advances in optics, photonics, spectroscopy & applications

6
Advances in Optics, Photonics, Spectroscopy & Applications XI 2021 4 ISBN: 978-604-9988-20-2 CHTO VÀ KHẢO SÁT ĐẾ SERS THANH NANO ZnO/Ag NG DNG PHÁT HIN CHT HỮU CƠ ABAMECTIN Ở NỒNG ĐỘ THP ..................................... 179 Hoa Mai Anh, Nguyễn Thanh, Đào Anh Tuấn, Nguyn Hu Kế, Lê Vũ Tuấn Hùng .......................................................................................................... 179 NGHIÊN CU KHNĂNG HỖ TRCHUYỂN ĐIỆN TÍCH CA MÀNG NHÔM MNG PHTRÊN THANH ZnO NHM NG DỤNG LÀM ĐẾ SERS................ 184 Nguyn Thành Phúc, Lê ThMinh Huyền, Lê Vũ Tuấn Hùng ...................................... 184 TÍNH CHT DẪN ĐIỆN LOI p CA MÀNG SnO 2 ĐỒNG PHA TP n-Zn ....... 190 Đặng Hu Phúc, Nguyn ThMHnh, Lê ThYến Nhung, Nguyn Trn Hi Vân, Lê Trn.......................................................................................................................... 190 THE INFLUENCE OF THE SPUTTERING CURRENTS ON STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF CuCr 0.95 Mg 0.05 O 2 THIN FILMS195 Dung Van Hoang, Tu Anh Kieu Le, Anh Tuan Thanh Pham, Truong Huu Nguyen, Ngoc Kim Pham, Hanh Kieu Thi Ta, Hanh Duc Thi Dinh, Dai Cao Truong, Hoa Thi Lai, Ngoc Van Le, Vinh Cao Tran, Thang Bach Phan ................................... 195 ENHANCEMENT OF FLUORESCENT LABELING ALEXA VIA A SILVER THIN FILM ..................................................................................................................... 201 Nguyen Thanh Thao, Nguyen Thuy An, Bach Thang Phan, Hanh Kieu Thi Ta, Thanh Van Thi Tran, Lai Thi Hoa, Kieu The Loan Trinh, and Nhu Hoa Thi Tran ...... 201 CHTO VÀ KHO SÁT MT STÍNH CHT QUANG HC CA TINH THKDP ĐỒNG PHA TP BRILLIANT GREEN VÀ EDTA .......................................... 207 Nguyn Duy Nht , Nguyễn Văn Hạnh, Dư Quang Minh, Ngô Đức Lương, Phan Trung Vĩnh........................................................................................................... 207 PHÁT HIN NỒNG ĐỘ THP CA THUC NHUM MÀU DỰA TRÊN ĐẾ SERS - DUNG DCH NANO Ag .................................................................................... 212 Tôn NQunh Trang, Nguyn Duy Hải và Vũ Thị Hnh Thu ..................................... 212 COMPARISON NONLINEARITY PROPERTIES OF LARGE AND SMALL SOLID CORE PHOTONIC FIBERS WITH As 2 Se 3 SUBSTRATE ........................... 217 Thuy Nguyen Thi, Duc Hoang Trong, Tran Tran Bao Le, Thanh Thai Doan, Vu Tran Quoc, Lanh Chu Van ...................................................................................... 217 STUDY ON DISPERSION CHARACTERISTICS OF LARGE SOLID CORE PHOTONIC CRYSTAL FIBERS WITH As 2 Se 3 SUBSTRATE................................. 221 Thuy Nguyen Thi, Duc Hoang Trong, Tran Tran Bao Le, Thanh Thai Doan, Vu Tran Quoc, Bao Le Xuan, Lanh Chu Van................................................................ 221 ẢNH HƯỞNG CA MRNG DOPPLER LÊN SLAN TRUYN XUNG LASER TRONG MÔI TRƯỜNG NGUYÊN TBA MC CU HÌNH LAMBDA 225 Văn Đoài, Nguyễn Huy Bằng, Đinh Xuân Khoa, Đoàn Thanh Hoà, Trần Thị Xuân Thuý, Hoàng Minh Đồng, Nguyễn Tuấn Anh và Lê Thị Minh Phương 225

