abstract’ methodology’ - ams. · pdf filerotary’ scan’ mirror’...

1
Assessment of CrIMSS Version Change (Mx5.3 Mx6.3) on October 15 th , 2012 Methodology Satellite Data Valida&on of Temperature Profile Environmental Data Records (EDRs) from the CrossTrack Infrared Microwave Sounding Suite (CrIMSS) Using COSMIC Dry Temperature Profiles Michelle Feltz, Robert Knuteson, Henry Revercomb, Dave Tobin, and Steve Ackerman CooperaPve InsPtute for Meteorological Satellite Studies, University of WisconsinMadison Abstract This paper presents a methodology for validaPng the measurements from the CrossTrack Infrared Microwave Sounding Suite (CrIMSS) using combined observaPons from the Advanced Technology Microwave Sounder (ATMS) and the hyperspectral infrared Crosstrack Infrared Sounder (CrIS) on the Suomi NPP satellite, the first satellite of the newly created U.S. JPSS program. The atmospheric verPcal temperature profiles (AVTPs) from the CrIMSS operaPonal product are compared to temperature profiles obtained from radio occultaPon (RO) from the COSMIC GPS RO network. In parPcular, bias, RMS, and standard deviaPon profile staPsPcs will be presented for global and 30 degree laPtude zones for selected Pme periods in 2012. Similar validaPon staPsPcs using AIRS and COSMIC profile matchups will be created for the same space and Pme periods. The matchup methodology was used to evaluate the dependence of the ray path averaging on the staPsPcal results by comparing the closest single AIRS profile, to the average along a ray path, and to the average of a circle of radius equal to the horizontal ray path length through the atmosphere. The opPmal method of comparison between GPS RO and IR soundings from the Suomi NPP satellite will be presented. A comparison will be made of CrIMSS EDR performance relaPve to NASA AIRS L2 product in order to assess the CrIMSS product accuracy. This evaluaPon is in support of the NOAA NESDIS calibraPon/validaPon acPviPes for the checkout of the Suomi NPP satellite. Acknowledgments Contact: [email protected] UWMadison AOS/CIMSS/SSEC 295 We gratefully acknowledge the NPSO (Taiwans NaPonal Space OrganizaPon) and UCAR (University Center for Atmospheric Research) for access to the COSMIC RO data. We would like to thank the Goddard Space Flight Center (GSFC) Data Archive for access to the AIRS Level 2 data products. This work was supported under JPSS NOAA grant NA10NES4400013. Case Study: November 4 th 2012, Madison, WI References Anthes, R. A. et al., 2008: The COSMIC/FORMOSAT3 mission: early results. Bull. Amer. Meteor. Soc., 89, 313–333. doi: hep://dx.doi.org/10.1175/BAMS893313 . Borbas, E.,W. P. Menzel, J. Li, H. M. Woolf, 2003: Effects of GPS/RO refracPviPes on IR/MW retrievals, ITSC13, Sainte Adele, Canada, 29 October 4 November 2003. Healy, S.B. and Eyre, J.R. 2000: Retrieving temperature, water vapour and surface pressure informaPon from refracPvityindex profiles derived by radio occultaPon: A simulaPon study. Q. J. R. Meteorol. Soc., 126, 16611683. Kursinski, E.R., Hajj ,G.A., Schofield, J.T., Linfields, R.P. and Hardy, K.R. 1997: Observing Earths atmosphere with radio occultaPon measurement using the Global PosiPoning System. J. Geophys. Res., 102, 23,42923,465. Tobin, D. C. et al., 2006: Atmospheric RadiaPon Measurement site atmospheric state best esPmates for Atmospheric Infrared Sounder temperature and water vapor retrieval validaPon. J. Geophys. Res., 111, D09S14, doi:10.1029/2005JD006103. Yunck et al., 2009: Use of radio occultaPon to evaluate atmospheric temperature data from spaceborne infrared sensors. Terr. Atmos. Ocean. Sci., Vol. 20, No. 1, 