accurate mineralogical analysis for efficient lithium ore ......• measurement time per sample 8...

41
© 2019 Malvern Panalytical Company Confidential Accurate mineralogical analysis for lithium ore processing Analyse minéralogique pour le traitement du minerai de lithium Marie-Ève Provencher & Dr. Uwe König

Upload: others

Post on 12-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Accurate mineralogical analysis for lithium ore processingAnalyse minéralogique pour le traitement du minerai de lithiumMarie-Ève Provencher & Dr. Uwe König

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    October 21, 20202 Title of the presentation

    TopicsMineralogical monitoring of lithium ores

    Conclusions

    Case study - Brines

    Case study - Pegmatites

    What is X-ray diffraction (XRD)

    Lithium deposits and processing

    Motivation & value

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Com

    pany

    Con

    fiden

    tial

    Motivation & value

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Motivation and value

    • Increased demand for lithium

    • Efficiency of lithium ore processing depends on mineralogical properties (not only on chemistry)

    • Increased complexity of mineralogy of new and existing deposits• Exact knowledge of ore domains needed for efficient ore sorting

    and blending • Recovery rates and profitability of downstream processing requires

    exact knowledge of mineralogical composition • Efficient use of reagents • Minimum downtime • …

    Mineralogical monitoring of lithium ores

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Increased demand for lithium

    October 21, 2020Title of the presentation5

    How much lithium is in everyday item ?

    Source: www.visiualcapitalist.com

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Increased demand for lithium

    October 21, 2020Title of the presentation6

    Forecast consumption

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    October 21, 2020Title of the presentation7

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Com

    pany

    Con

    fiden

    tial

    Lithum deposits

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Lithium deposits

    October 21, 2020Title of the presentation9

    Overview

    Sykes ‐MinExConsulting, 2019

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Lithium deposits

    October 21, 2020Title of the presentation11

    Brines versus pegmatites

    • Formed by leaching of volcanic rocks in basin depositional environments

    • Large low-grade deposits• Extraction of Li involving the pumping of brine,

    concentration via evaporation, and purification through solvent extraction, end product mainly Li2CO3

    • Lithium-bearing, aluminium silicate mineral which mostly occurs in lithium-rich pegmatites (granite-like igneous rock composed of quartz, feldspar and mica).

    • Complex high-grade deposits • Spodumene usually recovered through open pit mining• Beneficiated via gravity techniques where the ore is

    concentrated from 1-2% Li2O to a grade of ~6% Li2O

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Lithium deposits

    October 21, 2020Title of the presentation12

    Brines versus pegmatites

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Lithium deposits

    October 21, 2020Title of the presentation14

    Costs

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Com

    pany

    Con

    fiden

    tial

    X-ray diffraction (XRD)

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Analytical techniques

    16

    Elements and minerals

    Wet chemistryWet chemistry

    Neutron analysisNeutron analysis

    XRFXRF

    ElementsFe SiO2 Al2O3 MgO CaO S

    1 26.5 22.2 0.4 17.9 2.1 4.02 57.9 6.1 0.8 3.9 1.9 4.93 34.5 23.1 2.0 12.5 4.4 2.1

    Process parametersElectron microprobe

    MLA, QEMSCAN0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    1 2 3 4 5 6 7 8 9 10 11

    Pyr

    Mag

    Dio

    Tre

    Cal

    Qua

    Sca

    Alb

    Tal

    Liz

    XRD

    MineralsNIR

    Microscopy

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    XRD in Geoscience

    18

    Usage

    Main fields of applications:

    181803/06/2015Webinar: Modern XRD in Geosciences

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    XRD in Geoscience

    10/21/2020Solutions for automotive

    What can we learn from XRD pattern?

    width

    Peak position

    Phase composition

    Amorphous content

    Crystallite size/microstrain

    Structural information

    Process parameters

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    X-ray diffraction

    21 October 2020Title of the presentation20

    How does it work ?