Upload: others

Post on 29-Nov-2021

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Advances in Optics, Photonics, Spectroscopy & Applications

Advances in Optics, Photonics, Spectroscopy & Applications XI 2021

4 ISBN: 978-604-9988-20-2

CHẾ TẠO VÀ KHẢO SÁT ĐẾ SERS THANH NANO ZnO/Ag ỨNG DỤNG PHÁT

HIỆN CHẤT HỮU CƠ ABAMECTIN Ở NỒNG ĐỘ THẤP ..................................... 179

Hoa Mai Anh, Nguyễn Hà Thanh, Đào Anh Tuấn, Nguyễn Hữu Kế,

Lê Vũ Tuấn Hùng .......................................................................................................... 179

NGHIÊN CỨU KHẢ NĂNG HỖ TRỢ CHUYỂN ĐIỆN TÍCH CỦA MÀNG NHÔM

MỎNG PHỦ TRÊN THANH ZnO NHẰM ỨNG DỤNG LÀM ĐẾ SERS................ 184

Nguyễn Thành Phúc, Lê Thị Minh Huyền, Lê Vũ Tuấn Hùng ...................................... 184

TÍNH CHẤT DẪN ĐIỆN LOẠI p CỦA MÀNG SnO2 ĐỒNG PHA TẠP n-Zn ....... 190

Đặng Hữu Phúc, Nguyễn Thị Mỹ Hạnh, Lê Thị Yến Nhung, Nguyễn Trần Hải Vân,

Lê Trấn .......................................................................................................................... 190

THE INFLUENCE OF THE SPUTTERING CURRENTS ON STRUCTURAL,

OPTICAL AND ELECTRICAL PROPERTIES OF CuCr0.95Mg0.05O2 THIN FILMS195

Dung Van Hoang, Tu Anh Kieu Le, Anh Tuan Thanh Pham, Truong Huu Nguyen,

Ngoc Kim Pham, Hanh Kieu Thi Ta, Hanh Duc Thi Dinh, Dai Cao Truong,

Hoa Thi Lai, Ngoc Van Le, Vinh Cao Tran, Thang Bach Phan ................................... 195

ENHANCEMENT OF FLUORESCENT LABELING ALEXA VIA A SILVER

THIN FILM ..................................................................................................................... 201

Nguyen Thanh Thao, Nguyen Thuy An, Bach Thang Phan, Hanh Kieu Thi Ta,

Thanh Van Thi Tran, Lai Thi Hoa, Kieu The Loan Trinh, and Nhu Hoa Thi Tran ...... 201

CHẾ TẠO VÀ KHẢO SÁT MỘT SỐ TÍNH CHẤT QUANG HỌC CỦA TINH THỂ

KDP ĐỒNG PHA TẠP BRILLIANT GREEN VÀ EDTA .......................................... 207

Nguyễn Duy Nhật,

Nguyễn Văn Hạnh, Dư Quang Minh, Ngô Đức Lương,

Phan Trung Vĩnh ........................................................................................................... 207

PHÁT HIỆN NỒNG ĐỘ THẤP CỦA THUỐC NHUỘM MÀU DỰA TRÊN ĐẾ

SERS - DUNG DỊCH NANO Ag .................................................................................... 212

Tôn Nữ Quỳnh Trang, Nguyễn Duy Hải và Vũ Thị Hạnh Thu ..................................... 212

COMPARISON NONLINEARITY PROPERTIES OF LARGE AND SMALL

SOLID CORE PHOTONIC FIBERS WITH As2Se3 SUBSTRATE ........................... 217

Thuy Nguyen Thi, Duc Hoang Trong, Tran Tran Bao Le, Thanh Thai Doan,

Vu Tran Quoc, Lanh Chu Van ...................................................................................... 217

STUDY ON DISPERSION CHARACTERISTICS OF LARGE SOLID CORE

PHOTONIC CRYSTAL FIBERS WITH As2Se3 SUBSTRATE ................................. 221

Thuy Nguyen Thi, Duc Hoang Trong, Tran Tran Bao Le, Thanh Thai Doan,

Vu Tran Quoc, Bao Le Xuan, Lanh Chu Van ................................................................ 221

