abdelmonem masmoudi tp de l’ecole nationale …abdelmonem.scienceontheweb.net/les propriétés...

17
République Tunisienne Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Université de Sfax Ecole Nationale d’Ingénieurs de Sfax ________________ الجمھورية التونسية وزارةتعليم اللعالى ا و البحثعلمي ال ﺟاﻣعة صفاقس المدرسة الوط نيةدسيينلمھن ل صفاقس__________________ Version Version Version Version Année universitaire 2012/2013 Année universitaire 2012/2013 Année universitaire 2012/2013 Année universitaire 2012/2013 4 ème ème ème ème version ersion ersion ersion TP de l’Ecole Nationale D’Ingénieurs de Sfax Abdelmonem MASMOUDI

Upload: dangquynh

Post on 12-Sep-2018

233 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

République Tunisienne Ministère de l’Enseignement Supérieur et

de la Recherche Scientifique Université de Sfax

Ecole Nationale d’Ingénieurs de Sfax

________________

التونسية الجمھورية

العلمي البحث و العالى التعليم وزارة

صفاقس جامعة

صفاقسب للمھندسيين نيةالوط المدرسة

__________________

VersionVersionVersionVersion

Année universitaire 2012/2013Année universitaire 2012/2013Année universitaire 2012/2013Année universitaire 2012/2013

4444èmeèmeèmeème vvvversion ersion ersion ersion

TP

de

l’E

cole

Na

tio

na

le D

’In

nie

urs

de

Sfa

x

Abdelmonem MASMOUDI

Page 2: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 2

Les propriétés physiques des granulats

1- Analyse granulométrique.

2- Masses volumiques

3- Coefficient d’absorption d’eau

4- Coefficient d’aplatissement

Page 3: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 3

PREFACEPREFACEPREFACEPREFACE

Ce document présente la description de quelques travaux pratiques de

matériaux de construction destiné aux étudiants ingénieurs dans le domaine de génie

civil. Le point a été fait sur la réalité tunisienne avec l’analyse des caractéristiues des

granulats dans deux grands domaines du génie civil : les structures du bâtiment et les

travaux publics avec leur prolongement d’ouvrages d’art et infrastructures routières.

Ce document s’articule autour de trois séries de manipulations, touchant

principalement les granulats , les liants et le béton. Les essais que l’on fait en laboratoire

portent nécessairement sur des quantités réduites de matériaux, des « échantillons ». Par

exemple, nous prenons 5 kg de gravillon pour une analyse granulométrique, 120 g de

sable pour un équivalent de sable et 50 g de ciment pour une masse volumique absolue, ,

etc.… Mais il faut que les résultats obtenus à partir de ces quantités réduites représentent

réellement les caractéristiques de l’ensemble du matériau dans lequel on a fait le

prélèvement. On dit qu’il faut que l’échantillon soit représentatif. Le développement des

matériaux de construction qui s’est accéléré durant le siècle dernier, vient suite à une

demande pressante des besoins des consommateurs. L’existence d’entreprises qui

cherchent à diversifier et mettre sur le marché de nouveaux matériaux a également

contribué à ce développement.

Ce document que j’espère enrichir la bibliothèque de l’ENIS ; est utile pour les

élèves ingénieurs en génie civil des Ecoles Nationales d’Ingénieurs pour remettre en

mémoire quelques notions d’identifications et de contrôle, élémentaires et indispensables

dans le domaine de matériaux de construction.

Abdelmonem MASMOUDI

Maitre assistant

Département de Génie Civil

Page 4: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 4

Notions de calculs d’incertitude

Le but du calcul d’erreur ou incertitude, c’est pour connaître les limites de validité des résultats des essais

effectués, après avoir défini la méthode et les instructions de mesures correspondantes.

1. Règles relatives au calcul d’incertitude

Soit une grandeur « a » mesurée avec une incertitude absolue ∆a., c'est-à-dire a-∆a < a < a +.∆a.

Soit une grandeur « b » mesurée avec une incertitude absolue ∆b..

Soit une grandeur « c » mesurée avec une incertitude absolue ∆c.

