adding&the&s+process&to&the&apogee&stellar& … · h hydrogen li...

22
Adding the sProcess to the APOGEE Stellar Popula8ons (Apache Point Observatory Galac8c Evolu8on Experiment) Verne V. Smith NOAO, Tucson, Arizona USA + APOGEE & ASPCAP Teams APOGEE Stellar Parameters & Abundance Pipeline

Upload: doanduong

Post on 07-Oct-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Adding  the  s-­‐Process  to  the  APOGEE  Stellar  Popula8ons  

(Apache  Point  Observatory  Galac8c  Evolu8on  Experiment)  

Verne  V.  Smith    NOAO,  Tucson,  Arizona  USA  +  APOGEE  &  ASPCAP  Teams  

APOGEE  Stellar  Parameters  &    Abundance  Pipeline  

APOGEE:  “The  Big  Picture”  •  Galac8c  Cartography  •  Part  of  SDSS  III  &  IV  •  R=22,400  NIR  H-­‐band  

(λ1.52-­‐1.69μm)  300-­‐fibers  •  Kinema8c  (~100  m/s)  •  Chemical  (~0.1  dex)  •  ~15  elements  per  star  à  

f(Teff,  log  g,  [m/H])    •  140,000  stars  in  DR12  •  500,000  stars  by  2020  •  APOGEE-­‐1  (2011  –  2014)  •  APOGEE-­‐2  will  add  •  Data  Release  13  (DR13)      

Majewski  et  al.  2016  

H hydrogen

Li lithium

Na sodium

K potassium

Rb rubidium

Cs caesium

Fr francium

Be beryllium

Mg magnesium

Ca calcium

Sr strontium

Ba barium

Ra radium

Sc scandium

Y yttrium

Ti titanium

Zr zirconium

Hf hafnium

V vanadium

Nb niobium

Cr chromium

Mo molybdenum

Mn manganese

Tc technetium

Fe iron

Ru ruthenium

Co cobalt

Rh rhodium

Ni nickel

Pd palladium

Cu copper

Ag silver

Zn zinc

Cd cadminium

Ta tantalum

W tungsten

Re rhenium

Os osminium

Ir iridium

Pt platinum

Au gold

Hg mercury

B boron

Si silicon

Ge geramanium

As arsenic

Sb antimoney

Te tellurium

Po polonium

C carbon

P phosphorous

N nitrogen

O oxygen

S sulphur

Se selenium

Al aluminium

Ga galium

In indium

Tl thallium

Sn tin

Pb lead

Bi bismuth

F fluorine

Cl chlorine

Br bromine

I iodine

At astatine

He helium

Ne neon

Ar argon

Kr krypton

Xe xenon

Rn radon

1 2

3

11

19

37

55

La Lanthanum

Ce cerium

Pr praseodymium

Pm promethium

Sm samarium

Eu europium

Gd gadolinium

Tb terbium

Dy dysprosium

Ho holmium

Re erbium

Tm thulium

Yb ytterbium

Lu lutetium

Nd neodymium

Ac actinium

Pa protactinium

U uranium

Np neptunium

Pu plutonium

Am americium

Cm curium

Bk berkelium

Cf californium

Es einsteinium

Fm fermium

Md mendelevium

Th thorium

No nobelium

Lr lawrencium

87

4

12

20

38

56

88

39

22 21

40

72

23

41

73

24

42

74

25

43

74

26

44

76

27

45

77

28

46

78

29

47

79

30

48

80

31

49

81

5

13

32

50

82

14

33

51

83

7

15

34

52

84

8

16

35

53

85

9

17

36

54

86

10

18

57 59 61 62 63 64 65 66 67 68 69 70 71

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

The APOGEE Periodic Table

6

 �  λ1.51  –  1.69μm  �  C,  N,  O  determined  (mostly)  from  molecular  transi8ons:  CO,  OH,  CN  �  Everything  elseà  atomic  lines,  almost  all  neutral.    Ti  II  �  Note  lack  of  heavy  elements  (Z>30)  �  Stellar  parameters  and  chemical  abundances  all  hang  on  the              APOGEE  line  list    

Already  in,  but  may  need  work  

Also  lines  in  current  list  from  Ge  I  and  Y  II,  but  very  weak.    Some  doubly  ionized  lines      (    Ce      III)  but  not  visible  in  red  giants  