ẢNH HƯỞNG CỦA MỞ RỘNG DOPPLER LÊN SỰ LAN TRUYỀN XUNG

LASER TRONG MÔI TRƯỜNG NGUYÊN TỬ BA MỨC CẤU HÌNH LAMBDA 225

Lê Văn Đoài, Nguyễn Huy Bằng, Đinh Xuân Khoa, Đoàn Thanh Hoà,

Trần Thị Xuân Thuý, Hoàng Minh Đồng, Nguyễn Tuấn Anh và Lê Thị Minh Phương 225

Page 2: Advances in Optics, Photonics, Spectroscopy & Applications

Những tiến bộ trong Quang học, Quang phổ và Ứng dụng XI 2021

5 ISBN: 978-604-9988-20-2

ANALYSIS OF CONFINEMENT LOSS CHARACTERISTIC OF PHOTONIC

CRYSTAL FIBER WITH HOLLOW CORE INFILTRATED BY AROMATIC

COMPOUND ................................................................................................................... 232

Vu Tran Quoc, Vu Nguyen Quang, Thuy Nguyen Thi, Tran Tran Bao Le,

Ngoc Vo Thi Minh, Hieu Le Van, Bao Le Xuan, Phu Nguyen Van, Lanh Chu Van ..... 232

PROPAGATION PROPERTIES OF DIELECTRIC-COVERED WEDGE

PLASMONIC WAVEGUIDE ........................................................................................ 238

Vu Thi Ngoc Thuy, Chu Manh Hoang .......................................................................... 238

DESIGN AND SIMULATION OF METAL-FILM-COATED SILICA

NANOPARTICLE ON SILICON SUBSTRATE ......................................................... 242

Nguyen Thi Hai Yen, Chu Manh Hoang ....................................................................... 242

DEVELOPMENT OF A MULTI-WAVELENGTH RANGE DEVICE USING HIGH

POWER LEDS FOR PHOTOTHERAPY .................................................................... 246

Bui Binh Nguyen, Tang Duc Loi, Aliaksandr Mikulich, Nguyen Thi Yen Mai,

Nguyen Thanh Phuong, Nguyen Thi Bich Phuong, Tran Quoc Tien,

Tong Quang Cong ......................................................................................................... 246

REALIZATION OF A FAST OPTICAL SHUTTER .................................................. 250

Thuy Linh La, Tran Quoc Tien, Tong Quang Cong, Aliaksandr Mikulich, Nguyen Thi

Yen Mai, Nguyen Thi Bich Phuong, Nguyen Van Hieu, Nguyen Thanh Phuong ......... 250

NGHIÊN CỨU THIẾT KẾ CHẾ TẠO THIẾT BỊ GIÁM SÁT NHIỆT ĐỘ THEO

THỜI GIAN THỰC CHO HỆ THỐNG THU ÁNH SÁNG MẶT TRỜI VÀ LED

CÔNG SUẤT CAO .......................................................................................................... 255

Nguyễn Mạnh Hiếu, Vũ Thị Nghiêm, Vũ Mạnh Kiên, Nguyễn Văn Nhật,

Trần Quốc Tiến, Nguyễn Thanh Phương ...................................................................... 255

DETECTION OF ULTRA-LOW CONCENTRATION OF METHYL ORANGE BY

USING SILVER NANOPARTICLES/POROUS SILICON SERS ACTIVE

SUBSTRATE ................................................................................................................... 260

Nguyen Thuy Van, Vu Duc Chinh, Bui Huy, Pham Thanh Binh, Tran Thi Cham,

Hoang Thi Hong Cam and Pham Van Hoi ................................................................... 260

ANALYSIS AND EXPERIMENTS ON MAGNETIC RESONANCE WIRELESS

POWER TRANSFER AT LOW MHz FREQUENCY ................................................ 265

Thao Duy Nguyen, Mai Ngoc Linh, Dao Le Anh Quan, Nguyen Hoa Nhu Ngoc

and Thanh Son Pham .................................................................................................... 265