Si les trois grandeurs sont indépendantes, on a :

cbaecbad ∆+∆+∆=∆⇒++=

cbaecbae ∆+∆+∆=∆⇒+−=

c

c

b

b

a

a

f

fcxbxaf

∆+

∆+

∆=

∆⇒=

c

c

b

b

a

a

g

g

c

bxag

∆+

∆+

∆=

∆⇒=

c

c

b

b

a

a

f

fcxbxaf

∆+

∆+

∆=

∆⇒=

a

ax

h

hah

∆=

∆⇒= 22

)(

)()(

cb

cb

a

a

i

icbxai

+

+∆+

∆=

∆⇒+=

2. Exemples de calcul

- Soit “a” une distance de 25.4 mesurée avec un pied à coulisse au 1/100.

4.25

01.001.04.25 =

∆⇒=∆=

a

aaeta

- Soit “b” une variation de longueur de 50 divisions mesurée avec un comparateur à demi

division prés.

100

1

50

5.05.050 ==

∆⇒=∆=

b

bbetb

- On mesure le module d’Young, soit E = 200000 N/mm² , avec une incertitude absolue ∆E=

10000 N/mm²

100

5

200000

10000==

∆⇒

E

E

Page 5: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 5

De quoi s’agit-il ? Les essais que l’on fait en laboratoire portent nécessairement sur des quantités réduites de matériaux, des

« échantillons ». nous verrons, par exemple, que l’on prend 5 kg de gravillon pour une analyse

granulométrique, 120 g de sable pour un équivalent de sable et 50 g de ciment pour une masse volumique

absolue, etc.…

Mais il faut que les résultats obtenus à partir de ces quantités réduites représentent réellement les

caractéristiques de l’ensemble du matériau dans lequel on a fait le prélèvement. On dit qu’il faut que

l’échantillon soit représentatif.

Il est évident, a priori, que ce problème est extrêmement difficile à résoudre : il n’est pas facile que des

quantités aussi faibles représentent réellement les 600 m3 de gravier, les 200t de ciment et les 400 m

3 de

sable approvisionnés sur le chantier. Il semble que l’on puisse dire que c’est le problème le plus ardu du

domaine des essais, problème qui ne peut recevoir que des solutions approchées.

Or, de cette opération dépendra la valeur des essais exécutés ensuite sur les échantillons, et il ne faudra

jamais perdre cette question de vue lors de l’expression des résultats ; notamment quant au nombre de

chiffres significatifs de ceux de ces résultats qui se traduisent par des nombres.

les deux stades de l’échantillonnage. Ce prélèvement d’échantillons se fait en deux temps :

1. Sur chantier : Prélever, à la carrière ou à l’usine, une quantité de matériaux nettement plus grande

que celle qui sera utilisée pour l’essai proprement dit, quantité qui sera emportée ou adressée au

laboratoire.

2. Au laboratoire : Prélever de la quantité reçue la fraction qui correspond à l’essai à faire.

Chacun de ces deux échantillonnages doit donner un prélèvement aussi représentatif que possible de

l’ensemble. Le premier est beaucoup plus embarrassant que le second.

Prélèvement sur le tas.

a-Tas de sable Ce tas n’est pas homogène. On en prendra de préférence’ une partie au bas du tas, une partie en haut,

et 3 parties à l’intérieur du tas (à l’aide d’un appareil tel que celui de la figure ci dessous) : une rotation,

après enfoncement, découpe une carotte). Ces diverses fractions seront mélangées avec soin.

b- Tas de gravier Le problème est analogue ; mais l’hétérogénéité est moindre, et l’emploi du tube à prélèvements

est difficile. On se contente souvent de : une partie au bas, une partie en haut, 2 parties à mi-hauteur.

c- Sable de carrière Le problème est le même que pour le tas de sable ; mais il peut y avoir plusieurs bancs, donnant des

produits différents. Il faudra, dans ce cas, faire plusieurs prélèvements et bien les repérer.

d- Ciment a prélever sur une livraison Pour que les résultas des essais soient opposables, il faut que le prélèvement ait été fait

contradictoirement. L’acquéreur devra donc avertir le fournisseur de son intention par la mention « avec

recette » portée sur le bon de commande, mention suivie de l’indication du laboratoire qui fera les essais.

Le fournisseur pourra ainsi se faire représenter lors de l’arrivée de la fourniture.

Le prélèvement sera constitué d’un sac, d’un baril ou de 3 brises d’une dizaine de kilogrammes

prélevées dans un conteneur (mais on ne prendra pas ce qui se trouve au voisinage de l’orifice).