7185. Prior to CrIMSS update: Mx5.3 IDPS 42/22 hep://www.cosmic.ucar.edu/launch/GPS_RO_cartoon.jpg The COSMIC Data Analysis and Archival CenterCDAAC (hep://cosmicio.cosmic.ucar. edu/cdaac/products.html ) was used to obtain COSMIC data. The product used for the results shown was the realPme atmPrf ‘dry temperature’. A typical COSMIC profile is obtained in about 100 seconds with over 3,000 verPcal samples. A quality control flag is included in the GPS RO netcdf files. For an example day, 19 October 2007, the percentage of GPS profiles marked bad was 2.5%. These bad profiles are excluded from the analysis. AIRS Scan Geometry with 30 cross track soundings between ±49° and a horizontal resolution of about 45 km Onboard the NASA Aqua satellite, AIRS looks toward the ground through a crosstrack rotary scan mirror which provides +/49.5 degrees (from nadir) ground coverage along with views to cold space and onboard spectral and radiometric calibraPon sources every scan cycle. For each of the ninety ground footprints observed each scan, one spectrum with all 2378 spectral samples is obtained. The AIRS IR spaPal resoluPon is 13.5 km at nadir from the 705.3 km orbit. The AIRS Level 2 products contain atmospheric temperature and moisture profiles from about 1 mb down to the surface with a horizontal resoluPon of about 45 km and provide nearly complete daily global coverage in ascending and descending modes. The version 5 support product AIRX2SUP was used in this analysis. The Crosstrack Infrared Sounder (CrIS) and the advanced Technology Microwave Sounder (ATMS) together represent the latest addiPon to a long series of atmospheric satellite sounders that originated in the late 1970's. CrIS is a hyperspectral sounder that will make it possible to conPnue the advancements of observaPons and research that started with the Atmospheric Infrared Sounder (AIRS) in 2002, and ATMS will similarly conPnue the series of observaPons that started with the Advanced Microwave Sounding Unit (AMSU) first launched by NOAA in 1998. The CrIMSS 42/22 layer EDR IDPS product used in the study was obtained from the NOAA CLASS system. The data used prior to mid October (for the Oct. 1 st to 10 th analysis) was Mx5.3 and aser mid October (Oct 22 nd 31 st analysis and case study) was Mx6.3. 18 17 16 15 14 13 22 20 18 16 10 1 10 0 10 1 10 2 10 3 18 17 16 15 14 13 22 20 18 16 10 1 10 0 10 1 10 2 10 3 18 17 16 15 14 13 22 20 18 16 10 1 10 0 10 1 10 2 10 3 18 17 16 15 14 13 22 20 18 16 10 1 10 0 10 1 10 2 10 3 130 ° E 140 ° E 4 3 2 1 0 1 2 3 4 130 ° E 140 ° E 4 3 2 1 0 1 2 3 4 130 ° E 140 ° E 4 3 2 1 0 1 2 3 4 Figure 1. From left to right, AIRS a) 32.3 mb (AIRS Level 30), b)103 mb (AIRS Level 44) and c) 300 mb (AIRS Level 63) temperatures differenced from the AIRS closest profile temperature (K) showing the closest profile (black square), circular averaged profile radius (magenta circle), ray averaged profiles (red dots), and the COSMIC RO raypath (black line). Figure 2. Illustration of the closest (black square), circular (blue circle), and ray path (red dots) methods for a single GPS profile (green) for the circle centered at the GPS RO level of (a) 30 hPa, (b) 100 hPa, (c) 300 hPa, and (d) the perigee point of GPS RO occultation. c) AIRS Pressure Level 63 (300 mb) a) AIRS Pressure Level 30 (32.3 mb) b) AIRS Pressure Level 44 (103 mb) Illinois Indiana Iowa Michigan Minnesota Ohio Wisconsin Circular IR Profiles 94 ° W 92 ° W 90 ° W 88 ° W 86 ° W 84 ° W 40 ° N 42 ° N 44 ° N 46 ° N AQer CrIMSS update: Mx6.3 IDPS 42/22 Conclusions A methodology has been developed for the validaPon of CrIMSS AVTP in the upper