understanding high wintertime ozonepollution events in an oil and natural gasproducing region of thewesternUS,Atmos.Chem.Phys.Discuss.,14(14),20295–20343,doi:10.5194/acpd‐14‐20295‐2014.

Akagi,S.K., R. J. Yokelson, C.Wiedinmyer,M. J.Alvarado,J.S.Reid,T.Karl,J.D.Crounse,andP.O.Wennberg(2011),Emission factors foropenanddomesticbiomassburning forusein atmosphericmodels,Atmos. Chem.Phys.,11, 4039‐4072, doi:10.5194/acp‐11‐4039‐2011.

Altuzar,V.,M.Pacheco,S.A.Tomas,J.L.Arriaga,O. Zelaya‐Angel, and F. Sanchez‐Sinencio(2001),AnalysisofEthyleneConcentrationintheMexicoCityAtmospherebyPhotoacousticSpectroscopy, Analytical Sciences, 17, s541‐s543.

Alvarado, M. J., and R. G. Prinn (2009),FormationofOzoneandGrowthofAerosolsin Young Smoke Plumes from BiomassBurning,Part1:LagrangianParcelStudies,J.Geophys. Res., 114, D09306,doi:10.1029/2008JD011144.

Alvarado,M. J.,K.E.Cady‐Pereira,Y.Xiao,D.B.Millet, and V. H. Payne (2011), Emissionratios for ammonia and formic acid and

observations of peroxy acetyl nitrate (PAN)and ethylene in biomass burning smoke asseen by the Tropospheric EmissionSpectrometer(TES),Atmosphere,2(4),633–654.

Andreae,M.O.,R.W.Talbot,T.W.Andreae,andR. C. Harriss (1988), Formic and acetic acidoverthecentralAmazonregion,Brazil:1.Dryseason,J.Geophys.Res.,93,1616–1624.

Aydin, M., K. R. Verhulst, E. S. Saltzman, M. O.Battle,S.A.Montzka,D.R.Blake,Q.Tang,andM. J. Prather (2011), Recent decreases infossil‐fuel emissions of ethane and methanederivedfromfirnair,Nature,476,198–201.

Baan, R., Y. Grosse, K. Straif, B. Secretan, F. ElGhissassi, V. Bouvard, L. Benbrahim‐Tallaa,N. Guha, C. Freeman, L. Galichet, and V.Cogliano (2009), A review of humancarcinogens—Part F: Chemical agents andrelated occupations, Lancet Oncol., 10(12),1143–1144, doi:10.1016/S1470‐2045(09)70358‐4.

Bowman,K.,andD.K.Henze(2012),Attributionofdirectozone radiative forcing to spatiallyresolved emissions, 39(22), L22, 704,doi:10.1029/2012GL053274.

Bowman, K.W., C. D. Rodgers, S. S. Kulawik, J.Worden,E.Sarkissian,G.Osterman,T.Steck,M.Lou,A.Eldering,M.Shephard,H.Worden,M. Lampel, S. Clough,P.Brown,C.Rinsland,M.Gunson,andR.Beer(2006),Troposphericemission spectrometer: retrieval methodand error analysis, IEEE Trans. Geosci.Remote Sens., 44, 1297‐1307, doi:10.1109/TGRS.2006.871234.

Bowman, K. W., D. B. A. Jones, J. A. Logan, H.Worden,F.Boersma,R.Chang,S.Kulawik,G.Osterman, P. Hamer, and J.Worden (2009),ThezonalstructureoftropicalO3andCOasobserved by the Tropospheric EmissionSpectrometer in November 2004 – Part 2:Impact of surface emissions on O3 and itsprecursors, Atmos. Chem. Phys., 9, 3563–3582,doi:10.5194/acp‐9‐3563‐2009.

Bowman,K.W.,R.Baron,J.Al‐Saadi,A.Arellano,J. Blaisdell, M. Chahine, C. Clerbaux, P.DeCola, S. Hannon, M. Kopacz, E. Maddy, E.

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 8.

 

30

Olsen, L. Ott, B. Pierce, N. Pougatchev, I.Stajner,A.Tangobrn,J.Xun,andL.Yurganov(2011),NASAScienceCommunityWorkshopon Polar Orbiting IR and MW SoundersBreakout Session 2: AtmosphericComposition, available athttp://airs.jpl.nasa.gov/events/33

Bowman,K.W.,D.T.Shindell,H.M.Worden,J.F.Lamarque,P.J.Young,D.S.Stevenson,Z.Qu,M. de laTorre,D. Bergmann, P. J. Cameron‐Smith,W.Collins,R.Doherty,S.B.Dalsøren,G. Faluvegi, G. Folberth, L. W. Horowitz, B.Josse,Y.H.Lee,I.A.MacKenzie,G.Myhre,T.Nagashima, V. Naik, D. A. Plummer, S. T.Rumbold,R.B.Skeie,S.A.Strode,K.Sudo,S.Szopa,A.Voulgarakis,G.Zeng,S.S.Kulawik,A. M. Aghedo, and J. R. Worden (2013),Evaluation of ACCMIP outgoing longwaveradiationfromtroposphericozoneusingTESsatellite observations, Atmos. Chem.Phys.13(8), 4057–4072, doi:10.5194/acp‐13‐4057‐2013.

Broadgate, W. J., P. S. Liss, and S. A. Penkett(1997), Seasonal emissions of isoprene andother reactive hydrocarbon gases from theocean, Geophys. Res. Lett., 24, 2675–2678,doi:10.1029/97GL02736.

Cady‐Pereira,K.E.,M.W.Shephard,D.B.Millet,M.Luo,K.C.Wells,Y.Xiao,V.H.Payne,andJ.Worden (2012), Methanol from TES globalobservations: retrieval algorithm andseasonalandspatialvariability,Atmos.Chem.Phys.,12,8189–8203.

Cady‐Pereira, K. E., S. Chaliyakunnel, M. W.Shephard,D.B.Millet,M.Luo,andK.C.Wells(2014), HCOOH measurements from space:TES retrieval algorithm and observed globaldistribution, Atmos. Meas. Tech., 7, 2297–2311.

Chaliyakunnel, S., D. B. Millet, K. C. Wells, K. E.Cady‐Pereira, and M. W. Shephard (2013),Globalformicacidmeasurementsfromspace:The importance of biomass burningemissions, Abstract A31C‐0098 presented atthe 2013 Fall Meeting, AGU, San Francisco,Calif.,9‐13Dec.