Echantillonnage

Page 6: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 6

Echantillonnage en laboratoire Nous recevons une quantité Q de matériau ; l’essai doit être fait sur une quantité plus faible q. comment

séparer cette quantité q, représentative de Q ?

Deux procédés de base, assez satisfaisants : par quartage ou à l’aide d’échantillonneurs

a-Préparation de l’échantillon. Il faut sécher partiellement un échantillon trop mouillé. Mais une température trop élevée pourrait

modifier la nature physique ou chimique du corps étudié ; donc ne pas sécher à l’alcool (le mieux est le

séchage à l’air ; mais c’est long.). S’il faut chauffer, un thermostat est nécessaire pour ne pas dépasser 60°

s’il s’agit d’un corps contenant de l’argile,ou 102 à 103° pour un corps non argileux

Un échantillon trop sec conduirait à une perte d’éléments fins : il faut l’humecter.

Il faut aussi briser les éventuelles mottes ou simili-cailloux ; mais attention à ne pas briser les éléments

qui le composent.

b- Quartage. Comme le nom l’indique on divise l’échantillon en quatre. Placer l’échantillon bien homogénéisé

dans un bac métallique à bords peu élevés(de préférence), et l’étaler. A l’aide d’une truelle, partager

d’abord en deux moitiés(1)puis en 4 quarts(2), sensiblement égaux. Eliminer les fractions A et D, et

réunir les fractions opposées B et C : on a ainsi la moitié de l’échantillon primitif.

Si cette quantité (1/2)est encore trop importante, la partager suivant le même processus. D’ou un

échantillon représentatif égal au ¼ de la quantité primitif. Et ainsi de suite. Les fractions trouvées

(1/2,1/4,1/8,….) permettent par addition d’obtenir toute quantité utile.

Le matériau à étudier, versé sur l’échantillonneur à l’aide d’une pelle spéciale, est recueilli dans 2 petits

bacs. Chaque moitié, peut être encore partagée en 2, puis encore en 2,etc…la distance entre les cloisons

définit la grosseur maximale des grains ; généralement, 5mm ou 30mm.

c- Choix du procédé Ces deux procédés peuvent être utilisés séparément ou conjointement, en fonctions des quantités à

séparer et de la grosseur maximale des grains.

Par exemple : a) 1dm

3 de sable, avec D< 5mm : échantillonneur 5mm.

b) 10 dm3

de sable, avec D< 5mm : 2 ou 3 partages à l’échantillonneur de 30mm (gain de temps),

achèvement à l’échantillonneur de 5mm

c) 5dm3 de 0/40: un quartage puis des fractionnement à l’échantillonneur de 30mm, le « refus »

constitué de grains de plus de 30mm, étant réparti à la main, en parties égales, entre les deux bacs.

Remarque D’une façon générale, il est recommandé que la masse miniale d’un écantillon global soit calculé en

utilsant laformule M=6qo √D avec qo la masse volumique envrac (g/cm3) et D=Dmax (mm)

A B

C D

Page 7: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 7

Série 1

Introduction La qualité des constructions en béton dépend beaucoup de la composition granulométrique, le gravier et

le sable destinés aux bétons doivent comprendre des grains de diverses grosseurs, afin de réduire autant

que possible les vides.

L’analyse granulométrique est la première des recherches caractérisant les granulats en déterminant la

grosseur des grains qui les constituent, et le pourcentage des grains de chaque grosseur.

Objectif de l’essai Cet essai permet de déterminer la grosseur et le pourcentage pondéreux respectifs de différentes familles

de grains constitutifs.

Principe de l’essai L’essai consiste à classer les différents grains constituants l’échantillon en utilisant une série de tamis,

emboîtés les uns sur les autres, dont les dimensions des ouvertures sont décroissantes du haut vers le bas

Equipements nécessaires

- Série de tamis de maillage métallique carré compris entre d et D, avec un fond et un couvercle. Les

tamis sont de dimensions 0.063 mm ; 0.125mm ; 0.250 mm ; 0.500 mm ; 1 mm ; 2 mm ; 4 mm ; 8 mm ;

16 mm ; 31.5 mm ; 63 mm. Pours les essais nécessitant des tamis particuliers, on utilise la série qui croit

de 101/20

environ 1.12.

