advances in analog circuit design 2014 the ring amplifier: scalable amplification with ring...

48
Advances in Analog Circuit Design 2014 The Ring Amplifier: Scalable Amplification with Ring Oscillators Benjamin Hershberg 1 , Un-Ku Moon 2 1 imec Leuven, Belgium 2 Oregon State University Corvallis, USA

Upload: robert-lucas

Post on 03-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Advances in Analog Circuit Design 2014

The Ring Amplifier: Scalable Amplification with Ring

Oscillators

Benjamin Hershberg1, Un-Ku Moon2

1 imec Leuven, Belgium2 Oregon State University Corvallis, USA

Ring Oscillator in Switched Capacitor Feedback

RS

T

VCMX=0.6V

VIN

±VREF

CLOAD

RST

RST

VCMO

Example MDAC Feedback Structure

VIN VOUT

RST

Slide 2

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

Vol

ts

time (ns)

1.2

1

0.8

0.6

0.4

0.2

00 1 2 3 4 5 6

Volt

s

time (ns)

Ring Oscillator Sample Waveform

VCMX = 0.6V (ideal settled input

value)

VIN

Slide 3

Ring Oscillator: The Perfect Switch-Cap Amplifier?

• High frequency poles, large bandwidth• Rail to rail swing• Maximal slewing efficiency• Small, simple layout• High cascaded gain• Inherent class-AB behavior• Fully compatible with digital CMOS

Slide 4

CL

VOUTVIN

Feedback network

IT’S AN OSCILLATOR!

Slide 5

CL

VOUTVIN

Feedback network

Sounds great! Only one problem…

Ring Oscillator: The Perfect Switch-Cap Amplifier?

Oscillator / Amplifier duality

Slide 6Slide 6Slide 6

Any unstable ring oscillator can become a stable amplifier

Slide 7

Small-signal three stage amplifier

p1 p2 p3

VOUT

CL

VIN

Optimal configuration:

dominant pole p3

Ring Amplifier

Slide 8

Optimal small-signal steady-state behavior:

Multiple cascaded gain stages

Stabilized by dominant output pole

p1 p2 p3

VOUT

CL

VIN

Large signal?

Time-Domain?

Ring Amplifier: Basic Theory

RS

T

VCMX

VIN

±VREF

CLOAD

RST

RST

VCMO

Example MDAC Feedback Structure

-VDZ

+

RST RST

RST

-VOS+

+VOS-

• Split signal into two separate paths• Embed offset in each path

Slide 9

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

Vol

ts

time (ns)

Ring Amplifier Sample Waveform

VDEADZONE = 0mV

1.2

1

0.8

0.6

0.4

0.2

00 1 2 3 4 5 6

Volt

s

time (ns)

10

-VDZ

+

VAN

VIN VOUTVA

VBP

VBN

VAP

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

Vol

ts

time (ns)

Ring Amplifier Sample Waveform

VDEADZONE = 0mV

1.2

1

0.8

0.6

0.4

0.2

00 1 2 3 4 5 6

Volt

s

time (ns)

11

-VDZ

+

VAN

VIN VOUTVA

VBP

VBN

VAP

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

Vol

ts

time (ns)

Ring Amplifier Sample Waveform

VDEADZONE = 0mV

1.2

1

0.8

0.6

0.4

0.2

00 1 2 3 4 5 6

Volt

s

time (ns)

12

-VDZ

+

VAN

VIN VOUTVA

VBP

VBN

VAP

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

Vol

ts

time (ns)

Ring Amplifier Sample Waveform

VDEADZONE = 0mV

1.2

1

0.8

0.6

0.4

0.2

00 1 2 3 4 5 6

Volt

s

time (ns)

13

-VDZ

+

VAN

VIN VOUTVA

VBP

VBN

VAP

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

Vol

ts

time (ns)

Ring Amplifier Sample Waveform

VDEADZONE = 200mV

1.2

1

0.8

0.6

0.4

0.2

00 1 2 3 4 5 6

Volt

s

time (ns)

Slide 14

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

Vol

ts

time (ns)

Ring Amplifier Sample Waveform

VDEADZONE = 250mV

1.2

1

0.8

0.6

0.4

0.2

00 1 2 3 4 5 6

Volt

s

time (ns)

Slide 15

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

Vol

ts

time (ns)

Ring Amplifier Sample Waveform

VDEADZONE = 300mV

1.2

1

0.8

0.6

0.4

0.2

00 1 2 3 4 5 6

Volt

s

time (ns)

Slide 16

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

Vol

ts

time (ns)

Ring Amplifier Sample Waveform

VDEADZONE = 350mV

1.2

1

0.8

0.6

0.4

0.2

00 1 2 3 4 5 6

Volt

s

time (ns)

Slide 17

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

Vol

ts

time (ns)

Ring Amplifier Sample Waveform

VDEADZONE = 400mV

1.2

1

0.8

0.6

0.4

0.2

00 1 2 3 4 5 6

Volt

s

time (ns)

Slide 18

What is the “Stability Region”?