troposphere and lower stratosphere using GPS radio occultaPon. GPS RO dry temperature from the COSMIC network is matched to CrIMSS profiles within one hour. The GPS RO horizontal resoluPon of 300 km is accounted for using a raypath method. This methodology has been used to evaluate a CrIMSS sosware version update that occurred on 15 October 2012. The overall quality control percentage of combined (IR+MW) to combined + IR only + MW only before the update was 6% and aser the update was over 20%. The same methodology has been applied to AIRS v5 retrievals to provide a relaPve comparison. Coincident RS92 sonde launches from UWMadison are being used in detailed case study analyses. CrIMSS and AIRS Profile locaPons Above, the red line indicates the track of the COSMIC GPS RO profile (18:27 UTC). The red star is the perigee point of occultation. The cyan stars indicate CrIMSS profiles (19:03-19:11 UTC) within150 km of Madison. The radiosonde track is shown in green (18:44-20:34 UTC). The figures below contain an overlay of the GPS RO profile (red), the radiosonde launched from UW-SSEC (green), the circular weighted AIRS profile (black), and the circular weighted CrIMSS profile (blue). The right hand figure illustrates the 300 to 30 mb pressure range for which the COSMIC dry temperature profile is most accurate. Note that both the radiosonde and COSMIC profiles have higher vertical resolution than AIRS or CrIMSS. Note: The COSMIC GPS RO dry temperature is contaminated by water vapor below about 300mb. In this temperature profile matchup methodology, spaPally and temporally coincident GPS RO profiles and IR granules were found. For each case, three matchup techniques were used for comparison and analyzed with the same staPsPcal analysis. The closest profile, the circular averaged profile of a radius half the GPS RO horizontal resoluPon, and the raypath averaged profile of AIRS data were computed. In order to invesPgate the effect of the horizontal resoluPon of the GPS RO, these three different approaches to creaPng an IR matchup profile were evaluated. The azimuth angle of the radio occultaPon for each COSMIC RO profile alPtude was used to compute the horizontal extent of the nominal GPS RO horizontal resoluPon at each reported alPtude level (Kursinski et al. 1997). Figure 1 below shows the spaPal extent of a 135 km radius averaging circle on selected AIRS retrieval levels. Figure 2 to the right illustrates the closest, circular, and raypath methods as a 3D profile. a) c) b) d) 210 215 220 225 230 235 240 10 2 Temperature (K) Pressure (hPa) Circular AIRS and CrIMSS Profiles GPS SSEC Sonde AIRS CrIMSS 180 200 220 240 260 280 300 10 1 10 0 10 1 10 2 10 3 Temperature (K) Pressure (hPa) Circular AIRS and CrIMSS Profiles GPS SSEC Sonde AIRS CrIMSS Both CrIMSS and COSMIC temperature profiles are computed at the AIRS 101 levels using nearest neighbor linear interpola?on prior to sta?s?cal analysis. 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD Antarctic (60S - 90S) South Mid-Latitudes (30S – 60S) Arctic (90N – 60N) Tropics (30N - 30S) North Mid-Latitudes (60N – 30N) Global 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD October 1 st – 10 th CrIMSS – COSMIC October 22 nd – 31 st AIRS – COSMIC 2 0 2 10 1 10 2 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD 2 0 2 10 1 10 2 10 T (K) Pressure (hPa) BIAS 0 1 2 3 T (K) RMS 0 1 2 3 T (K) STDEV 0 50 100 Yield (%) YIELD October 22 nd – 31 st Antarctic (60S - 90S) South Mid-Latitudes (30S – 60S) Arctic (90N – 60N) Tropics (30N - 30S) North Mid-Latitudes (60N – 30N) Global AIRS v5 minus COSMIC aQer CrIMSS update