- balance de précision à ± 0,1%

- Etuve ventilé

Préparation de l’échantillon Il est nécessaire que l’échantillon soit sec, en pratique on utilise pour le séchage une étuve à 105 °C, la

masse M à préparer pour des granulats de masse volumique entre 2 et 3 t/m3 doit être prise selon le

tableau suivant :

D max du granulat Masse d’essai M

90 80

63 40

32 10

16 2.6

8 0.6

≤ 4 0.2

Analyse granulométrique

NF EN 933-1 (1997)

Page 8: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 8

Mode opératoire 1- Emboîter les tamis utilisés les uns sur les autres, les dimensions croissantes de bas en haut, on prévoit

en dessous un récipient à fond plein pour recueillir les éléments fins et en dessus un couvercle pour éviter

la dispersion des poussières.

2- Verser le granulat (séché à l’étuve) sur le tamis supérieur, mettre le couvercle et faire agiter

manuellement ou mécaniquement puis prendre tamis par tamis et agiter manuellement

3- Le refus (masse de matériau retenu par un tamis) sera pesé à 0.1% et le tamisât versé sur le tamis

suivant, avec ce qui se trouve déjà……

4- Faire de même jusqu’au dernier tamis. Le dernier (récipient a fond plein) est ajouté sur la balance aux

refus précédents

Travail demandé 1- Faire l’analyse granulométrique des granulats fournis

2- Présenter vos résultats, remplir la feuille d’essai et tracer la courbe (annexe page 10)

3- Tracer les courbes granulométriques sur un graphique à l’échelle semi-logarithmique.

4- Calculer le module de finesse du sable qui représente, en quelque sorte, de manière approchée, la

surface comprise entre la courbe granulométrique et l’axe horizontal correspondant à un refus nul. Par

définition, c’est le centième de la somme des refus cumulés (exprimés en pourcentage de masse) des

tamis 0.16 , 0.315 , 0.63 , 1.25 , 2.5 et 5 mm.

5- Faire un calcul d’incertitude

A lire et exploiter… Un granulat peut être utilisé dans un béton, dans un mortier ou dans une chaussée. Il doit répondre à

certains critères ou spécifications selon la classe :

- Classe A : granulats pour béton de qualité (ouvrage d’art, bâtiment pour Rc ≥ 35 MPa ).

- Classe B : granulat pour un béton (utilisation dans milieu agressif a condition que le coefficient

d’absorption soit ≤ 2.5 % ).

- Classe C et D : granulat pour confectionner des bétons courants à la condition que seules deux de leurs

caractéristiques soient présentes et que les autres correspondent à celle des catégories supérieures.

- Module de finesse : C’est une caractéristique intéressante, surtout en ce qui concerne les sables. Un bon

sable à béton doit avoir un module de finesse d’environ 2,2 à 2,8 ; au dessous, le sable a une majorité

d’éléments fins et très fins, ce qui nécessite une augmentation du dosage en eau ;au dessus , le sable

manque de fines et le béton y perd en ouvrabilité. Pour notre exemple le sable est moyen.

- Interpolation linéaire : Dans le cas ou un des tamis 0.16 , 0.315 , 0.63 , 1.25 , 2.5 et 5 mm n’existe pas

dans le laboratoire procéder par interpolation linéaire.

Spécification techniques pour les bétons hydrauliques :

Catégorie Spécifications

A 1.8 ≤ Mf ≤ 3.2

B

C [ 1.8 ≤ Mf ≤ 3.2 ] ± 0.7

D [ 1.8 ≤ Mf ≤ 3.2 ] ± 0.8

Page 9: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 9

FEUILLE D’ESSAI

Analyse granulométrique

NF EN 933-1 (1997)

Laboratoire :

Identification de l’échantillon :

Date :

Opérateur :

Procédé utilisé : tamiage par voie sèche

Masse sèche totale : M1 = Kg

Tamis(mm) Masse de refus cumulés Refus cumulés en % Tamisats en %

Fond ……….±

Page 10: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 10

Page 11: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 11

Série 1

Introduction La masse volumique est nécessaire à connaître lorsque par exemple on élabore une composition de béton.

Ce paramètre permet, en particulier, de déterminer la masse ou le volume des différentes classes

granulaires mélangées pour l’obtention d’un béton dont les caractéristiques sont imposées.

Objectif de l’essai Cet essai permet de déterminer La masse volumique en vrac (y compris les vides) et la masse volumique

absolue (sans tenir compte des vides) d’une fraction granulaire.