Slide 19

VIN -VDZ1+

VOUT

RST RST

RSTC3

C2

MCP

MCNVTEST

IOUT

• VDZ1 large

– Dead-zone: Class-B– Distortion limits accuracy

• VDZ1 small

– Weak-zone: Class-AB– Only finite gain limits accuracy– Gain and output swing

advantage

-4 -2 0 2 4

-0.2

-0.1

0

0.1

0.2

Vin

pk-pk(mV)

I out(m

A)

DCsweepofVin

vsIout

CoarseRingampFineRingamp

StabilityRegion

Dead-zone

Weak-zone

[Hershberg, VLSI 2013]

Initial Slewing

• Bi-directional comparator and current source

– Zero-Crossing Based Circuit

• Rail-to-rail current source biasing

Slide 20

VIN

VCMX - VOS(IN)

IRAMP

VOUT

EN

EN

VCMX + VOS(IN)

td

COUTIRAMP

-VDZ

+

VAN

VIN VOUTVA

VBP

VBN

VAP

A boundary case: operating almost unstable

Stabilization

Slide 21

AV2*(VIN*AV1 + VOS)

AV2*(VIN*AV1 - VOS)

-VDZ

+

VIN VOUT

AV1

AV2

+VOS-

-VOS+

-VDZ

+

VAN

VIN VOUTVA

VBP

VBN

VAP

Slide 22

+VOS

-

-VOS+

VDD/2

VDD/2 - VOS

VDD/2

VDD/2 + VOS

Stabilization

Separate signal paths: gain-limited output swing for large input swing.

Stabilization

Slide 23

-VDZ

+

VAN

VIN VOUTVA

VBP

VBN

VAP1. Reduced avg. overdrive

voltage2. Reduced output slew rate3. Reduced oscillation amplitude4. Gain-limited internal swings

A boundary case: operating almost unstable

AV2*(VIN*AV1 + VOS)

AV2*(VIN*AV1 - VOS)

-VDZ

+

VIN VOUT

AV1

AV2

+VOS-

-VOS+

Stabilization

• Slew limited gain• During stabilization

– Small VA/VIN

• During steady-state– Large VA/VIN

• Enhances accuracy/speed tradeoff

Slide 24

-VDZ

+

VAN

VIN VOUTVA

VBP

VBN

VAP

VINVAA more subtle secondary effect…

A boundary case: operating almost unstable

Stabilization

Slide 25

1) Offset embedding creates a large signal finite gain effect

2) Large signal finite-gain effect strengthens with non-linear time feedback

3) Dynamically shifts small signal pole, granting stability and gain

Ring Amplifier Core Benefits

Exponential dynamic stabilization• Very fast• Well defined tradeoffs

26

Ring Amplifier Core Benefits

Slew-based charging• Charges with maximally biased, digitally-switched current

sources– VGS = VDD

– Can be very small, even for large CLOAD

– Decouples internal speed vs. output load requirements

27

VIN -VDZ1+

VOUT

RST RST

RSTC3

C2

MCP

MCN

CL

Rail-to-rail inverters+

-

+-

Max VOV

Max VOV

Very small transistors

Ring Amplifier Core Benefits

Scalability (Speed/Power)• Internal speed/power (mostly) independent of CLOAD

– Inverter td, crowbar current, parasitic C’s

– Digital power-delay product scaling benefits apply

• Power/speed product scales with digital process trends

28

Ring Amplifier Core Benefits

Scalability (Output Swing / SNR)• Compression immune: rail-to-rail output swing

– VOV pinchoff: decreases VDSAT, decreses ID, increases ro

29

VIN -VDZ1+

VOUT

RST RST

RSTC3

C2

MCP

MCN

small VOV = VGS-VT +

-

+

-small VOV = VGS-VT

Low frequency output pole

+

-Large ro,small VDSAT

+

-Large ro,small VDSAT

Dynamic biasing = wide, compression free output swing

Ringamp Implementations

Slide 30Slide 30Slide 30

Survey of Ringamp Structures

Slide 31

Basic Proof of Concept High-resolution

High-resolution (ringamp only) Nanoscale

CMOS improvements

Coarse Ringamp

Slide 32Slide 32Slide 32

10.5b Pipelined ADCHershberg, VLSI 2012

[Hershberg, VLSI 2012]