Elemental  Abundances  

Test  Slide  

Plus  Kurucz  compila8ons  &  molecules    Con8nuing  to  improve  on  iden8fying  missing  lines    from  the  most  recent  line  lists;  can  add  addi8onal  elements  from  these  previously  unknown  lines  

Informa8on  in  a  moderately  metal-­‐poor  K-­‐giant  

•  Teff=4300K  •  [Fe/H]=  -­‐1.3  •  Log  g  =  1.5  •  Informa8on  

content  •  Molecular  gf-­‐

values  from  literature  

•  Atomic  gf-­‐values  allowed  to  vary  within  2σ    via  synthesis  of  Sun  and  Arcturus  

APOGEE  Data  •  Observed  normalized  spectrum  +  fit  

What  do  ASPCAP  results  look  like?  

•  [Ca/Fe]  vs.  [Fe/H]  •  DR12  •  Teff  >  3900K  •  Thin  Disk  /  Thick  Disk  +  Halo  

•  Includes  F/G  dwarfs  from  Bensby  et  al.  (2014)  

-2 -1.5 -1 -0.5 0 0.5

-0.5

0

0.5

[Fe/H]

H hydrogen

Li lithium

Na sodium

K potassium

Rb rubidium

Cs caesium

Fr francium

Be beryllium

Mg magnesium

Ca calcium

Sr strontium

Ba barium

Ra radium

Sc scandium

Y yttrium

Ti titanium

Zr zirconium

Hf hafnium

V vanadium

Nb niobium

Cr chromium

Mo molybdenum

Mn manganese

Tc technetium

Fe iron

Ru ruthenium

Co cobalt

Rh rhodium

Ni nickel

Pd palladium

Cu copper

Ag silver

Zn zinc

Cd cadminium

Ta tantalum

W tungsten

Re rhenium

Os osminium

Ir iridium

Pt platinum

Au gold

Hg mercury

B boron

Si silicon

Ge geramanium

As arsenic

Sb antimoney

Te tellurium

Po polonium

C carbon

P phosphorous

N nitrogen

O oxygen

S sulphur

Se selenium

Al aluminium

Ga galium

In indium

Tl thallium

Sn tin

Pb lead

Bi bismuth

F fluorine

Cl chlorine

Br bromine

I iodine

At astatine

He helium

Ne neon

Ar argon

Kr krypton

Xe xenon

Rn radon

1 2

3

11

19

37

55

La Lanthanum

Ce cerium

Pr praseodymium

Pm promethium

Sm samarium

Eu europium

Gd gadolinium

Tb terbium

Dy dysprosium

Ho holmium

Re erbium

Tm thulium

Yb ytterbium

Lu lutetium

Nd neodymium

Ac actinium

Pa protactinium

U uranium

Np neptunium

Pu plutonium

Am americium

Cm curium

Bk berkelium

Cf californium

Es einsteinium

Fm fermium

Md mendelevium

Th thorium

No nobelium

Lr lawrencium

87

4

12

20

38

56

88

39

22 21

40

72

23

41

73

24

42

74

25

43

74

26

44

76

27

45

77

28

46

78

29

47

79

30

48

80

31

49

81

5

13

32

50

82

14

33

51

83

7

15

34

52

84

8

16

35

53

85

9

17

36

54

86

10

18

57 59 61 62 63 64 65 66 67 68 69 70 71

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

The APOGEE Periodic Table

6

Already  in,  but  may  need  work  

Hasselquist  et  al.  (2016)  

Cunha  et  al.  (2016)  

Expanding  the  APOGEE  Periodic  Table  

Focus  on  the  heavy  elements  

Vetng  the  Lines  •  Iden8fy  candidate  lines  based  on  atomic  proper8es  •  In  general,  for  heavy-­‐element  H-­‐band  lines,  no  laboratory  gf-­‐

values  •  Use  combina8on  of    α  Boo  and  the  Sun  to  derive  gf-­‐values:  

“astrophysical  gf-­‐values”  –  Also  use  chemically  peculiar  stars  in  APOGEE  as  tests  ßImportant  –  Analysis  that  is  self-­‐consistent  with  ASPCAP  

•  Hasselquist  et  al.  (2016)  –  submived  –  5  Nd  II  lines  –  Required  s-­‐process  rich  stars  to  calibrate  

•  Cunha  et  al.  (2016)  –  in  prepara8on  –  9  Ce  II  lines  (1  falls  in  APOGEE  chip  gap)  –  Rests  on  op8cal  analysis  Ce  II  –  gf-­‐values  from  Lawler  et  al.  (2009)  