Clarisse,L.,Y.R'Honi,P.‐F.Coheur,D.Hurtmans,and C. Clerbaux (2011), Thermal infrarednadir observations of 24 atmospheric gases,

Geophys. Res. Lett., 38, L10802,doi:10.1029/2011GL047271.

Coheur, P.‐F., H. Herbin, C. Clerbaux, D.Hurtmans, C. Wespes, M. Carleer, S.Turquety, C. P. Rinsland, J. Remedios, D.Hauglustaine,C.D.Boone, andP.F.Bernath(2007), ACE‐FTS observation of a youngbiomass burning plume: first reportedmeasurementsofC2H4,C3H6O,H2COandPANby infrared occultation from space, Atmos.Chem.Phys.,7,5437‐5446,doi:10.5194/acp‐7‐5437‐2007.

Coheur, P.‐F., L. Clarisse, S. Turquety, D.Hurtmans, and C. Clerbaux (2009), IASImeasurements of reactive trace species inbiomass burning plumes, Atmos. Chem.Phys., 9, 5655–5667, doi:10.5194/acp‐9‐5655‐2009.

Crevoisier, C., D. Nobileau, R. Armante, L.Crépeau,T.Machida,Y.Sawa,H.Matsueda,T.Schuck,T.,Thonat, J.Pernin,N.A.Scott,andA.Chédin (2013),The2007–2011evolutionof tropicalmethane in themid‐troposphereasseenfromspacebyMetOp‐A/IASI,Atmos.Chem. Phys., 13, 4279–4289,doi:10.5194/acp‐13‐4279‐2013,2013.

Deeter,M.N., L.K.Emmons,G. L. Francis,D.P.Edwards,J.C.Gille,J.X.Warner,B.Khattatov,D.Ziskin,J.‐F.Lamarque,S.‐P.Ho,V.Yudin,J.‐L.Attié,D.Packman,J.Chen,D.Mao,andJ.R.Drummond (2003), Operational carbonmonoxide retrieval algorithm and selectedresults for the MOPITT instrument, J.Geophys. Res., 108(D14), 4399,doi:10.1029/2002JD003186.

Deeter,M.N.,D.P.Edwards,andJ.C.Gille(2007),Retrievals of carbonmonoxide profiles fromMOPITT observations using lognormal aprioristatistics,J.Geophys.Res.,112,D11311,doi:10.1029/2006JD007999.

Duflot, V., D. Hurtmans, L. Clarisse, Y. R'honi, C.Vigouroux, M. De Mazière, E. Mahieu, C.Servais,C.Clerbaux,andP.‐F.Coheur(2013),Measurements of hydrogen cyanide (HCN)and acetylene (C2H2) from the InfraredAtmospheric Sounding Interferometer (IASI),Atmos. Meas. Tech., 6, 917–925,doi:10.5194/amt‐6‐917‐2013.

Emmons, L. K., S. Walters, P. G. Hess, J.‐F.Lamarque, G. G. Pfister, D. Fillmore C.

Section 8.   References 

 

31 

Granier,A.Guenther,D.Kinnison,T.Laepple,J.Orlando,X.Tie,G.Tyndall,C.Wiedinmyer,S. L. Baughcum, and S. Kloster (2010),Description and evaluation of theModel forOzoneandRelatedchemicalTracers,version4(MOZART‐4),Geosci.ModelDev.,3,43‐67,doi:10.5194/gmd‐3‐43‐2010.

Fischer, E. V., D. J. Jacob, R. M. Yantosca, M. P.Sulprizio,D.B.Millet, J.Mao,F.Paulot,H.B.Singh, A. Roiger, L. Ries, R. W. Talbot, K.Dzepina, and S. Pandey Deolal (2014),Atmospheric peroxyacetyl nitrate (PAN): aglobalbudgetandsourceattribution,Atmos.Chem. Phys., 14, 2679–2698,doi:10.5194/acp‐14‐2679‐2014.

Flemming, J., V‐H. Peuch, R. Engelen, and J.W.Kaiser (2013), A European Global‐to‐Regional Air Pollution Forecasting Systemthat Combines Modeling with SatelliteObservations,EMNovember2013,publishedbytheAir&WasteManagementAssociation.

Folberth,G.A., D. A. Hauglustaine,J. Lathière,and F. Brocheton (2006), Interactivechemistry in the Laboratoire deMétéorologieDynamiquegeneralcirculationmodel: model description and impactanalysis of biogenic hydrocarbons ontroposphericchemistry,Atmos.Chem.Phys.,6, 2273‐2319, doi:10.5194/acp‐6‐2273‐2006.

Gambacorta, A. and C. Barnet (2013),Methodology and information content of theNOAA NESDIS operational channel selectionfor the Cross‐Track Infrared Sounder (CrIS),IEEE Trans. Geosci. Remote Sens., 51(6),3207–3216.

Goldstein, A. H., S. C. Wofsy, and C. M.Spivakovsky (1995), Seasonal variations ofnonmethane hydrocarbons in rural NewEngland: Constraints on OH concentrationsin northern midlatitudes, J. Geophys. Res.,100(D10), 21023–21033,doi:10.1029/95JD02034.

Goldstein, A. H., S. M. Fan,M. L. Goulden, J.W.Munger, S. C. Wofsy (1996), Emissions ofethene, propene, and 1‐butene by amidlatitudeforest,J.Geophys.Res.,101(D4),9149–9157,doi:10.1029/96JD00334.

Griffis, T. J., X. Lee, J. M. Baker, M. P. Russelle, X.Zhang, R. Venterea, and D. B. Millet (2013),

Reconciling the differences between top‐downand bottom‐up estimates of nitrous oxideemissions for the US Corn Belt, GlobalBiogeochem.Cy.,27,1–9,doi:10:1002/gbc.20066.

Heald,C.L.,J.L.CollettJr.,T.Lee,K.B.Benedict,F. M. Schwandner, Y. Li, L. Clarisse, D. R.Hurtmans,M.VanDamme,C.Clerbaux,P.‐F.Coheur, S. Philip, R. V. Martin, and H. O. T.Pye (2012), Atmospheric ammonia andparticulate inorganic nitrogen over theUnited States, Atmos. Chem. Phys. Discuss.,12,19455–19498.

Henze,D.K.,J.H.Seinfeld,N.L.Ng,J.H.Kroll,T.M. Fu, D. J. Jacob, and C. L. Heald (2008),Global modeling of secondary organicaerosol formation from aromatichydrocarbons: high‐ vs. low‐yieldpathways,Atmos. Chem. Phys., 8(9), 2405–2420,doi:10.5194/acp‐8‐2405‐2008.