Equipement nécessaire Eprouvette graduée, balance de précision au 1/100 entonnoir sur trépied

Masse volumique absolue :

-Méthode au pycnomètre pour des granulats compris entre 4mm et 31.5 mm (pour ρa ρrd ρssd )

La masse de la prise d’essai doit être supérieure à valeurs suivantes

D max du granulat (mm) Masse minimale de la prise d’essai (Kg)

31.5 5

16 2

8 1

Autre dimension interpolation

1- Laver la prise d’essai sur le tamis 31.5 mm et sur celui de 4mm pour éliminer les grains fins, laisser

l’échantillon s’égoutter, laisser exposer à l’air libre à l’abri des rayons de soleil, peser doit m1

2- Immerger la prise d’essai préparée dans le pycnomètre rempli partiellement d’eau et éliminer l’air

occlus en faisant tourner et osciller doucement le pycnomètre,

3- Remplir le pycnomètre d’eau et mettre son couvercle peser soit m2

4- Retirer les granulats et les mettre dans un conteneur, laver le pycnomètre, faire égoutter quelques

minutes puis remplir le pycnomètre avec de l’eau à (22± 3 °C) , mettre le couvercle et peser soit m3

5- Sécher la prise d’essai dans le conteneur à l’étuve à 110 °C ± 5 °C, peser soit m4

6- Peser le conteneur vide soit m1 et le remplir à l’aide de la main écope jusqu’à ce qu’il déborde. la

main écope doit être à une hauteur ne dépassant pas 5 cm

Masses volumiques des granulats NF EN 1097-6 (2001)

Page 12: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 12

-Méthode au pycnomètre pour des granulats compris entre 0,063mm et 4(pour ρa ρrd ρssd ) La masse de la prise d’essai doit être supérieure à ou égale à 1 Kg

1- Laver la prise d’essai sur le tamis de 4mm pour sur celui de 0,063 mm pour éliminer les grains les plus

fins, laisser l’échantillon s’égoutter, et exposer les granulats à un faible courant d’air chaud .Pour

s’assurer que le séchage de surface est atteint, poser le moule tronconique sur le fond du plateau avec

le plus grand diamètre dirigé vers le bas et le remplir avec cette prise , faire tasse légèrement avec le

piston 25 fois , araser et soulever le moule doucement , si le cône s’effondre peser la prise soit m1, si

le cône ne s’effondre pas poursuivre le séchage

2- Immerger la prise d’essai préparée dans le pycnomètre rempli partiellement d’eau et éliminer l’air

occlus en faisant tourner et osciller doucement le pycnomètre,

3- Remplir le pycnomètre d’eau et mettre son couvercle peser soit m2 , noter la température d’eau.

4- Retirer les granulats et les mettre dans un conteneur, laver le pycnomètre, faire égoutter quelques

minutes puis remplir le pycnomètre avec de l’eau à (22± 3 °C) , mettre le couvercle et peser soit m3

5- Sécher la prise d’essai dans le conteneur à l’étuve à 110 °C ± 5 °C, peser soit m4

Remarque : En cas de non disponibilité du pycnomètre, procéder avec l’éprouvette graduée (Cette méthode est très

simple et très rapide et elle utilise du matériel très courant du laboratoire, elle n’est pas très précise mais

donne des valeurs acceptables).

1- Remplir une éprouvette graduée avec un volume V1 d’eau

2- Peser un échantillon sec M de granulats (environ 300g) et l’introduire dans l’éprouvette en prenant soin

d’éliminer toutes les bulles d’air : le liquide monte dans l’éprouvette. Lire le nouveau volume V2. La

masse volumique est alors :

ρ = M/(V2-V1)

V2

V1

M

���� ���� ����

Masse volumique en vrac et porosité intergranulaire

La masse M à préparer pour des granulats de dimensions inférieures à 63 mm doit être mis dans des

conteneurs cylindriques de capacité comme suit:

D max du granulat (mm) Capacité (l)

63 20

31.5 10

16 5

4 1

1- Sécher les granulats à 105 °C jusqu’à une masse constante

2- Prélever trois prises d’essai (entre 120% et 150%de la masse nécessaire pour remplir le conteneur)

3- Peser le conteneur vide soit m1 et le remplir à l’aide de la main écope jusqu’à ce qu’il déborde. la

main écope doit être à une hauteur ne dépassant pas 5 cm

4- Etaler soigneusement avec une règle et peser le conteneur rempli à 0.1 % prés soit m2