Upload: vuongtu

Post on 10-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Abstract’ Methodology’ - ams. · PDF filerotary’ scan’ mirror’ which’ provides ... GENERATION AIRS/AMSU AND IASI/AMSU SOUNDER SUITES G.A ... industrial and government team

Assessment  of  CrIMSS  Version  Change  (Mx5.3  à  Mx6.3)  on  October  15th,  2012  

Methodology  

Satellite  Data  

Valida&on  of  Temperature  Profile  Environmental  Data  Records  (EDRs)  from  the  Cross-­‐Track  Infrared  Microwave  Sounding  Suite  (CrIMSS)  Using  COSMIC  Dry  Temperature  Profiles  

Michelle  Feltz,  Robert  Knuteson,  Henry  Revercomb,  Dave  Tobin,  and  Steve  Ackerman    CooperaPve  InsPtute  for  Meteorological  Satellite  Studies,  University  of  Wisconsin-­‐Madison  

Abstract  This  paper  presents  a  methodology  for  validaPng  the  measurements   from  the  Cross-­‐Track   Infrared   Microwave   Sounding   Suite   (CrIMSS)   using   combined  observaPons   from   the  Advanced   Technology  Microwave   Sounder   (ATMS)   and  the  hyperspectral  infrared  Cross-­‐track  Infrared  Sounder  (CrIS)  on  the  Suomi  NPP  satellite,   the   first   satellite   of   the   newly   created   U.S.   JPSS   program.   The  atmospheric  verPcal  temperature  profiles  (AVTPs)  from  the  CrIMSS  operaPonal  product  are  compared  to  temperature  profiles  obtained  from  radio  occultaPon  (RO)  from  the  COSMIC  GPS  RO  network.  In  parPcular,  bias,  RMS,  and  standard  deviaPon  profile   staPsPcs  will   be  presented   for   global   and  30  degree   laPtude  zones  for  selected  Pme  periods  in  2012.  Similar  validaPon  staPsPcs  using  AIRS  and   COSMIC   profile   matchups   will   be   created   for   the   same   space   and   Pme  periods.   The  matchup  methodology  was   used   to   evaluate   the   dependence   of  the  ray  path  averaging  on  the  staPsPcal  results  by  comparing  the  closest  single  AIRS  profile,  to  the  average  along  a  ray  path,  and  to  the  average  of  a  circle  of  radius   equal   to   the   horizontal   ray   path   length   through   the   atmosphere.   The  opPmal   method   of   comparison   between   GPS   RO   and   IR   soundings   from   the  Suomi  NPP   satellite  will   be   presented.   A   comparison  will   be  made   of   CrIMSS  EDR   performance   relaPve   to   NASA   AIRS   L2   product   in   order   to   assess   the  CrIMSS   product   accuracy.   This   evaluaPon   is   in   support   of   the   NOAA   NESDIS  calibraPon/validaPon  acPviPes  for  the  checkout  of  the  Suomi  NPP  satellite.  

Acknowledgments    

Contact:  [email protected]    -­‐    UW-­‐Madison  AOS/CIMSS/SSEC  

295  

We  gratefully  acknowledge  the  NPSO  (Taiwan’s  NaPonal  Space  OrganizaPon)  and  UCAR  (University  Center  for  Atmospheric  Research)  for  access  to  the  COSMIC  RO  data.    We  would  like  to  thank  the  Goddard  Space  Flight  Center  (GSFC)  Data  Archive  for  access  to  the  AIRS  Level  2  data  products.  This  work  was  supported  under  JPSS  NOAA  grant  NA10NES4400013.    

Case  Study:  November  4th  2012,  Madison,  WI  

References          

Anthes,  R.  A.  et  al.,  2008:  The  COSMIC/FORMOSAT-­‐3  mission:  early  results.  Bull.  Amer.  Meteor.  Soc.,  89,  313–333.  doi:  hep://dx.doi.org/10.1175/BAMS-­‐89-­‐3-­‐313.    Borbas,  E.,W.  P.  Menzel,  J.  Li,  H.  M.  Woolf,  2003:  Effects  of  GPS/RO  refracPviPes  on  IR/MW  retrievals,  ITSC-­‐13,  Sainte  Adele,  Canada,  29  October  -­‐  4  November  2003.  Healy,  S.B.  and  Eyre,  J.R.  2000:  Retrieving  temperature,  water  vapour  and  surface  pressure  informaPon  from  refracPvity-­‐index  profiles  derived  by  radio  occultaPon:  A  simulaPon  study.  Q.  J.  R.  Meteorol.  Soc.,  126,  1661-­‐1683.  Kursinski,  E.R.,  Hajj  ,G.A.,  Schofield,  J.T.,  Linfields,  R.P.  and  Hardy,  K.R.  1997:  Observing  Earth’s  atmosphere  with  radio  occultaPon  measurement  using  the  Global  PosiPoning  System.  J.  Geophys.  Res.,  102,  23,429-­‐23,465.  Tobin,  D.  C.  et  al.,  2006:  Atmospheric  RadiaPon  Measurement  site  atmospheric  state  best  esPmates  for  Atmospheric  Infrared  Sounder  temperature  and  water  vapor  retrieval  validaPon.  J.  Geophys.  Res.,  111,  D09S14,  doi:10.1029/2005JD006103.  Yunck  et  al.,  2009:  Use  of  radio  occultaPon  to  evaluate  atmospheric  temperature  data  from  spaceborne  infrared  sensors.  Terr.  Atmos.  Ocean.  Sci.,  Vol.  20,  No.  1,  71-­‐85.  