Hsu,N.C.,S.C.Tsay,M.D.King,andJ.R.Herman(2006),DeepblueretrievalsofAsianaerosolproperties during ACE‐Asia, IEEE Trans.Geosci.RemoteSens.,44,3180–3195.

Hu, L., D. B.Millet,M. J.Mohr, K. C.Wells, T. J.Griffis, and D. Helmig (2011), Sources andseasonality of atmospheric methanol basedontalltowermeasurementsintheUSUpperMidwest, Atmos. Chem. Phys., 11, 11145–11156.

Hu, L., D. B. Millet, S. Y. Kim, K. C. Wells, T. J.Griffis,E.V.Fischer,D.Helmig,J.Hueber,andA. J. Curtis (2013), North American acetonesources determined from tall towermeasurementsandinversemodeling,Atmos.Chem.Phys.,13,3379–3392.

Hu,L.,D.B.Millet,M.Baasandorj,T.J.Griffis,K.R. Travis, C. Tessum, J. Marshall, W. F.Reinhart, T. Mikoviny, M. Müller, A.Wisthaler, M. Graus, C. Warneke, and J. deGouw (2014), Emissions of C6‐C8 aromaticcompoundsintheUnitedStates:Constraintsfromtalltowerandaircraftmeasurements,J.Geophys.Res.,inrevision.

Jaars,K.,J.P.Beukes,P.G.vanZyl,A.D.Venter,M. Josipovic, J. J. Pienaar, V. Vakkari, H.Aaltonen,H.Laakso,M.Kulmala,P.Tiitta,A.Guenther,H.Hellén,L.Laakso,andH.Hakola(2014), Ambient aromatic hydrocarbonmeasurements at Welgegund, South Africa,

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 8.

 

32

Atmos. Chem. Phys., 14(13), 7075–7089,doi:10.5194/acp‐14‐7075‐2014.

Jacob, D. J. (1986), Chemistry of OH in remotecloudsanditsroleintheproductionofformicacidandperoxymonosulfate,J.Geophys.Res.,91,9807–9826.

Jiang, G., and J. D. Fast (2004), Modeling theeffectsofVOCandNOxemissionsourcesonozone formation in Houston during theTexAQS 2000 field campaign, Atmos.Environ., 38, 5071‐5085,doi:10.1016/j.atmosenv.2004.06.012.

Johnson, D., M. E. Jenkin, K. Wirtz, and M.Martin‐Reviejo (2005), Simulating theformationofsecondaryorganicaerosolfromthe photooxidation of aromatichydrocarbons, Environ. Chem., 2(1), 35–48,doi:10.1071/EN04079.

Jones,D.B.A.,K.W.Bowman,P. I.Palmer, J.R.Worden,D.J.Jacob,R.N.Hoffman,I.Bey,andR. M. Yantosca (2003), Potential ofobservations from the TroposphericEmission Spectrometer to constraincontinental sources of carbon monoxide, J.Geophys. Res., 108(D24), 4789, doi:doi:10.1029/2003JD003702.

Jones,D.B.A.,K.W.Bowman, J.A. Logan, C. L.Heald, J. Liu, M. Luo, J. Worden, and J.Drummond (2009), The zonal structure oftropical O3 and CO as observed by theTropospheric Emission Spectrometer inNovember 2004 – Part 1: Inversemodelingof CO emissions, Atmos. Chem. Phys., 9,3547–3562,doi:10.5194/acp‐9‐3547‐2009.

Karion, A., C. Sweeney, P. Tans, and T.Newberger (2010), AirCore: An InnovativeAtmospheric Sampling System, J. Atmos.Oceanic Technol., 27, 1839–1853,doi:10.1175/2010JTECHA1448.1.

Keene,W.C., and J.N.Galloway (1984),Organicacidity in precipitation of North America,Atmos.Environ.,18,2491–2497.

Keene, W. C., J. N. Galloway, and J. D. Holden(1983), Meassurement of weak organicacidity in precipitation from remote areas oftheworld,J.Geophys.Res.,88,5122–5130.

Kim, S. Y., D. B. Millet, L. Hu, M. J. Mohr, T. J.Griffis, D.Wen, J. C. Lin, S. M. Miller, andM.Longo (2013), Constraints on carbon

monoxide emissions based on tall towermeasurements in the US Upper Midwest,Environ.Sci.Technol.,47,8316−8324.

Kopacz,M.,D.J.Jacob,J.A.Fisher,J.A.Logan,L.Zhang, I. A. Megretskaia, R. M. Yantosca, K.Singh, D. K. Henze, J. P. Burrows, M.Buchwitz, I.Khlystova,W.W.McMillan, J. C.Gille,D.P.Edwards,A.Eldering,V.Thouret,and P. Nedelec (2010), Global estimates ofCO sources with high resolution by adjointinversion of multiple satellite datasets(MOPITT, AIRS, SCIAMACHY, TES), Atmos.Chem.Phys., 10, 855–876, doi:10.5194/acp‐10‐855‐2010.

Lamarque,J.‐F.,B.V.Khattatov,J.C.Gille,andG.P. Brasseur (1999), Assimilation ofMeasurement of Air Pollution from Space(MAPS) CO in a global three‐dimensionalmodel, J. Geophys. Res., 104, D21, 26,209–26,218.

Lamarque,J.F.,D.T.Shindell,B.Josse,P.J.Young,I.Cionni,V.Eyring,D.Bergmann,P.Cameron‐Smith,W.J.Collins,R.Doherty,S.Dalsoren,G.Faluvegi, G. Folberth, S. J. Ghan, L. W.Horowitz, Y. H. Lee, I. A. MacKenzie, T.Nagashima,V.Naik,D.Plummer,M.Righi,S.T.Rumbold, M. Schulz, R. B. Skeie, D. S.Stevenson, S. Strode, K. Sudo, S. Szopa, A.Voulgarakis, and G. Zeng (2013), TheAtmospheric Chemistry and Climate ModelIntercomparisonProject (ACCMIP):overviewand description of models, simulations andclimatediagnostics, Geosci.ModelDev., 6(1),179–206.

Le Breton, M., M. R. McGillen, J. B. A. Muller, A.Bacak,D.E. Shallcross,P.Xiao, L.G.Huey,D.Tanner, H. Coe, and C. J. Percival (2012),Airborne observations of formic acid using achemical ionization mass spectrometer,Atmos.Meas.Tech.,5,3029–3039.

Levy,R.C.,L.A.Remer,S.Mattoo,E.F.Vermote,andY.J.Kaufman(2007),Second‐generationoperational algorithm: Retrieval of aerosolproperties over land from inversion ofModerate Resolution ImagingSpectroradiometer spectral reflectance, J.Geophys. Res., 112, D13211,doi:13210.11029/12006JD007811.