NGHIÊN CỨU CHẾ TẠO TINH THỂ NANO ZnSe BẰNG PHƯƠNG PHÁP

NGHIỀN CƠ NĂNG LƯỢNG CAO ............................................................................. 269

Bùi Thị Thu Hiền, Chử Đức Hành, Phạm Thị Diệu Linh, Trần Thị Kim Chi ............... 269

CẤU TRÚC TINH THỂ CỦA HỆ HẠT NANO Pr0.5Sr0.5MnO3 ................................ 274

Trần Đăng Thành, Nguyễn Thị Dung, Nguyễn Thị Việt Chinh, Đào Sơn Lâm,

Đinh Chí Linh, Vũ Xuân Hoà, Nguyễn Hữu Đức và Trần Minh Thi ............................ 274

Page 3: Advances in Optics, Photonics, Spectroscopy & Applications

Những tiến bộ trong Quang học, Quang phổ và Ứng dụng XI 2021

221 ISBN: 978-604-9988-20-2

STUDY ON DISPERSION CHARACTERISTICS OF LARGE SOLID

CORE PHOTONIC CRYSTAL FIBERS WITH As2Se3 SUBSTRATE

Thuy Nguyen Thi1*

, Duc Hoang Trong1, Tran Tran Bao Le

1, Thanh Thai Doan

2,

Vu Tran Quoc3, Bao Le Xuan

4, Lanh Chu Van

5

1Hue University of Education, Hue University, 34 Le Loi Street - Hue City, VietNam

2University of Food Industry, 140 Le Trong Tan, An Phu, Ho Chi Minh City, VietNam

3Thu Khoa Nghia High School for The Gifted, Chau Doc City, An Giang province, Vietnam

4Phan Boi Chau High School for The Gifted, 119 Le Hong Phong, Vinh City, VietNam

5Department of Physics, Vinh University, 182 Le Duan, Vinh City, VietNam

*E-mail: [email protected]

Abstract. We designed large solid core photonic crystal fibers with hexagonal lattices and

As2Se3 substrate. We investigate dispersion characteristics following wavelengths in 2.0 µm

to 7.0 µm range and structural parameters (holes diameter, the lattice constant, and filling

factor). From there we defined the dispersion optimal structural parameters to apply

effectively for supercontinuum generation.

Keywords: large solid core, As2Se3 substrate, dispersion characteristics.

I. INTRODUCTION

Photonic crystal fibers (PCFs) designs have been proposed to achieve ultra-flattened

chromatic dispersion. Among the structures of PCFs, hexagonal PCFs are the most

popular. The fibers first demonstrated by Russell consisted of a hexagonal lattice of air

holes in a silica fiber, with a solid (1996) or hollow (1998) core at the center where light is

guided [1, 2]. Transparent optical material like silica has been used widely to obtain an

ultra-broadband supercontinuum generation spectrum. Silica fibers are showing a

remarkable development in PCFs [3, 4]. However, the longest wavelength that can be

generated in silica fibers is below 2.5 μm because of material losses. In addition, one more

reason of limiting the supercontinuum broadening is the low nonlinearity of silica fibers.

Recently, non-silica compound glasses like chalcogenide, soft glasses have been

effectively used in PCFs for investigation of nonlinear propagation in PCFs. Chalcogenide

glasses are promising nonlinear materials especially in the longer wavelength infrared

region and these materials offer much higher nonlinear coefficients than silica glasses.

That's why nonlinear PCFs made of chalcogenide glasses has attracted a lot of attentions

of scientists around the world [5-11].

Controllability of chromatic dispersion in PCFs is very important problem for

practical applications to optical communication systems, dispersion compensation, and

nonlinear optics. In particular, ultra-flattened dispersion PCFs are indispensable for optical

data transmission systems over a broadband wavelength range because of the reduction of

the accumulated dispersion difference in telecommunication bands without any zero-

dispersion wavelength. These properties have been shown to be strongly dependent on the

Page 4: Advances in Optics, Photonics, Spectroscopy & Applications

Advances in Optics, Photonics, Spectroscopy & Applications XI 2021

222 ISBN: 978-604-9988-20-2

geometry of the PCF structure, such as the dimension, lattice pitch (the lattice constant Ʌ),

the filling factor d/Ʌ pitch and arrangement of the air holes [11-18].