Prior  to  CrIMSS  update:  Mx5.3  IDPS  42/22  

hep://www.cosmic.ucar.edu/launch/GPS_RO_cartoon.jpg  

The   COSMIC   Data   Analysis   and   Archival  Center-­‐CDAAC  (hep://cosmic-­‐io.cosmic.ucar.-­‐  edu/cdaac/products.html)  was  used   to  obtain  COSMIC  data.  The  product  used  for  the  results  shown   was   the   real-­‐Pme   atmPrf     ‘dry  temperature’.   A   typical   COSMIC   profile   is  obtained  in  about  100  seconds  with  over  3,000  verPcal   samples.   A   quality   control   flag   is  included   in   the   GPS   RO   netcdf   files.   For   an  example  day,  19  October  2007,  the  percentage  of   GPS   profiles   marked   bad   was   2.5%.   These  bad  profiles  are  excluded  from  the  analysis.    

AIRS Scan Geometry with 30 cross track soundings between ±49° and a horizontal

resolution of about 45 km

Onboard   the   NASA   Aqua   satellite,   AIRS   looks  toward   the   ground   through   a   cross-­‐track  rotary   scan   mirror   which   provides   +/-­‐49.5  degrees   (from   nadir)   ground   coverage   along  with  views  to  cold  space  and  on-­‐board  spectral  and  radiometric  calibraPon  sources  every  scan  cycle.  For  each  of  the  ninety  ground  footprints  observed   each   scan,   one   spectrum   with   all  2378  spectral  samples  is  obtained.    The  AIRS  IR  spaPal  resoluPon  is  13.5  km  at  nadir  from  the  705.3   km   orbit.   The   AIRS   Level   2   products  contain   atmospheric   temperature   and  moisture   profiles   from   about   1   mb   down   to  the   surface   with   a   horizontal   resoluPon   of  about   45   km   and   provide   nearly   complete  daily   global   coverage   in   ascending   and  descending   modes.   The   version   5   support  product  AIRX2SUP  was  used  in  this  analysis.      

The   Crosstrack   Infrared   Sounder   (CrIS)   and   the  advanced   Technology   Microwave   Sounder   (ATMS)  together   represent   the   latest   addiPon   to   a   long  series   of   atmospheric   satellite   sounders   that  originated   in  the   late  1970's.  CrIS   is  a  hyperspectral  sounder   that   will   make   it   possible   to   conPnue   the  advancements   of   observaPons   and   research   that  started   with   the   Atmospheric   Infrared   Sounder  (AIRS)  in  2002,  and  ATMS  will  similarly  conPnue  the  series   of   observaPons   that   started   with   the  Advanced   Microwave   Sounding   Unit   (AMSU)   first  launched  by  NOAA  in  1998.    The  CrIMSS  42/22  layer  EDR   IDPS   product   used   in   the   study   was   obtained  from   the  NOAA  CLASS   system.   The   data   used   prior  to  mid  October  (for  the  Oct.  1st  to  10th  analysis)    was  Mx5.3  and  aser  mid  October  (Oct  22nd  -­‐31st  analysis  and  case  study)  was  Mx6.3.      

−18 −17 −16 −15 −14 −13 −22−20

−18−16

10−1

100

101

102

103 −18 −17 −16 −15 −14 −13 −22−20

−18−16

10−1

100

101

102

103

−18 −17 −16 −15 −14 −13 −22−20

−18−16

10−1

100

101

102

103−18 −17 −16 −15 −14 −13 −22

−20−18

−16

10−1

100

101

102

103

AIRS Pressure Level 44 −− 103.0172 mb

130° E 140° E

150° E

−4

−3

−2

−1

0

1

2

3

4

AIRS Pressure Level 30 −− 32.2744 mb

130° E 140° E

150° E

−4

−3

−2

−1

0

1

2

3

4

AIRS Pressure Level 63 −− 300 mb

130° E 140° E

150° E

−4

−3

−2

−1

0

1

2

3

4

Figure 1. From left to right, AIRS a) 32.3 mb (AIRS Level 30), b)103 mb (AIRS Level 44) and c) 300 mb (AIRS Level 63) temperatures differenced from the AIRS closest profile temperature (K) showing the closest profile (black square), circular averaged profile radius (magenta circle), ray averaged profiles (red dots), and the COSMIC RO raypath (black line).  