Liu, J., K. Bowman, M. Lee, D. Henze, N.Bousserez, H. Brix, G. J. Collatz, D.

Section 8.   References 

 

33 

Menemenlis,L.Ott, S.Pawson,D. Jones, andR.Nassar(2014),Carbonmonitoringsystemflux estimation and attribution: impact ofACOS‐GOSAT XCO2 sampling on theinference of terrestrial biospheric sourcesand sinks, Tellus B, 66(0),doi:http://dx.doi.org/10.3402/tellusb.v66.22486.

Liu, Z., Y. Wang, D. Gu, C. Zhao, L. G. Huey, R.Stickel, J.Liao,M.Shao,T.Zhu,L.Zeng,S.C.Liu,C.C.Chang,A.Amoroso,andF.Costabile(2010), Evidence of reactive aromatics as amajor source of peroxy acetyl nitrate overChina, Environ. Sci. Technol., 44(18), 7017–7022,doi:10.1021/es1007966.

Liu, Z., Y. Wang, M. Vrekoussis, A. Richter, F.Wittrock, J.P.Burrows,M.Shao,C‐C.Chang,S‐C. Liu, H. Wang, and C. Chen (2012),Exploring the missing source of glyoxal(CHOCHO) over China, Geophys. Res. Lett.,39(10), L10812,doi:10.1029/2012gl051645.

Logan, J. A., I. Megretskaia, R. Nassar, L. T.Murray, L. Zhang, K. W. Bowman, H. M.Worden, and M. Luo (2008), Effects of the2006ElNiñoontroposphericcompositionasrevealed by data from the TroposphericEmissionSpectrometer(TES),Geophys.Res.Lett., 35, L03816,doi:10.1029/2007GL031698.

Luo,M.,M.W.Shephard,K.E.Cady‐Pereira,D.K.Henze, L. Zhu, J. O. Bash, R. W. Pinder, S.Capps, and J. Walker (2015), SatelliteObservations of Tropospheric Ammonia andCarbon Monoxide: Global Distributions,Correlations and Comparisons to ModelSimulations, accepted by AtmosphericEnvironment.

Martín‐Reviejo, M., and K. Wirtz (2005), Isbenzene a precursor for secondary organicaerosol?,Environ.Sci.Technol.,39(4),1045–1054,doi:10.1021/es049802a.

McMillan,W.W., R. B. Pierce, L. C. Sparling, G.Osterman, K. McCann, M. L. Fischer, B.Rappenglück, R. Newsom, D. Turner, C.Kittaka, K. Evans, S. Biraud, B. Lefer, A.Andrews, and S. Oltmans (2010), Anobservational and modeling strategy toinvestigate the impactof remote sourcesonlocal air quality: A Houston, Texas, case

study from the Second Texas Air QualityStudy (TexAQS II), J. Geophys. Res., 115,D01301,doi:10.1029/2009JD011973.

Migliorini,S.,C.Piccolo,andC.D.Rodgers(2008),Use of the information content in satellitemeasurements for an efficient interface todata assimilation, Mon. Wea. Rev., 136(7),2633–2650.

Millet, D. B., M. Baasandorj, D. K. Farmer, J. A.Thornton, K. Baumann, P. Brophy, S.Chaliyakunnel,J.A.deGouw,M.Graus,L.Hu,A. Koss, B. H. Lee, F. D. Lopez‐Hilfiker, J. A.Neuman,F.Paulot, J.Peischl, I.B.Pollack,T.B.Ryerson,C.Warneke,B. J.Williams,andJ.Xu (2015),A largeandubiquitoussourceofatmosphericformicacid,Atmos.Chem.Phys.,submitted.

Moore, D. P., and J. J. Remedios (2010),SeasonalityofPeroxyacetylnitrate (PAN) inthe upper troposphere and lowerstratosphere using theMIPAS‐E instrument,Atmos. Chem. Phys., 10(13), 6117–6128,10.5194/acp‐10‐6117‐2010.

Myhre,G.,D.Shindell,F.‐M.Bréon,W.Collins, J.Fuglestvedt, J. Huang, D. Koch, J.‐F.Lamarque, D. Lee, B.Mendoza, T. Nakajima,A.Robock,G.Stephens,T.Takemura,andH.Zhang (2014), Climate Change 2013: ThePhysical Science Basis. Contribution ofWorking Group I to the Fifth AssessmentReport of the Intergovernmental Panel onClimate Change, chapterAnthropogenic andNatural Radiative Forcing, pages 659–740.CambridgeUniversityPress.

Nassar, R., D. B. A. Jones, S. S. Kulawik, J. R.Worden, K. W. Bowman, R. J. Andres, P.Suntharalingam, J. M. Chen, C. A. M.Brenninkmeijer, T. J. Schuck, T. J. Conway,andD.E.Worthy(2011),InversemodelingofCO2 sources and sinks using satelliteobservations of CO2 from TES and surfaceflask measurements, Atmos. Phys., 11(12),6029–6047,doi:10.5194/acp‐11‐6029‐2011.

Ng,N.L.,J.H.Kroll,A.W.H.Chan,P.S.Chhabra,R. C. Flagan, and J. H. Seinfeld (2007),Secondary organic aerosol formation fromm‐xylene, toluene, and benzene, Atmos.Chem. Phys., 7(14), 3909–3922,doi:10.5194/acp‐7‐3909‐2007.

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 8.

 

34

Paulot,F.,D.Wunch, J.D.Crounse,G.C.Toon,D.B. Millet, P. F. DeCarlo, C. Vigouroux, N. M.Deutscher,G.G.Abad, J.Notholt,T.Warneke,J.W.Hannigan,C.Warneke,J.A.deGouw,E.J.Dunlea, M. D. Mazière, D. W. T. Griffith, P.Bernath, J. L. Jimenez, and P. O. Wennberg(2011), Importance of secondary sources intheatmosphericbudgetsof formicandaceticacids,Atmos.Chem.Phys.,11,1989–2013.

Payne,V.H.,M.J.Alvarado,K.E.Cady‐Pereira,J.R. Worden, S. S. Kulawik, and E. V. Fischer(2014), Satellite observations ofperoxyacetyl nitrate from the AuraTropospheric Emission Spectrometer,Atmos. Meas. Tech., 7, 3737–3749,doi:10.5194/amt‐7‐3737‐2014.

