about an identity and its applications

2
ABOUT AN IDENTITY AND ITS APPLICATIONS MIHALY BENCZE and FLORENTIN SMARANDACHE Theorem 1. If , x y C then ( ) ( ) ( ) ( ) ( ) 3 3 4 2 2 3 3 2 2 2 x y x y x y x y x xy y + + + = + + . Proof. With elementary calculus. Application 1.1. If , x y C then ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 3 3 4 3 3 2 2 3 3 2 2 3 3 2 2 4 2 2 4 2 2 x y x y x y x y x y x y x y x xy y + + + + = + + Proof. In Theorem 1 we replace y y →− , etc. Application 1.2. If x R then ( )( ) ( ) ( ) 4 3 3 3 sin cos 1 sin cos sin cos sin cos 2 x x x x x x x x + + + + = Proof. In Theorem 1 we replace sin , cos x x y x Application 1.3. If x R then ( ) ( ) ( ) ( ) 3 4 6 3 2 2 1 1 1 ch x shx sh x shx shx ch x + + = + + . Proof. In Theorem 1 we replace 1, x y shx Application 1.4. If , x y C ( ) x y ≠± then ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 3 3 3 2 2 3 3 2 2 3 3 2 2 4 4 2 2 2 x y x y x y x y x y x y x y x y x y + + + + + = + + Application 1.5. If , x y C then ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 3 3 3 2 2 3 3 2 2 3 3 4 2 2 4 2 2 2 2 2 2 2 6 x y x y x y x y x y x y x xy y x xy y x xy y + + + + + = + + + + + Application 1.6. If , x y R then ( ) ( ) ( ) 3 3 2 2 3 3 2 x y x y x y + + + . (See Jószef Sándor, Problem L.667, Matlap, Kolozsvar, 9/2001.) Proof. See Theorem 1. Theorem 2. If , , x yz R then ( ) ( ) ( ) 3 3 2 2 2 3 3 3 3 x y z x y z x y z + + + + + + . Proof. With elementary calculus. Application 2.1. Let 1 1 1 1 ABCDA B C D be a rectangle parallelepiped with sides ,, abc and diagonal d . Prove that ( ) ( ) 3 6 3 3 3 3d a b c a b c + + + + . Application 2.2. In any triangle ABC the followings hold: 1) ( ) ( ) 3 2 2 4 2 2 3 4 2 3 6 p r Rr p p r Rr 2) ( ) ( ) 3 2 2 4 2 3 2 8 12 p r Rr p p Rr 3) ( ) ( ) ( ) ( ) ( ) 3 2 3 3 2 2 3 4 2 4 4 12 R r p R r R r pR + + +

Upload: florentin-smarandache

Post on 08-Apr-2016

221 views

Category:

Documents


2 download

DESCRIPTION

 

TRANSCRIPT

Page 1: ABOUT AN IDENTITY AND ITS APPLICATIONS

ABOUT AN IDENTITY AND ITS APPLICATIONS

MIHALY BENCZE and FLORENTIN SMARANDACHE

Theorem 1. If ,x y C∈ then ( ) ( ) ( ) ( ) ( )3 3 42 2 3 3 2 22 x y x y x y x y x xy y+ − + + = − + + . Proof. With elementary calculus. Application 1.1. If ,x y C∈ then

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )3 3 43 32 2 3 3 2 2 3 3 2 2 4 2 2 42 2x y x y x y x y x y x y x y x x y y+ − + + + − − − = − + +

Proof. In Theorem 1 we replace y y→ − , etc. Application 1.2. If x R∈ then

( ) ( ) ( ) ( )4 3 3 3sin cos 1 sin cos sin cos sin cos 2x x x x x x x x− + + + + =Proof. In Theorem 1 we replace sin , cosx x y x→ →

Application 1.3. If x R∈ then ( ) ( ) ( ) ( )3 46 3 22 1 1 1ch x shx sh x shx shx ch x− + + = + + .Proof. In Theorem 1 we replace 1, x y shx→ →Application 1.4. If ,x y C∈ ( )x y≠ ± then

( ) ( ) ( )( )

( ) ( ) ( )( )