Figure 2. Illustration of the closest (black square), circular (blue circle), and ray path (red dots) methods for a single GPS profile (green) for the circle centered at the GPS RO level of (a) 30 hPa, (b) 100 hPa, (c) 300 hPa, and (d) the perigee point of GPS RO occultation.

c) AIRS Pressure Level 63 (300 mb) a) AIRS Pressure Level 30 (32.3 mb) b) AIRS Pressure Level 44 (103 mb)

IllinoisIndiana

Iowa

Michigan

Minnesota

Ohio

Wisconsin

Closest IR Profiles

94° W 92° W 90° W 88° W 86° W 84° W

40° N

42° N

44° N

46° N

IllinoisIndiana

Iowa

Michigan

Minnesota

Ohio

Wisconsin

Circular IR Profiles

94° W 92° W 90° W 88° W 86° W 84° W

40° N

42° N

44° N

46° N

AQer    CrIMSS  update:  Mx6.3  IDPS  42/22  

Conclusions  •  A  methodology  has  been  developed  for  the  validaPon  of  CrIMSS  AVTP  

in   the   upper   troposphere   and   lower   stratosphere   using   GPS   radio  occultaPon.    

•  GPS   RO   dry   temperature   from   the   COSMIC   network   is   matched   to  CrIMSS  profiles  within  one  hour.  

•  The  GPS   RO   horizontal   resoluPon   of   300   km   is   accounted   for   using   a  raypath  method.  

•  This  methodology  has  been  used  to  evaluate  a  CrIMSS  sosware  version  update  that  occurred  on  15  October  2012.  

•  The   overall   quality   control   percentage   of   combined   (IR+MW)   to  combined  +  IR  only  +  MW  only  before  the  update  was  6%  and  aser  the  update  was  over  20%.  

•  The   same   methodology   has   been   applied   to   AIRS   v5   retrievals   to  provide  a  relaPve  comparison.  

•  Coincident   RS92   sonde   launches   from  UW-­‐Madison   are   being   used   in  detailed  case  study  analyses.      

CrIMSS  and  AIRS    Profile  locaPons    

Above, the red line indicates the track of the COSMIC GPS RO profile (18:27 UTC). The red star is the perigee point of occultation. The cyan stars indicate CrIMSS profiles (19:03-19:11 UTC) within150 km of Madison. The radiosonde track is shown in green (18:44-20:34 UTC).

The figures below contain an overlay of the GPS RO profile (red), the radiosonde launched from UW-SSEC (green), the circular weighted AIRS profile (black), and the circular weighted CrIMSS profile (blue). The right hand figure illustrates the 300 to 30 mb pressure range for which the COSMIC dry temperature profile is most accurate. Note that both the radiosonde and COSMIC profiles have higher vertical resolution than AIRS or CrIMSS.

Note:  The  COSMIC  GPS  RO  dry  temperature  is  contaminated  by  water  vapor  below  about  300mb.      

In   this   temperature  profile  matchup  methodology,   spaPally   and   temporally   coincident  GPS  RO  profiles   and   IR   granules  were  found.    For  each  case,  three  matchup  techniques  were  used  for  comparison  and  analyzed  with  the  same  staPsPcal  analysis.    The  closest  profile,  the  circular  averaged  profile  of  a  radius  half  the  GPS  RO  horizontal  resoluPon,  and  the  ray-­‐path  averaged  profile  of  AIRS  data  were  computed.  In  order  to  invesPgate  the  effect  of  the  horizontal  resoluPon  of  the  GPS  RO,  these  three  different  approaches  to  creaPng  an  IR  matchup  profile  were  evaluated.  The  azimuth  angle  of  the  radio  occultaPon  for  each  COSMIC  RO  profile   alPtude   was   used   to   compute   the   horizontal   extent   of   the   nominal   GPS   RO   horizontal   resoluPon   at   each   reported  alPtude  level  (Kursinski  et  al.  1997).  Figure  1  below  shows  the  spaPal  extent  of  a  135  km  radius  averaging  circle  on  selected  AIRS  retrieval  levels.  Figure  2  to  the  right  illustrates  the  closest,  circular,  and  raypath  methods  as  a  3D  profile.        