Pierce,R.B.,J.Al‐Saadi,C.Kittaka,T.Schaack,A.Lenzen, K. Bowman, J. Szykman, A. Soja, T.Ryerson,A.M.Thompson,P.Bhartia, andG.A. Morris (2009), Impacts of backgroundozone production on Houston and Dallas,Texas, air quality during the Second TexasAir Quality Study field mission, J. Geophys.Res., 114, D00F09,doi:10.1029/2008JD011337

Pierce,R. B., T. Schaack, andA. Lenzen (2011),GOES Total Column Ozone Assimilationwithin the Community Multi‐scale AirQuality Forecast Model, Joint Center forSatelliteDataAssimilationQuarterly,No.34,March 2011.(http://www.jcsda.noaa.gov/documents/newsletters/201103JCSDAQuarterly.pdf).

Pierangelo, C., A. Chédin, S. Heilliette, N.Jacquinet‐Husson, and R. Armante (2004),DustaltitudeandinfraredopticaldepthfromAIRS,Atmos.Chem.Phys.,4,1813–1822.

Pierangelo,C.,M.Mishchenko,Y.Balkanski,andA. Chédin (2005), Retrieving the effectiveradius of Saharan dust coarse mode fromAIRS,Geophys.Res.Lett.,32,L20813.

Rinsland,C.P.,C.Paton‐Walsh,N.B.Jones,D.W.T.Griffith,A.Goldman,S.W.Wood,L.Chiou,andA.Meier(2005),Highspectralresolutionsolar absorption measurements of ethylene(C2H4) in a forest fire smoke plume usingHITRAN parameters: Tropospheric verticalprofile retrieval, J. Quant. Spectrosc. Radiat.Transfer, 96, 301‐309,doi:10.1016/j.jqsrt.2005.03.003.

Robichaud,A.,andR.Ménard(2014),Multi‐yearobjective analyses of warm season ground‐level ozone and PM2.5 over North Americausing real‐time observations and Canadianoperationalairqualitymodels,Atmos.Chem.Phys.,14,1769–1800.

Rodgers, C. D. (2000), Inverse Methods forAtmosphericSounding:TheoryandPractice,WorldSci.,Hackensack,N.J.,2000.

Rodgers, C. D., and B. J. Connor (2003),Intercomparison of remote soundinginstruments, J. Geophys. Res., 108, 4116,doi:10.1029/2002JD002299.

Shephard,M.W.,K.E.Cady‐Pereira,M.Luo,D.K.Henze, R. W. Pinder, J. T. Walker, C. P.Rinsland, J. O. Bash, V. Payne, L. Clarisse(2011),TESAmmoniaRetrievalStrategyandGlobal Observations of the Spatial andSeasonal Variability of Ammonia, Atmos.Chem. Phys., 11, 10743–10763,doi:10.5194/acp‐11‐10743‐2011.

Shephard,M.W., andK. E. Cady‐Pereira (2014),Cross‐track Infrared Sounder (CrIS) SatelliteObservations of Tropospheric Ammonia,Atmos.Meas.Tech.Discuss.,7,11379–11413,doi:10.5194/amtd‐7‐11379‐2014.

Shindell, D., G. Faluvegi, L. Nazarenko, K.Bowman,J.‐F.Lamarque,A.Voulgarakis,G.A.Schmidt,O. Pechony, andR.Ruedy (2013a),Attribution of historical ozone forcing toanthropogenic emissions, Nature Clim.Change,3(6),567–570.

Shindell, D. T., O. Pechony, A. Voulgarakis, G.Faluvegi, L. Nazarenko, J. F. Lamarque, K.Bowman,G.Milly,B.Kovari,R.Ruedy,andG.A. Schmidt (2013b), Interactive ozone andmethanechemistryinGISS‐E2historicalandfuture climate simulations, Atmos. 13(5),2653–2689,doi:10.5194/acp‐13‐2653‐2013.

Simpson, I. J., M. P. Sulbaek Andersen, S.Meinardi,L.Bruhwiler,N.J.Blake,D.Helmig,F.S.Rowland,andD.R.Blake(2012),Long‐term decline of global atmospheric ethaneconcentrations and implications formethane, Nature, 488, 490‐494,doi:10.1016/S1352‐2310(02)00302‐3.

Singh, H. B. (1987), Reactive nitrogen in thetroposphere: chemistry and transport of

Section 8.   References 

 

35 

NOx and PAN, Environmental Science andTechnology,21,320–327.

Stavrakou,T.,A.Guenther,A.Razavi,L.Clarisse,C. Clerbaux, P. F. Coheur, D. Hurtmans, F.Karagulian, M. De Mazière, C. Vigouroux, C.Amelynck, N. Schoon, Q. Laffineur, B.Heinesch, M. Aubinet, C. Rinsland, and J. F.Müller(2011),Firstspace‐basedderivationofthe global atmospheric methanol emissionfluxes,Atmos.Chem.Phys.,11,4873–4898.

Stavrakou,T., J.‐F.Müller,J.Peeters,A.Razavi,L.Clarisse, C. Clerbaux, P.‐F. Coheur, D.Hurtmans, M.D. Mazière, C. Vigouroux, N.M.Deutscher, D.W.T. Griffith, N. Jones, and C.Paton‐Walsh (2012), Satellite evidence for alarge source of formic acid from boreal andtropicalforests,NatureGeosci.,5,26–30.

Strow, L. L., W. Blackwell, E. Fishbein, B.Lambrigtsen,andH.Revercomb(2013),NPPSoundingGroupEvaluationReport,availableathttp://npp.gsfc.nasa.gov/DEW_NPP_reports/Sounder%20%28ATMS%20&%20CrIS%29%20Products%20Report%20%28Apr‐10‐2013%29.pdf.

Tereszchuk,K.A.,D. P.Moore, J. J.Harrison,D.Boone,M. Park, J. J. Remedios,W. J. Randel,and P. F. Bernath (2013), Observations, ofperoxyacetyl nitrate (PAN) in the uppertroposphere by the Atmospheric ChemistryExperiment‐Fourier TransformSpectrometer (ACE‐FTS), Atmos. Chem.Phys.,13,5601–5613.

Thompson,A.M., J.C.Witte,R.D.McPeters,S. J.Oltmans, F. J. Schmidlin, J. A. Logan, M.Fujiwara,V.W. J.H.Kirchhoff,F.Posny,G. J.R. Coetzee, B. Hoegger, S. Kawakami, T.Ogawa,B.J.Johnson,H.VömelandG.Labow(2003), Southern Hemisphere AdditionalOzonesondes (SHADOZ) 1998‐2000 tropicalozoneclimatology1.ComparisonwithTotalOzone Mapping Spectrometer (TOMS) andground‐based measurements, J. Geophys.Res.,108,8238,doi:10.1029/2001JD000967.