In this paper, we designed large solid

core photonic crystal fibers with hexagonal

lattices and As2Se3 substrate and investigate

dispersion characteristics following

wavelengths in 2.0 µm to 7.0 µm range.

II. MODELING AND THEORY

We designed large solid core PCFs by

Lumerical Mode Solutions software. Fig.1

shows the geometrical structure of large

solid core PCFs with hexagonal lattices and

As2Se3 substrate, which consists of 8 rings

of air holes, the lattice constant Ʌ is fixed at

5 µm and the filling factor d/Ʌ is chosen in

Fig. 1. The geometrical structures of large

solid core PCFs with hexagonal and As2Se3

substrate.

range of 0.3 to 0.85. The light is confined to the large core. The dispersion coefficient D(λ),

which include both wave guide and material dispersion, is proportional to the second

derivative of effective index of guided mode with respect to wavelength λ and is given as:

2

eff

2

Red nD

c d

where, effRe n is the real part of neff, and c is the velocity of light in vacuum [2, 3].

III. RESULTS AND DISCUSSION

The chromatic dispersion as a function of wavelength of large solid core PCFs with

lattice constants is Ʌ = 5 µm and the filling factor d/Ʌ is chosen in range of 0.3 to 0.85 are

shown in Fig. 2a and Fig. 2b.

Fig. 2. a) Chromatic dispersion as a function of wavelength of large solid core PCFs with

various filling factor in 2.0 µm to 7.0 µm range; b) Chromatic dispersion as a function of

wavelength of large solid core PCFs with various filling factor in 4.3 µm to 4.8 µm range.

Page 5: Advances in Optics, Photonics, Spectroscopy & Applications

Những tiến bộ trong Quang học, Quang phổ và Ứng dụng XI 2021

223 ISBN: 978-604-9988-20-2

Fig. 2a depicts that total dispersion is flattened and the value of dispersion increases

with the increase in the filling factor d/Ʌ. The slope of very large dispersion curves in the

range wavelength from 4.3 µm to 4.8 µm (Fig. 2b). Form Fig. 2a, we see that the

dispersion curves are very flat and close to the zero dispersion wavelength curves. Flat

dispersion is suitable for supercontinuum generation. The value of negative dispersion is

large in the range wavelength from 2 µm to 4.8 µm and it becomes positive values in the

range wavelength from 4.8 µm to 7.0 µm. The most flat dispersed curve and nearest with

the zero dispersion curve when the filling factor equal 0.3. The larger dispersion is

compensated by short length of optical fiber with high negative dispersion. Negative

dispersion is obtained over abroad wavelength range due to large index contrast between

core and cladding, it depend supon the cladding parameter, the filling factor d/Ʌ and the

lattice constant Ʌ [16-18].

Table 1. The value of the chromatic dispersion of large solid core PCFs

with various filling factor at 4.8 µm wavelength.

λ (µm) D (ps.(nm.km)-1)

4.8

Λ = 5.0 μm;

d/Λ = 0.3

Λ = 5.0 μm;

d/Λ = 0.35

Λ = 5.0 μm;

d/Λ = 0.4

Λ = 5.0 μm;

d/Λ = 0.45

Λ = 5.0 μm;

d/Λ = 0.5

Λ = 5.0 μm;

d/Λ = 0.55

0.459689471 1.645886907 2.606425191 3.354133476 4.103639346 4.742851336

Λ = 5.0 μm;

d/Λ = 0.6

Λ = 5.0 μm;

d/Λ = 0.65

Λ = 5.0 μm;

d/Λ = 0.7

Λ = 5.0 μm;

d/Λ = 0.75

Λ = 5.0 μm;

d/Λ = 0.8

Λ = 5.0 μm;

d/Λ = 0.85

5.414856155 6.07390974 6.73201526 7.400175246 8.109065959 8.833136406

In Tab.1, the calculated values of dispersion at 4.8 µm wavelength in infrared region

are shown. As seen in Table 1, the value of dispersion increases with the increase in the

filling factor. When the filling factor is 0.3 the smallest value of dispersion of PCF is

0.459689471 ps.(nm.km)

-1 while the highest of dispersion is 8.833136406 ps.(nm.km)

-1

when the filling factor equal 0.85.