Coarse Ringamp Prototype

• Basic ringamp prototype– Minimum size transistors– Rail-to-rail output swing– Good noise performance

Slide 33

VIN VOUT

VRN

Φrst

Φrst

Φrst

VRP

840nm160nm

840nm160nm

320nm160nm

320nm160nm

960nm320nm

320nm320nm

320nm160nm

320nm160nm2.52µm

240nm

960nm240nm

320nm160nm

100fF

100fF

MCP

MCN

C2

C3100fF

C1

VA

[Hershberg, VLSI 2012]

Split-CLS

Slide 34Slide 34Slide 34

15b Pipelined ADCHershberg, ISSCC 2012

[Hershberg, ISSCC 2012]

Split-CLS (Correlated Level Shifting)

• Split-CLS: Gain Enhancement Technique

Slide 35

VO+C-RAMP

VO-RAMP

opamp CMFB

Vi+

Vi-

CoarseRAMP

CoarseRAMP

ΦCLS

VCM

CCLS

CCLS

[Hershberg, ISSCC 2012]

Composite Ring Amplifier Block

Slide 36Slide 36Slide 36

15b Pipelined ADC

[Hershberg, VLSI 2013]

Composite Ring Amplifier Block

Slide 37

• Composite Ring Amplifier Block

• Coarse– 2 Class-B

ringamps

• Fine– 1 Class-AB

ringamp

VO+CoarseRAMP

CoarseRAMP

FineRAMP

CMFB

VX+

VX-

VI+

VI-

CS

CFB

CS

CFB

VO-

[Hershberg, VLSI 2013]

Composite Ring Amplifier Block

Slide 38

VO+CoarseRAMP

CoarseRAMP

FineRAMP

CMFB

VX+

VX-

VI+

VI-

CS

CFB

CS

CFB

VO-

• Fast coarse charge– All 3 ringamps

contribute

• Coarse ringamps dominate and set:– Pseudo-

Differential– Common-Mode

• Auto-disconnect– No conduction to

output once inside dead-zone

[Hershberg, VLSI 2013]

Composite Ring Amplifier Block

Slide 39

VO+CoarseRAMP

CoarseRAMP

FineRAMP

CMFB

VX+

VX-

VI+

VI-

CS

CFB

CS

CFB

VO-

• Fine settle– VO+ floating

– VO- connected

– Common-mode ok

• Detect differentially, charge single-ended– VO- settles around

a floating VO+

[Hershberg, VLSI 2013]

Composite Ring Amplifier Block

Slide 40

Coarse ringamp dead-zone

[Hershberg, VLSI 2013]

Composite Ring Amplifier Block

Slide 41[Hershberg, VLSI 2013]

Class-AB Ringamp Structure

• Offset embedded between stages 2 and 3

• Guarantees weak-inversion– Enhanced Gain– Wide Output Swing

Slide 42

VOUT

C2

MCP

MCN

C3

+VDZ2

-

VIN+ +

-VIN- C1

A1 A2

RGC

A3

[Hershberg, VLSI 2013]

Reduced slewing efficiency…

Composite Ring Amplifier Block

Slide 43

VO+CoarseRAMP

CoarseRAMP

FineRAMP

CMFB

VX+

VX-

VI+

VI-

CS

CFB

CS

CFB

VO-

[Hershberg, VLSI 2013]

• High accuracy ADC using only ringamps• Maximum scalability

Self-Biased Ring Amplifier

Slide 44Slide 44Slide 44

10.5b Pipelined ADCLim, ISSCC 2014

[Lim, ISSCC 2014]

VOUT

CL

VIN RB

• Dynamic pole adjustment using only RB

• Initial slew, VOS = 0V– Max overdrive, max efficiency

• VOS dynamically grows during stabilization

Slide 45[Lim, ISSCC 2014]

Setting Stability Region with a Resistor

+VOS

-

Ring oscillators do make great amplifiers!

→ Slewing

→ Output Swing

→ Bandwidth

→ Gain

→ Scaling benefit

Slide 46

Small Signal

Large Signal

Transient

Where Next?

Slide 47

Anything clocked with a capacitive load …

Discrete Time FiltersDT Sigma-Delta

Etc.

Time to re-examine some old assumptions…

Thank you for your attention.

Slide 48