    • Identification and quantification of crystalline phases and amorphous content • Monitoring of process parameters

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    X-ray diffraction

    21 October 2020Title of the presentation21

    Data evaluation

    Position [°2Theta] (Copper (Cu))10 20 30 40 50 60

    Counts

    0

    10000

    20000

    30000

    40000 Barite 22.9 %Hematite, syn 21.8 %Quartz 5.9 %Goethite 29.7 %fluorapatite, syn 5.3 %Synchysite-(Ce) 2.7 %Duplicated_Barite 11.6 %

    02000

    -2000

    4000

    -4000

    6000

    -6000

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    X-ray diffraction

    21 October 2020Title of the presentation22

    Data evaluation

    Position [°2Theta] (Copper (Cu))10 20 30 40 50 60

    Counts

    0

    10000

    20000

    30000

    40000 Barite 22.9 %Hematite, syn 21.8 %Quartz 5.9 %Goethite 29.7 %fluorapatite, syn 5.3 %Synchysite-(Ce) 2.7 %Duplicated_Barite 11.6 %

    02000

    -2000

    4000

    -4000

    6000

    -6000

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Com

    pany

    Con

    fiden

    tial

    Case study:Pegmatites

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Process

    October 21, 2020Title of the presentation24

    Pegmatite ores

    Keliber BatterySupply Chain Europe /Düsseldorf, March13, 2018

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Process

    Samples case study

    October 21, 2020Title of the presentation25

    Pegmatite ores

    Keliber BatterySupply Chain Europe /Düsseldorf, March13, 2018

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Mineralogical monitoring…

    • Samples from several parts during mining and processing of lithium ores were analyzed

    • Lithium ore (raw material)• Concentrate (α – Spodumene)• Flotation tailings• Calcination product (β – Spodumene) • Residue (Analcime)

    • Sample preparation• Automatic mill / press combination to ensure minimum sample preparation errors

    • Measurement time per sample 8 min (Aeris Minerals, benchtop XRD)

    October 21, 2020Title of the presentation26

    Exploration, mine planning, process monitoring

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Cluster analysis

    • Prior to phase identification and quantification a cluster analysis was performed using all available ore samples

    • 2 cluster (groups of similar samples) are identified

    • 2 outliers (not belonging to any cluster)

    • fast check for different ore domains for greenfield or brownfield exploration

    October 21, 2020Title of the presentation27

    Lithium ores

    High grade

    Low grade

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Lithium containing minerals

    • Spodumene theoretically contains 8.03% Li2OOctober 21, 2020Title of the presentation28

    Pegmatites

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Lithium containing minerals

    • Spodumene theoretically contains 8.03% Li2OOctober 21, 2020Title of the presentation29

    Pegmatites

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Mineralogy

    • Complex mineralogy

    • 8 main and minor minerals identified in the lithium ores

    • Additional mineral phases identifies in the processed ore

    • XRD can distinguish between α- and β-spodumene !!!

    October 21, 2020Title of the presentation30

    Phase identification pegmatites

    21 22 23 24 25

    Counts

    0

    2000

    4000

    6000 Albite Spodumene Anorthite Elbaite Spodumene-II Quartz

    Residue + Peak List

    Accepted Patterns

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Mineralogy

    October 21, 2020Title of the presentation31

    Phase identification

    Mineral FormulaSpodumene LiAl(SiO3)2Quartz SiO2Albite NaAlSi3O8Anorthite CaAl2Si2O8Lepidolite K(Li,Al) 3(Al,Si,Rb)4O10(F,OH) 2Orthoclase KAlSi3O8Tourmaline (Elbaite) Na(Li1.5Al1.5)Al6Si6O18 (BO3) 3(OH)4 Beryl Be3Al2(SiO3)6

    • Complex mineralogy

    • 8 main and minor minerals identified in the lithium ores

    • Additional mineral phases identifies in the processed ore

    • XRD can distinguish between α- and β-spodumene !!!

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Mineralogy (quantification)

    October 21, 2020Title of the presentation32

    Lithium ores

    Position [°2θ] (Copper (Cu))10 20 30 40 50 60 70 80

    Counts

    0

    20000

    40000

    Spodumene-alpha 26.5 %Spodumene-beta 0.0 %Quartz 23.2 %Albite 40.4 %Anorthite 6.7 %Orthoclase 0.4 %Lepidolite 2.0 %Beryl 0.7 %Elbaite 0.0 %Analcime 0.0 %

    Rwp = 10.126902000-20004000

    -40006000

    -6000

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    1 2 3 4 5 6 7 8 9

    Spodumene‐alpha [%] Spodumene‐beta [%] Quartz [%]

    Albite [%] Anorthite [%] Orthoclase [%]

    Lepidolite [%] Beryl [%] Elbaite [%]

    Measurement time 8 min

    Example of a full-pattern Rietveld quantification of a hard-rock lithium ore

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Position [°2θ] (Copper (Cu))10 20 30 40 50 60 70 80