Table 2. The value of zero dispersion wavelength (ZDW) of large solid core PCFs

with various filling factor .

D ps.(nm.km)-1 ZDW (µm)

0

Λ = 5.0 μm;

d/Λ = 0.3

Λ = 5.0 μm;

d/Λ = 0.35

Λ = 5.0 μm;

d/Λ = 0.4

Λ = 5.0 μm;

d/Λ = 0.45

Λ = 5.0 μm;

d/Λ = 0.5

Λ = 5.0 μm; d/Λ

= 0.55

4.773543997 4.707843834 4.656953762 4.618429488 4.581945303 4.554151507

Λ = 5.0 μm;

d/Λ = 0.6

Λ = 5.0 μm;

d/Λ = 0.65

Λ = 5.0 μm;

d/Λ = 0.7

Λ = 5.0 μm;

d/Λ = 0.75

Λ = 5.0 μm;

d/Λ = 0.8

Λ = 5.0 μm;

d/Λ = 0.85

4.525098337 4.496856419 4.469141864 4.440974679 4.41169864 4.381830922

The proposed large solid core PCFs with As2Se3 substrate exhibit the zero dispersion

(ZDW) in the infrared range as shown in Table 2, with the increasing filling factor d/Ʌ, the

ZDW of PCFs is decreased. When the filling factor is 0.3, the highest ZDW of the PCF is

4.773543997 µm.

IV. CONCLUSION

The dispersion characteristics of large solid core photonic crystal fiber with As2Se3

substrate were studied numerically and analyzed with different the filling factor d/Ʌ. The

Page 6: Advances in Optics, Photonics, Spectroscopy & Applications

Advances in Optics, Photonics, Spectroscopy & Applications XI 2021

224 ISBN: 978-604-9988-20-2

value of dispersion increases with the increase in the filling factor, with filling factor equal

0.3μm the smallest dispersion of PCF and the highest ZDW are 0.459689471 ps.(nm.km)-1

and 4.773543997 µm, respectively. This result is very important for supercontinuum

generation.

ACKNOWLEDGMENTS. This research is funded by Vietnam National Foundation for

Science and Technology Development (NAFOSTED) under grant number 103.03-2020.03.

REFERENCES

[1] Yashar Esfahani Monfared, IEEE Journal, Feb. 2012.

[2] Dinesh Kumar Prajapati, International Journal of Recent Research and Review, 7(2), 2014.

[3] P. Jamatia et al., Appl. Opt., 55(24), 2016.

[4] Pooja Chauhana et al., Optik - International Journal for Light and Electron Optics, 187, 2019,

230-237.

[5] Yongqiang Jiang, et al., IEEE Photonics Technology Letters, 17(1), 2005.

[6] P. D. Rasmussen, J. Lægsgaard, and O. Bang, J. Opt. Soc. Am. B, 23, 2006, 2241.

[7] N. Naddi, et al., IOSR J. Electron. Commun. Eng., 12, 2017, 9.

[8] Bhawana Dabas, et al., Optics Communications, 283, 2010, 1331-1337.

[9] Ming Chen, et al., Optics Communications, 281, 2008, 2073-2076.

[10] R.Buczynski, et al., Opto - Eclectronic Review, 20(3), 2012, 207-215.

[11] Jingyuan Wang, et al., Optics & Laser Technology, 39(5), 2007, 913-917.

[12] Jacek Pniewski, et al., Applied Optics, 55(19), 2016, 5033-5040.

[13] Lanh Chu Van, et al., Proc. of SPIE 9816 981600-1, 2015.

[14] Lanh Chu Van, et al., Optical and Quantum Electronics, 49(2), 2017, 0929-3.

[15] Chu Van Lanh, et al., Laser Phys., 29(7), 2019, 075107.

[16] K. M. Mohsin, et al., Applied Optics, 50(25/1), 2011.

[17] Feng Li, et al., Optical Materials, 79, 2018, 137-146.

[18] M. R. Karima, et al., Optical Fiber Technology, 45, 2018, 255-266.