Thompson, A.M., J. C. Witte, S. J. Oltmans, F. J.Schmidlin,J.A.Logan,M.Fujiwara,V.W.J.H.Kirchhoff, F. Posny, G. J. R. Coetzee, B.Hoegger, S. Kawakami, T. Ogawa, J. P. F.Fortuin, and H. M. Kelder (2003), SouthernHemisphere Additional Ozonesondes

(SHADOZ) 1998‐2000 tropical ozoneclimatology 2. Tropospheric variability andthe zonal wave‐one, J. Geophys. Res., 108,8241,doi:10.1029/2002JD002241.

Thompson, A.M., J.C. Witte, H.G.J. Smit, S.J.Oltmans,B.J.Johnson,V.W.JH.Kirchhoff,andF.J. Schmidlin (2007), SouthernHemisphereAdditional Ozonesondes (SHADOZ) 1998‐2004 tropical ozone climatology: 3.Instrumentation, station‐to‐stationvariability, and evaluation with simulatedflightprofiles,J.Geophys.Res.,112,D03304,doi:10.1029/2005JD007042.

Torres,O.,A.Tanskanen,B.Veihelmann,C.Ahn,R. Braak, P. K. Bhartia, P. Veefkind, and P.Levelt (2007), Aerosols and surface UVproductsfromOzoneMonitoringInstrumentobservations: Anoverview, J. Geophys. Res.,112,D24S47,doi:10.1029/2007JD008809.

Wecht,K. J.,D. J. Jacob,S.C.Wofsy,E.A.Kort, J.R. Worden, S. S. Kulawik, D. K. Henze, M.Kopacz,andV.H.Payne(2012),ValidationofTES methane with HIPPO aircraftobservations: implications for inversemodelingofmethanesources,Atmos.Chem.Phys., 12, 1823–1832, doi:10.5194/acp‐12‐1823‐2012.

Wells, K. C., and D. B. Millet (2014), Satellite‐derived constraints on northern temperatehydrocarbon and CO emissions and theanthropogenicversusbiogenicsourceofCO,presented at the 2014 GoldschmidtConference,Sacramento,CA.

Wells,K.C.,D.B.Millet,L.Hu,K.E.Cady‐Pereira,Y. Xiao, M. W. Shephard, C. L. Clerbaux, L.Clarisse,P.‐F.Coheur,E.C.Apel, J.deGouw,C.Warneke,H.B.Singh,A.Goldstein,andB.C. Sive (2012), Tropospheric methanolobservations from space: retrievalevaluationandconstraintsontheseasonalityof biogenic emissions, Atmos. Chem. Phys.,12, 5897–5912, doi:10.5194/acp‐12‐5897‐2012.

Wells,K.C.,D.B.Millet,K.E.Cady‐Pereira,M.W.Shephard, D. K. Henze, N. Bousserez, E. C.Apel,J.deGouw,C.Warneke,andH.B.Singh(2014), Quantifying global terrestrialmethanolemissionsusingobservationsfromtheTESsatellitesensor,Atmos.Chem.Phys.,14,2555–2570.

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 8.

 

36

Worden, H., R. Beer, and C. Rinsland (1997),Airborne infrared spectroscopy of 1994westernwildfires, J.Geophys.Res.,102(D1),1287.

Worden,H.M.,J.A.Logan,J.R.Worden,R.Beer,K. Bowman, S. A. Clough, A. Eldering, B. M.Fisher, M. R. Gunson, R. L. Herman, S. S.Kulawik, M. C. Lampel, M. Luo, I. A.Megretskaia, G. B. Osterman, and M.Shephard (2007), Comparisons ofTropospheric Emission Spectrometer (TES)ozoneprofilestoozonesondes:methodsandinitial results, J.Geophys.Res.‐Atmospheres,112,D03309,doi:10.1029/2006JD007258.

Worden,H.M.,K.W.Bowman, J.R.Worden,A.Eldering, and R. Beer (2008), Satellitemeasurements of the clear‐sky greenhouseeffect from tropospheric ozone, NatureGeosci,1(5),305–308.

Worden, H. M., K. Bowman, S. Kulawik, and A.Aghedo (2011), Sensitivity of outgoinglongwaveradiativefluxtotheglobalverticaldistribution of ozone characterized byinstantaneous radiative kernels from Aura‐TES,J.Atmos.,doi:10.1029/2010JD015101.

Worden,H.M.,M.N.Deeter,C.Frankenberg,M.George,F.Nichitiu, J.Worden, I.Aben,K.W.Bowman,C.Clerbaux,P.F.Coheur,A.T.J.deLaat, R. Detweiler, J. Drummond, D. P.Edwards, J. C. Gille, D. Hurtmans,M. Luo, S.Martínez‐Alonso, S.Massie, G. Pfister, and J.X. Warner (2013a), Decadal record ofsatellite carbon monoxide observations,Atmos. Chem. Phys., 13, 837–850,doi:10.5194/acp‐13‐837‐2013.

Worden, H.M., D. P. Edwards,M. N. Deeter, D.Fu, S. S. Kulawik, J. R. Worden, and A.Arellano (2013b), Averaging kernelprediction from atmospheric and surfacestate parameters based on multipleregression for nadir‐viewing satellitemeasurements of carbon monoxide andozone, Atmos. Meas. Tech., 6, 1633–1646,doi:10.5194/amt‐6‐1633‐2013.

Worden, J., Z. Jiang, D. Jones, M. Alvarado, K.Bowman,C.Frankenberg,E.Kort,S.Kulawik,M. Lee, J. Liu, V. Payne, K. Wecht, and H.Worden (2013a), El Niño, the 2006Indonesianpeatfires,andthedistributionof

atmospheric methane, Geophys. Res. Lett.,40,4938–4943,doi:10.1002/grl.50937.

Worden, J., K. Wecht, C. Frankenberg, M.Alvarado,K.Bowman,E.Kort,S.Kulawik,M.Lee, V. Payne, andH.Worden (2013b), CH4and CO distributions over tropical firesduring October 2006 as observed by theAura TES satellite instrument and modeledby GEOS‐Chem, Atmos. Chem. Phys., 13,3679–3692,doi:10.5194/acp‐13‐3679‐2013.

Xiao, Y., D. J. Jacob, and S. Turquety (2007),Atmospheric acetylene and its relationshipwith CO as an indicator of air mass age, J.Geophys. Res., 112, D12305,doi:10.1029/2006JD008268.