5- Calculer la porosité intergranulaire v correspondant au pourcentage des vides intergranulaires dans le

conteneur

Page 13: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 13

A lire et exploiter … Le tableau suivant donne la masse volumique de l’eau entre 5 et 30°C. T(°C) 5 7 9 10 12 14 16 18 20 21

ρw.(g/cm3) 1.0000 0.9999 0.9998 0.9997 0.9995 0.9992 0.9989 0.9986 0.9982 0.9980

T(°C) 22 23 24 25 26 27 28 29 30

ρw.(g/cm3) 0.9975 0.9974 0.9973 0.9970 0.9968 0.9965 0.9962 0.9959 0.9956

Le tableau suivant donne quelques valeurs des masses volumiques de quelques matériaux.

Matériau Masse volumique en vrac (g /cm3 ) Masse volumique absolue (g /cm

3 )

Sable et gravier 1.45à1.65 2.6à2.7

Ciment ≈1 2.9à3.1

Béton 1.8à2.4

Brique d’argile 1.6à1.8 2.5à2.8

Acier 7.8à7.85 7.8à7.9

FEUILLE D’ESSAI

Masse volumique réelle : méthode du pycnomètre Date :

Mettre une croix dans la case correspondante ρa ρrd ρssd ρp Opérateur :

Dmax= mm

Température de l’eau= °C

Masse du pycnomètre +granulats +eau m2= G

Masse du pycnomètre + eau m3= g

Masse des granulats humides m1= g

Masse des granulats secs m4 g

Volume du pycnomètre V= cm3

La masse volumique absolue est ρa = ρw. m4/(m4+m3-m2) g /cm3

La masse volumique réelle après séchage est ρrd = ρw. m4/(m1-m2+m3) g /cm3

La masse volumique réelle saturée surface sèche est ρssd = ρw. m1/(m1-m2+m3) g /cm3

La masse volumique réelle pré séché est ρp = ρw. (m2-m1)/[V-(m3-m2)/ ρw] g /cm3

Masse volumique réelle : méthode de l’éprouvette graduée Prise N° 1 Prise N°2 Prise N°3

masse de l’échantillon sec m1= (g)

volume d’eau dans le récipient V1

Nouveau volume après la remonté d’eau V2

masse volumique absolue (g /cm3 )

ρmoyenne(g/cm3) ……………..±

Masse volumique en vrac et porosité intergranulaire v Laboratoire :

Identification de l’échantillon :

Date :

Opérateur :

Masse volumique en vrac ρb

Prise N°1 N°2 N°3

Volume du conteneur

Masse m1 (g)

Masse m2 (g)

Masse volumiqeen vrac ρ = (m2-m1)/V

Masse volumiqe en vrac moyenne

Porosité intergranulaire v = (ρp - ρb )/ ρp …………….±…………..

Page 14: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 14

Série 1

Introduction Certain matériaux granulaires peuvent présenter une porosité interne qui est préjudiciable, en particulier, a

la résistance au gel des bétons. En effet, l’eau incluse dans le granulat provoque l’éclatement du béton

lorsque celui- ci est soumis de manière prolongée à des basses températures.

Objectif de l’essai Cet essai permet de déterminer le coefficient d’absorption d’eau d’un matériau.

La masse M à préparer pour des granulats doit être pris comme suit:

granulats de dimensions

inférieures à 63 mm

D max du granulat (mm) Volume (l)

63 20

31.5 10

16 5

4 1

granulats de dimensions

entre 4 mm et 31.5 mm

D max du granulat (mm) Volume (l)

31.5 5

16 2

8 1

Autre dimension interpolation

Conduite de l’essai -Laver la prise d’essai sur le tamis 31.5 mm et sur celui de 4mm pour éliminer les grains fins, laisser

l’échantillon s’égoutter, laisser exposer à l’air libre à l’abri des rayons de soleil, peser soit m1

- Immerger la prise d’essai préparée dans l’eau à (22± 3 °C), pendant 24 heures

-Retirer l’échantillon de l’eau, sécher la prise d’essai à l’étuve à 110 °C ± 5 °C, peser soit m2

Calculer le coefficient d’absorption qui est défini comme le rapport de l’augmentation de la masse de

l’échantillon après imbibition par l’eau, à la masse sèche de l’échantillon.