•  For  Ce  II,  es8mated  internal  scaver  ~+/-­‐0.05  dex  •  Adding  the  s-­‐process  as  a  rigorously  determined  quan8ty  to  

APOGEE  

Why  the  s-­‐Process  is  Interes8ng  

•  Thermally  Pulsing  AGB  Phase:  quan8fy  AGB  contribu8ons  to  chemical  evolu8on  

13C(  α,n)16O  

22Ne(α,n)25Mg  

Lavanzio  &  Lugaro  (2009)  

Uncertain8es  in  Fitng  Nd  II  Lines  

•  Hasselquist  et  al.  (2016)  

•  Favor  cool  red  giants  

•  Low  log  g  

Ini8al  Results  from  Nd  II  

•  Hasselquist  et  al.  

•  Sgr  dwarf    •  Old  gf-­‐values  

Tests  of  Ce  II  Lines  in  APOGEE  Window  

•  Cunha  et  al.  (2016)  •  APOGEE  Ce  II  lines  with  

astrophysical  gf-­‐values  agrees  with  op8cal  results  

•  Ce  II  lines  detectable  in  large  frac8on  of  the  APOGEE  red  giants  

•  With  Ce  II  &  Nd  II  the  ability  to  probe  the  s-­‐process  across  the  Galaxy  

•  Note  s-­‐process  rich,  N-­‐rich,  Al-­‐rich  star:  Cunha  et  al.  (2016)  found  Ce  enhancement.    Noted  earlier  by  Fernandez-­‐Trincado  (2016)  as  N-­‐  &  Al-­‐rich,  retrograde  orbit,  suggested  to  be  possible  ω  Cen  escapee.    Part  of  sample  iden8fied  by  Schiavon  et  al.  (2016)  in  the  inner  Galaxy  

-1.5 -1 -0.5 0 0.5

-0.5

0

0.5

1

1.5

[Fe/H]

Summary:  A  work  in  progress  

•  Nd  and  Ce  are  being  added    •  Rb  I  is  there  -­‐  not  clear  yet  how  well  ASPOGEE/ASPCAP  can  do.    Always  the  op8mist  

•  Other  lines  are  in  there  –  maybe  1st-­‐peak  –  Zr  I  (?)  •  In  addi8on  -­‐  line  list  will  con8nue  to  be  improved:  more  complete  lists,  bever  atomic  data,  in  par8cular  f-­‐values,  more  molecules  as  needed  

 

Test  Slide  

•  Test  text  

Test  Slide  

•  Test  text  

Test  Slide  

•  Test  text  

Element  Windows  •  Windows  used  by  ASPCAP  (APOGEE  Stellar  Parameters  &  Chemical  Abundances  Pipeline)  

•  Teff  •  Log  g  •  ξ  -­‐  microturbulence  •  [M/H]  •  [α/M]  •  [C/M]  •  [N/M]  •  Spectral  Libraries  

are  1D  models  in  LTE  

•  So  far-­‐  ATLAS9  +  tests  with  MARCS  

•  Future  releases  will  include  MARCS  

Atomic  Line  Illustra8on  

•  Sample  Mn  I  with  hfs  shown  

•  δ  Oph  –  M1  III  •  Teff=  3800K  •  [Fe/H]~0.  •  0.1  dex  increments  in  Mn  

Some  Scienceà  Stellar  evolu8on  in  open  clusters:  12C/13C  Along  the  NGC6791  RGB  from  APOGEE  

•  Cunha  et  al.  (2016  –  in  prep.)  

•  MRGB~1.2MSun  •  [Fe/H]=+0.4  •  From  near  luminosity  bump,  up  RGB,  down  to  Clump  

•  No  change  in  12C/13C  

•  Tes8ng  mixing  at  high  metallicity  

3500 4000 4500 50000

10

20

30

1 1.5 2 2.5 30

10

20

30

21  

“Bump”   Clump  

Clump  

Synergy  with  Kepler  Asteroseismology  •  Pinsonneault  et  al.  2014  •  APOGEE  Kepler  Asteroseismology  Science  Consor8um  

(APOKASC)  •  1916  red  giants  observed  by  Kepler  •  Combine  seismic  proper8es  with  ASPCAP  parameters  to  

reveal  internal  stellar  structure