Xiao,Y., J.A.Logan,D. J. Jacob,R.C.Hudman,R.Yantosca, and D. R. Blake (2008), GlobalbudgetofethaneandregionalconstraintsonUS sources, J. Geophys. Res., 113, D21306,doi:10.1029/2007JD009415.

Xue,L.K.,T.Wang,J.Gao,A.J.Ding,X.H.Zhou,D. R. Blake, X. F.Wang, S.M. Saunders, S. J.Fan,H. C. Zuo, Q. Z. Zhang, andW. X.Wang(2014), Ground‐level ozone in four Chinesecities: precursors, regional transport andheterogeneous processes, Atmos. Chem.Phys. Discuss., 14(14), 20767–20803,doi:10.5194/acpd‐14‐20767‐2014.

Young,P. J.,A.T.Archibald,K.W.Bowman,J.F.Lamarque,V.Naik,D.S.Stevenson,S.Tilmes,A. Voulgarakis, O. Wild, D. Bergmann, P.Cameron‐Smith, I. Cionni,W. J. Collins, S. B.Dalsøren, R. M. Doherty, V. Eyring, G.Faluvegi,L.W.Horowitz,B.Josse,Y.Lee,I.A.MacKenzie,T.Nagashima,D.A.Plummer,M.Righi, S. T. Rumbold, R. B. Skeie, D. T.Shindell,S.A.Strode,K.Sudo,S.Szopa,andG.Zeng (2013), Pre‐industrial to end 21stcentury projections of tropospheric ozonefrom the Atmospheric Chemistry andClimate Model Intercomparison Project(ACCMIP),Atmos.Chem.Phys.,13(4),2063–2090,doi:10.5194/acp‐13‐2063‐2013.

Zavyalov, V., M. Esplin, D. Scott, B. Esplin, G.Bingham,E.Hoffman,C.Lietzke,J.Predina,R.Frain, L. Suwinski, Y. Han, C. Major, B.Graham, and L. Phillips (2013), Noiseperformance of the CrIS instrument, J.Geophys. Res. Atmos., 118, 13,108–13,120,doi:10.1002/2013JD020457.

Section 8.   References 

 

37 

Zhang, L., D. Jacob, K. Bowman, J. A. Logan, S.Turquety, R. C. Hudman, Q. Li, R. Beer, H.Worden, J. Worden, C. P. Rinsland, S. S.Kulawik,M.C.Lampel,M.W.Shephard,B.M.Fisher, A. Eldering, and M. Avery (2006),Ozone‐CO correlations determined by theTES satellite instrument in continentaloutflow regions, Geophys. Res. Lett., 33,L18804,doi:10.1029/2006GL026399.

Zhang,L.,D.J.Jacob,K.F.Boersma,D.A.Jaffe,J.R.Olson,K.W.Bowman, J.R.Worden,A.M.Thompson, M. A. Avery, R. C. Cohen, J. E.Dibb, F.M. Flock,H.E. Fuelberg, L.G.Huey,W. W. McMillan, H. B. Singh, and A. J.Weinheimer (2008), Transpacific transportof ozone pollution and the effect of recentAsian emission increases on air quality inNorthAmerica: an integratedanalysisusingsatellite, aircraft, ozonesonde, and surfaceobservations, Atmospheric Chemistry andPhysics,8(20),6117–6136.

Zhu, L., D. K. Henze, K. E. Cady‐Pereira, M. W.Shephard, M. Luo, R. W. Pinder, J. O. Bash,and G.‐R. Jeong (2013), Constraining USammonia emissions using TES remotesensing observations and the GEOS‐Chemadjointmodel, J. Geophys. Res. Atmos., 118,doi:10.1002/jgrd.50166.

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  Section 9.

 

38

9 GlossaryofAcronyms

ACE‐FTS:AtmosphericChemistryExperiment–FourierTransformSpectrometerAER:AtmosphericandEnvironmentalResearch,IncorporatedAERI:AtmosphericEmittedRadianceInterferometerAEROSE:AErosolsandOceanScienceExpeditionsAES:AirborneEmissionSpectrometerAIRS:AtmosphericInfraRedSounderAJAX:AlphaJetAtmosphericeXperimentAK:AveragingKernelAR5:FifthAssessmentReport(fromtheIPCC)ARCTAS‐B:ArcticResearchoftheCompositionoftheTropospherefromAircraftandSatellitesARL:AirResourcesLaboratory(atNOAA)ATom:AtmosphericTomographymissionATTREX:AirborneTropicalTRopopauseEXperimentAM3:TheatmosphericcomponentoftheGFDLcoupledclimatemodelCM3.BAO:BoulderAtmosphericObservatoryBTEX:Benzene,Toluene,Ethylbenzene,andXylenesCAM‐Chem:CommunityAtmosphereModelwithChemistryCARIBIC:CivilAircraftfortheRegularInvestigationoftheatmosphereBasedonanInstrumentContainerCAST:CoordinatedAirborneStudiesintheTropicsC‐IFS:IntegratedForecastingSystemCLASS:ComprehensiveLargeArray‐dataStewardshipSystemCMAQModel:CommunityMulti‐scaleAirQualityModelCMS:CarbonMonitoringSystemCONTRAIL:ComprehensiveObservationNetworkforTRacegasesbyAIrLinerCPO:ClimateProgramOffice(atNOAA)CrIS:Cross‐trackInfraredSounderCSAR:CenterforSatelliteApplicationsandResearchCSD:ChemicalSciencesDivision(atNOAAESRL)CSPP:CommunitySatelliteProcessingPackage

CSU:ColoradoStateUniversityDISCOVER‐AQ:DerivingInformationonSurfaceconditionsfromColumnandVerticallyResolvedObservationsRelevanttoAirQualityDOD:DepartmentofDefenseECMWF:EuropeanCenterforMedium‐rangeWeatherForecastingEDR:EnvironmentalDataRecord(associatedwithNUCAPS)EOS:EarthObservingSystemESPO:EarthScienceProgramOffice(atNASA)ESRL:EarthSystemResearchLaboratory(atNOAA)EUMETSAT:EUropeanorganisationfortheexploitationofMETeorologicalSATellitesFIREX:FireInfluenceonRegionalandglobalenvironmentsEXperimentFLEXPART:FLEXiblePARTicledispersionmodelFRAPPÉ:FrontRangeAirPollutionandPhotochemistryÉxperimentFTIR:FourierTransformInfraRedGCOS:GlobalClimateObservingSystemGEM‐MACH:GlobalEnvironmentalMulti‐scale–ModelingAirqualityandCHemistryGEOS‐5:GoddardEarthObservingSystemmodelGEOS‐Chem:GoddardEarthObservingSystemmodelwithChemistryGFDL:GeophysicalFluidDynamicsLaboratory(atNOAA)GFS:GlobalForecastSystemGHOST:GreenHouseObservationsoftheStratosphereandTroposphereGISS:GoddardInstituteforSpaceStudies(atNASAGSFC)GMD:GlobalMonitoringDivision(atNOAAESRL)GOES:GeostationaryOperationalEnvironmentalSatelliteGRUAN:GCOSReferenceUpper‐AirNetworkGSFC:GoddardSpaceFlightCenter(atNASA)HAP:HazardousAirPollutantHSRL:HighSpectralResolutionLiDAR(LightDetectionAndRanging)IAGOS:In‐serviceAircraftfortheGlobalObservingSystem