100(%)2

2124 x

m

mmWA

−=

Travail demandé :exploitation des résultats

1- Déterminer le coefficient d’absorption de l’échantillon fournit

2- Présenter vos résultats en suivant le tableau de présentation.

3- Interpréter vos résultats.

Coefficient d’absorption d’eau d’un gravier

NF EN 1097 -6 (2001)

Page 15: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 15

A lire et exploiter…

Spécifications demandées : Coefficient d’absorption

Catégorie Valeur spécifique supérieur

A 2.5 %

B 5 %

C 6 %

D Pas de précision

FEUILLE D’ESSAI

Coefficient d’absorption :

Temps d’immersion h

Masse des granulats humides m1= g

Masse des granulats secs m2= g

le coefficient d’absorption 100(%)2

2124 x

m

mmWA

−=

………….±………

Page 16: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 16

Série 1

Introduction La qualité d’un béton dépend beaucoup de la qualité des granulats, Parmi ces qualités la forme , Les

graviers dont la forme se rapproche de la sphère ou d’un cube sont excellents et on peut les utiliser pour

faire un béton de qualité au contraire les graviers en aiguilles ou en plaquette sont a éviter car ils donnent

un mauvais béton poreux en général.

Principe de l’essai L’essai consiste à effectuer un double tamisage. On fractionne l’échantillon au moyen de tamis en

différentes granulats élémentaires di/Di, ensuite on fait tamiser chaque granulat élémentaires di/Di, au

moyen de grilles à fentes parallèles d’une largeur d’écartement Di/2

Equipement nécessaire

Grille à fente comprenant des barres cylindriques parallèless correspondants aux diverses classes

granulaires comme suit

Classe granulaires di/Di (mm) 63/80 50/63 40/50 31.5/40 25/31.5 20/25

Largeur de la fente 40 31.5 25 20 16 12.5

Classe granulaires di/Di (mm) 16/20 12.5/16 10/12.5 8/10 6.3/8 5/6.3 4/5

Largeur de la fente 10 8 6.3 5 4 3.15 2.5

Conduite de l’essai 1- Faire le tamisage de l’échantillon d’essai de masse sèche m0 sur les tamis spécifiés suivant la

classe granulaire

2- Peser séparément tous les grains de chaque granulat élémentaire di/Di, compris entre 4 mm et 80

mm soit m1=∑ Ri

3- Faire passer séparément tous les grains de chaque granulat élémentaire di/Di, compris entre 4 mm

et 80 mm sur la grille à fente correspondante et peser le passant séparément de chaque grille à

fente soit m2=∑ mi

4- Eliminer tous les grains passant au tamis 4mm et retenus sur celui de 80 mm et peser

Le coefficient d’aplatissement de l’échantillon est :

Coefficient d’aplatissement NF EN 933-3 (1997)

Page 17: Abdelmonem MASMOUDI TP de l’Ecole Nationale …abdelmonem.scienceontheweb.net/Les propriétés physiques des... · TP de matériaux de construction 7 Masmoudi -A Série 1 Introduction

Ecole Nationale d’Ingénieurs de Sfax Département de Génie Civil

TP de matériaux de construction Masmoudi -A 17

1001

2 xm

mA =

FEUILLE D’ESSAI

Coefficient d’aplatissement

NF EN 933-3 (1997)

Laboratoire :

Identification de l’échantillon :

Date :

Opérateur :

Procédé utilisé : lavage et tamisage / tamiage par voie humide

Masse de la prise d’essai : mo= g

Refus sur tamis de 80 mm= g

Somme des masses éliminées= g

Passant au tamis de 4 mm= g

Tamisage sur tamis d’essai Tamisage sur grilles à fente

Granulat

élémentaire di/Di

(mm)

Masse (Ri) de

granulat

élémentaire di/Di

(g)

Ecartement des fentes

de la grille (mm)

Passant sur une grille

à fente (mi) en g 100x

Ri

mAi i

=

63/80 40

50/63 31.5

40/50 25

31.5/40 20

25/31.5 16

20/25 12.5

16/20 10

12.5/16 8

10/12.5 6.3

8/10 5

6.3/8 4

5/6.3 3.15

4/5 2.5

m1=∑ Ri

m2=∑ mi

== 1001

2 xm

mA ………….±………

%1100))lim((

≤=+− ∑ ∑

xm

inéesémassesRim

o

o