( )3 33 32 2 3 3 2 2 3 3

2 24 4

2 22

x y x y x y x y x y x yx y

x y x y

+ − + + + − − −+ = +

− +Application 1.5. If ,x y C∈ then

( ) ( ) ( ) ( ) ( ) ( ) ( )3 33 32 2 3 3 2 2 3 3

4 2 2 42 2 2 2

2 22 6

x y x y x y x y x y x yx x y y

x xy y x xy y+ − + + + − − −

+ = + ++ + − +

Application 1.6. If ,x y R∈ then ( ) ( ) ( )3 32 2 3 32 x y x y x y+ ≥ + + . (See Jószef Sándor, Problem L.667, Matlap, Kolozsvar, 9/2001.) Proof. See Theorem 1. Theorem 2. If , ,x y z R∈ then ( ) ( ) ( )3 32 2 2 3 3 33 x y z x y z x y z+ + ≥ + + + + .Proof. With elementary calculus. Application 2.1. Let 1 1 1 1ABCDA B C D be a rectangle parallelepiped with sides , ,a b c and

diagonal d . Prove that ( ) ( )36 3 3 33d a b c a b c≥ + + + + .Application 2.2. In any triangle ABC the followings hold: 1) ( ) ( )32 2 4 2 23 4 2 3 6p r Rr p p r Rr− − ≥ − −

2) ( ) ( )32 2 4 23 2 8 12p r Rr p p Rr− − ≥ −

3) ( )( ) ( ) ( )( )32 3 32 23 4 2 4 4 12R r p R r R r p R+ − ≥ + + −

Page 2: ABOUT AN IDENTITY AND ITS APPLICATIONS

4) ( ) ( ) ( ) ( )( )( )3 3 22 2 2 2 23 8 2 2 4 3 6R r p R r R r R r p Rr+ − ≥ − − + − +

5) ( )( ) ( ) ( ) ( )( )32 3 32 23 4 4 4 3 2R r p R r R r p R r+ − ≥ + + − +

Proof. In Theorem 2 we take: { }, ,x y z ∈

{ } { } { } 2 2 2 2 2 2, , ; , , ; , , ; sin ,sin ,sin ; cos ,cos ,cos2 2 2 2 2 2a b cA B C A B Ca b c p a p b p c r r r⎧ ⎫⎧ ⎫ ⎧ ⎫∈ − − −⎨ ⎨ ⎬ ⎨ ⎬⎬

⎩ ⎭ ⎩ ⎭⎩ ⎭ .Application 2.3. Let ABC be a rectangle triangle, with sides a b c> > then

( ) ( )36 3 3 324a a b c a b c≥ + + + +

Theorem 3. If 0, 1,2,...,kx k n> = , then 3 3

2 3

1 1 1

n n n

k k kk k k

n x x x= = =

⎛ ⎞ ⎛ ⎞≥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑ ∑ ∑ .

Application 3.1 The following inequality is true: ( ) ( )33

2

0

12

nnk nn

k

CC n=

⎛ ⎞≤ + ⎜ ⎟

⎝ ⎠∑ .

Proof. In Theorem 3 we take , 0,1,2,..., .kk nx C k n= = .

Application 3.2. In all tetrahedron ABCD holds:

1)

3

2

3

3

14

1a

a

hr

h

⎛ ⎞⎜ ⎟⎝ ⎠ ≥∑

∑2)

3

2

3

3

12

1a

a

rr

r

⎛ ⎞⎜ ⎟⎝ ⎠ ≥∑

Proof. In Theorem 3 we take 1 2 3 41 1 1 1, , ,a b c d

x x x xh h h h

= = = = and

1 2 3 41 1 1 1, , ,a b c d

x x x xr r r r

= = = = .

Application 3.3. If 1

n

nk

S kα α

=

=∑ then ( ) ( )3 32 3n n nn S S Sα α α≥ .

Proof. In Theorem 3 we take , 0,1,2,..., .kx k k nα= = .

Application 3.4. If kF denote Fibonacci numbers, then 3

3 1

1 2 1

nn n

kk n

F FF nF

+

= +

⎛ ⎞≤ ⎜ ⎟−⎝ ⎠

∑ .

Proof. In Theorem 3 we take , 1,2,..., .k kx F k n= = .

References: [1] Mihály Bencze, Inequalities (manuscript), 1982. [2] Collection of “Octogon Mathematical Magazine”, 1993-2004.