Section 9.   Glossary of Acronyms 

 

39 

IASI:InfraredAtmosphericSoundingInterferometerIASI‐NG:NewGenerationofInfraredAtmosphericSoundingInterferometerIPCC:IntergovernmentalPanelonClimateChange(associatedwiththeWorldMeteorologicalOrganizationandtheUnitedNationsEnvironmentProgramme)IRK:InstantaneousRadiativeKernelJPL:JetPropulsionLaboratory(atNASA)JPSS‐2:JointPolarSatelliteSystemMACC‐III:MonitoringAtmosphericCompositionandClimateMLS:MicrowaveLimbSounderMIPAS:MichelsonInterferometerforPassiveAtmosphericSoundingMODIS:ModerateResolutionImagingSpectrometerMOPITT:MeasurementsOfPollutionInTheTroposphereMOZAIC:MeasurementofOZoneandwatervaporbyAIrbusin‐serviceaircraftMOZART‐4:ModelforOZoneAndRelatedchemicalTracersMRI:MeteorologicalResearchInstitute(inJapan)NAM‐CMAQ:NorthAmericanModeloftheCommunityMulti‐scaleAirQualityModelNASA:NationalAeronauticsandSpaceAdministrationNCAR:NationalCenterforAtmosphericResearchNDACC:NetworkfortheDetectionofAtmosphericCompositionChangeNERC:NaturalEnvironmentResearchCouncilNESDIS:NationalEnvironmentalSatellite,Data,andInformationService(atNOAA)NIES:NationalInstituteforEnvironmentalStudies(inJapan)NMVOC:Non‐MethaneVolatileOrganicCompoundNOAA:NationalOceanicandAtmosphericAdministrationNOGAPS:NavyOperationalGlobalAtmosphericPredictionSystemNSF:NationalScienceFoundationNUCAPS:NOAAUniqueCrIS/ATMSProcessingSystemNWS:NationalWeatherService(atNOAA)OCO‐2:OrbitingCarbonObservatory

OMI:OzoneMonitoringInstrumentOMPS:OzoneMappingProfilerSuitePAN:PeroxyAcetylNitrateRAQMS:Real‐timeAirQualityModelingSystemRR‐Chem:RapidRefreshwithChemistrymodelingsystemSEACIONS:SouthEastAmericanConsortiumforIntensiveOzonesondeNetworkStudy SEAC4RS:StudiesofEmissionsandAtmosphericComposition,CloudsandClimateCouplingbyRegionalSurveysSENEX:SouthEastNEXusofairqualityandclimatecampaignSHADOZ:SouthernHemisphereADditionalOZonesondesSOAS:SouthernOxidantandAerosolStudySONGNEX:ShaleOilandNaturalGasNEXusofairqualityandclimatecampaignSSEC/CIMSS:SpaceScienceandEngineeringCenter/CooperativeInstituteforMeteorologicalSatelliteStudies(atUW)STAR:CenterforSaTelliteApplicationsandResearch(atNOAANESDIS)STC:ScienceandTechnologyCorporationSuomi‐NPP:SuomiNationalPolar‐orbitingPartnershipSVD:SingularValueDecompositionTCCON:TotalColumnCarbonObservingNetworkTES:TroposphericEmissionSpectrometerTIR:ThermalInfraRedTOA:Top‐Of‐AtmosphereUAS:UnmannedAircraftSystemsUAV:UnpilotedAerialVehicleUCATS:UASChromatographforAtmosphericTraceSpeciesUMBC:UniversityofMaryland‐BaltimoreCountyUW:UniversityofWisconsin‐MadisonVALAR:VALidationARchiveVOC:VolatileOrganicCompoundWINTER:WintertimeINvestigationofTransport,Emissions,andReactivityWRF‐Chem:WeatherResearchandForecastingwithChemistrymodel

Report of the CrIS Atmospheric Chemistry Data User’s Workshop  NOAA Notice

 

40

NoticefromNOAA

MentionofacommercialcompanyorproductdoesnotconstituteanendorsementbyNOAA/OAR.Useofinformationfromthispublicationconcerningproprietaryproductsorthetestsofsuchproducts

forpublicityoradvertisingpurposesisnotauthorized.Anyopinions,findings,andconclusionsorrecommendationsexpressedinthismaterialarethoseoftheauthorsanddonotnecessarilyreflectthe

viewsoftheNationalOceanicandAtmosphericAdministration.

NOAA Climate Program OfficeAtmospheric Chemistry, Carbon Cycle, & Climate Program (AC4)http://cpo.noaa.gov/ac4

Advancing Atmospheric Chemistry Through the Use of SatelliteObservations from the Cross‐track Infrared Sounder (CrIS)

CrIS Atmospheric Chemistry Data User’s Workshop Report

CITE AS:Alvarado, M., A. Andrews, C. Barnet, K. Bowman, K. Cady‐Pereira, J. De Gouw, D. Fahey, E. Fischer, A. Gambacorta, D. Jones, A. Karion, S.‐W. Kim, Q. Liu, J. Mao, A. Merrelli, D. Millet, N. Nalli, A. Neuman, J. Nowak, V. Payne, B. Pierce, N. Randazzo, K. Rosenlof, E. Saikawa, A. Sharma, M. Shephard, N. Smith, C. Sweeney, D. Tong, J. Wang, J. Warner, W. Wolf, H. Worden, X. Xiong, L. Yurganov, and L. Zhu (2015), Advancing Atmospheric Chemistry Through the Use of Satellite Observations from the Cross‐track Infrared Sounder (CrIS): Report of the CrIS Atmospheric Chemistry Data User’s Workshop, NOAA Climate Program Office, College Park, MD. doi:10.7289/V50V89SS

The CrIS instrument is carefully loaded into the JPSS spacecraft.Photo Credit: Ball Aerospace & Technologies Corp.