3.5 THE NPOESS CROSS-TRACK INFRARED SOUNDER (CrIS) AND ADVANCED TECHNOLOGY MICROWAVE SOUNDER (ATMS) AS A COMPANION TO THE NEW GENERATION AIRS/AMSU AND IASI/AMSU SOUNDER SUITES

G.A. Bingham*, C. Fish, V. Zavyalov, M.P. Esplin - Space Dynamics Laboratory, Logan, UT N.S. Pougatchev - JPL, Pasadena, CA

W.J. Blackwell - MIT Lincoln Laboratory C.D. Barnet - NOAA, Camp Springs, MD

INTRODUCTION This paper reviews the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) that together make up the Crosstrack Infrared and Microwave Sounding Suit (CrIMSS). CrIMSS will fly on the NPOESS Preparatory Project (NPP) spacecraft. The many hours provided by industrial and government team members have made CrIS and ATMS world class sensors. The CrIMSS sounding suit builds upon the rich heritage of currently flying sensor including: Atmospheric Infrared Sounder (AIRS), Infrared Atmospheric Sounding Interferometer (IASI) and Advanced Microwave Sounding Unit (AMSU).

SYSTEM OVERVIEW The measurement concept of the CrIS and ATMS sensors is shown in Fig. 1. These two sensors are used in tandem to produce atmospheric temperature, water vapor, and pressure profiles from the NPP satellite. CrIS, a Michelson interferometer, collects data in the form of interferograms that are converted to calibrated

atmospheric spectra on the ground. ATMS is a microwave radiometer. CrIS has higher spectral and spatial resolution, but ATMS has the advantage of being able to produce profiles through clouds. The CrIS and ATMS instrument footprints are co-aligned and scanned in the cross track direction so as to map a swath approximately 2500 km wide on the ground. The ATMS scan extends slightly wider than that of CrIS to ensure that there are no measurement gaps between successive satellite passes at the equator.

The raw CrIS and ATMS instrument data from the spacecraft are packaged into raw data record (RDR). These RDRs are transmitted to the ground and subsequently processed into calibrated radiance spectra by ground software. These sensor data records (SDR) from CrIS and ATMS are combined and further processed into environmental data records (EDR), which include atmospheric temperature, pressure, and water vapor profiles.

Figure 1. CrIS and ATMS system overview

*Gail Bingham, SDL, Logan, UT email: [email protected]

           

a)

c)

b)

d)

210 215 220 225 230 235 240

102

Temperature (K)

Pres

sure

(hPa

)

Circular AIRS and CrIMSS Profiles

GPSSSEC SondeAIRSCrIMSS

180 200 220 240 260 280 300

10−1

100

101

102

103

Temperature (K)

Pres

sure

(hPa

)

Circular AIRS and CrIMSS Profiles

GPSSSEC SondeAIRSCrIMSS

Both  CrIMSS  and  COSMIC  temperature  profiles  are  computed  at  the  AIRS  101  levels  using  nearest  neighbor  linear  interpola?on  prior  to  sta?s?cal  analysis.  

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 4100

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 3465

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 527

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 1001

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 794

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 811

Antarctic (60S - 90S)

South Mid-Latitudes (30S – 60S)

Arctic (90N – 60N)

Tropics (30N - 30S)

North Mid-Latitudes (60N – 30N)

Global

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 507

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 498

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 849

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 718

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 949

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 911

Octob

er  1

st  –  10t

h    

CrIM

SS  –  COSM

IC  Octob

er  22n

d  –  31s

t    

AIRS

 –  COSM

IC  

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 2323

−2 0 2

101

102

103

T (K)Pr

essu

re (h

Pa)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 378

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 459

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 445

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 531

−2 0 2

101

102

103

T (K)

Pres

sure

(hPa

)

BIAS

ClosestCircularRay

0 1 2 3T (K)

RMS

0 1 2 3T (K)

STDEV

0 50 100Yield (%)

YIELD

N = 510

Octob

er  22n

d  –  31s

t    

Antarctic (60S - 90S)

South Mid-Latitudes (30S – 60S)

Arctic (90N – 60N)

Tropics (30N - 30S)

North Mid-Latitudes (60N – 30N)

Global

AIRS  v5  minus  COSMIC  aQer  CrIMSS  update