    Counts

    10000

    20000

    30000

    40000Spodumene-alpha 89.6 %Spodumene-beta 0.4 %Quartz 1.3 %Albite 1.4 %Anorthite 3.7 %Orthoclase 0.6 %Lepidolite 0.8 %Beryl 0.3 %Elbaite 0.6 %Analcime 1.5 %

    Rwp = 9.4128

    02000

    -2000

    4000

    -4000

    6000

    -6000

    Mineralogy (quantification)

    October 21, 2020Title of the presentation33

    Processed lithium ore

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    1 2 3 4

    Spodumene‐alpha [%] Spodumene‐beta [%] Quartz [%]

    Albite [%] Anorthite [%] Orthoclase [%]

    Lepidolite [%] Beryl [%] Elbaite [%]

    Analcime [%]

    Example of a full-pattern Rietveld quantification of a spodumene concentrate

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Results

    October 21, 2020Title of the presentation34

    Mineralogical monitoring pegmatite processing

    Clustering

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Results

    October 21, 2020Title of the presentation35

    Mineralogical monitoring pegmatite processing

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    1 2 3 4 5 6 7 8 9

    Spodumene‐alpha [%] Spodumene‐beta [%] Quartz [%]

    Albite [%] Anorthite [%] Orthoclase [%]

    Lepidolite [%] Beryl [%] Elbaite [%]

    Mineral composition Clustering

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Results

    October 21, 2020Title of the presentation36

    Mineralogical monitoring pegmatite processing

    Low grade

    Waste

    Low grade

    Low grade

    High grade

    Grade blocks

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    1 2 3 4 5 6 7 8 9

    Spodumene‐alpha [%] Spodumene‐beta [%] Quartz [%]

    Albite [%] Anorthite [%] Orthoclase [%]

    Lepidolite [%] Beryl [%] Elbaite [%]

    Mineral composition Clustering

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Com

    pany

    Con

    fiden

    tial

    Case study:Brines

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    ProcessBrines

    Haber, LSM Conference, Las Vegas, 26-28thJanuary 2010

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Cluster analysis

    October 21, 2020Title of the presentation40

    Brine samples

    Lithium salts

    Halite >> Sylvine

    Carnaliite

    Bischofite

    Halite > Sylvine

    Gypsum

    Sylvine >> Halite

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    22 24 26 28 30 32 342Theta (°)

    0

    2000

    4000

    6000

    Inte

    nsity

    (cou

    nts)

    Bis

    BisBis

    Bis

    Bis

    Bis

    Bis

    Bis

    Bis

    Bis

    Bis

    Bis

    BisHal

    LiCar Li

    CarLiCar

    LiCar

    LiCar

    LiSul

    Mineralogy

    October 21, 2020Title of the presentation41

    Phase identification brines

    Mineral FormulaHalite NaClSylvine KClCarnallite KMgCl3 ꞏ 6H2OBischofite MgCl2 ꞏ 6H2O

    Anhydrite CaSO4Gypsum CaSO4 ꞏ 2H2O Kainite KMg(Cl,SO4) ꞏ 2.75H2O

    Li-sulfate monohydrate

    Li2SO4 ꞏ H2O

    Li-Carnallite LiMgCl3 ꞏ 7H2O

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Mineralogy (quantification)

    October 21, 2020Title of the presentation44

    Lithium brines

    Position [°2Theta] (Copper (Cu))20 30 40 50 60

    Counts

    0

    2500

    10000

    22500

    11C-C1 HXHalite 27.3 %Sylvine 11.0 %Carnallite, syn 45.8 %Chloromagnesite 0.5 %Anhydrite 1.6 %Picromerite, syn 1.0 %Polyhalite 10.1 %Lithium Sulfate Monohydrate 1.1 %Lithium Chloride Magnesium Dichloride Heptahydrate 1.6 %

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Com

    pany

    Con

    fiden

    tial

    Conclusions

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    Conclusions

    • Fast tool to monitoring qualitative and quantitative mineral composition of lithium ore

    • Fast detection of impurities or off-spec ore mineralogy

    • BT XRD in laboratories or containers or an automated environment

    21 October 2020Title of the presentation46

    Mineralogical monitoring of lithium ores and brines

    Fast decision making and counteractions on changing conditions, reduced operational costs

    Additional information for mine planning and downstream processing

    Higher degree of process automation with less manual testing, improved safety, lowest energy costs

  • © 2019 Malvern Panalytical Com

    pany

    Con

    fiden

    tial

    www.malvernpanalytical.com

    Com

    pany

    Con

    fiden

    tial

    Dr. Uwe Kö[email protected]

    Marie-Ève [email protected]

    Questions ?