a synchronous logic elements

Upload: kiztmpoe

Post on 09-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 A Synchronous Logic Elements

    1/118

    _________________________________________________________________________

    V.O.VASYUKEVICH

    ASYNCHRONOUSLOGICELEMENTS.

    VENJUNCTIONANDSEQUENTION

    _________________________________________________________________________

    :)GargantuaandPantagruel

    FrancoisRabelais

    _______________________________

    _________________________________________________________________________

    TranslatedfromRussian2009

    _________________________________________________________________________

  • 8/8/2019 A Synchronous Logic Elements

    2/118

  • 8/8/2019 A Synchronous Logic Elements

    3/118

    V.Vasyukevich-Asynchronouslogicelements 3

    CONTENTS

    PREFACE... 2

    1. VENJUNCTION

    1.1.Binarysetsandsequences............................................................ 6

    (formatofbinaryset,asynchronoussequences,

    intersectionofsetsandsequences)

    1.2.Logicalswitchings.................................................................................... 9

    (momentsofswitchings,backgroundofswitchings,rulesforswitchings) 1.3.Methodsforrepresentationofvariablescollections..............................................10

    (sequenceofbinarysets,setofasynchronoussequences,

    sequenceoflogicalswitchings)

    1.4.Switchingfunctionvenjunction......................................................... 12

    (venjunctionoperation,venjunctionasfunction)

    1.5.Venjunctionincomparisonwithconjunction........................................................15

    1.6.Methodsofvenjunctionformalizeddefinition..................................... 17

    (onabasisofbinarysetsandsequences,withinvolvinganundetermined

    value,withinvolvingaconjunction,withinvolvingtheadditionalbinary

    variable,verbalreadingofvenjunction)

    1.7.Truthtablesforvenjunction................................................................. 19

    (venjunctivedependences,mastertruthtableforvenjunctions)

    1.8.Venjunctivefunctionsandtheirenumeration...................................................23

    (venjunctivecompleteform,enumerationoffunctionsoftwovariables)

    1.9.Graphsofswitchingsforvenjunctivefunctions....................................... 28

    (graphofvenjunction,graphsofvenjunctivefunctions,

    graphsandvenjunctivecompleteforms)

    1.10.Venjunctionproperties.Basicfunctions........................................................... 30

    (relationbetweenoperationsofconjunctionandvenjunction,inversionof

    venjunction,operationswithmirrorvenjunctions,commutativityand

    associativity,distributivity,idempotency,absorptions,rulesofzeroing,

    venjunctionwithlogicalunity)

    1.11.Venjunctiverepresentationoflogicalindeterminacy........................... 33

    (indeterminacyofvenjunction,criterionforindeterminacy)

  • 8/8/2019 A Synchronous Logic Elements

    4/118

    V.Vasyukevich-Asynchronouslogicelements 4

    2. APPLICATIONAREA

    2.1.Bistablecell.................................................................................................. 35

    (functionsofbistablecell,bistablecellswithelementsNANDandNOR)

    2.2.Bistableelementsofasynchronouslogic................................................. 39

    (logicalelements,venjunctor,doublevenjunctor)

    2.3.Venjunctor............................................................................................................. 40

    (schemerealizationsofvenjunctor,logicalcircuitofdoublevenjunctor)

    2.4.Logicalcircuitsforexoticfunctions.................................................................. 43

    (truncatedvenjunctions,logicalindeterminacy)

    2.5.Triggers.....................................................................................................45

    (SRflip-flop,JKflip-flop,toggleflip-flop,clockedD-latch)

    2.6.Triggerfunction................................................................................................ 53

    (representationandspecificoftriggerfunction,realizationfeatures,

    conditionaltriggerfunctions,memoryformula)

    2.7.Triggerapplications...................................................................................... 56

    (lambdatrigger,triggeredfunctionofC-element,

    triggerfunctionfordoubledbistablecell)

    2.8.Examplesoflogicaldevices........................................................................ 61

    2.9.Zonemodelforswitchingfunction.......................................................... 64

    (1-zone,0-zone,-zone,basictransitionsofzonemodel,

    zonedgraphofswitchingfunction)

    2.10.Asynchronouslogicoffeedbacks............................................................. 70

    (variantsofpositivefeedbacks,negativefeedback,

    oscillationanditsinterruption,retentionofshort-pulsedsetting)

    3. SEQUENTION

    3.1.Sequentionasanorderedset........................................................ 76

    3.2.Sequentionfunction....................................................................................... 77

    (definition,sequention-functionincomparisonwithsequention-set,

    correctsequentions)

    3.3.Simpleandcomplicatedsequentions..................................................................... 81

    (elementarysequentions,compositesequentions,embeddedsequentions,

    embeddinglayers)

  • 8/8/2019 A Synchronous Logic Elements

    5/118

    V.Vasyukevich-Asynchronouslogicelements 5

    3.4.Binaryrelationsincompositesequentions................................................... 83

    (sequentionoftwosequences,sequentionandsequence,combinationoftwo

    sequentions,orderrelationsandrelationofsequentions,sequentionswith

    commonelements)

    3.5.Functionallyimperfectsequentions............................................................... 87

    (definition,examplesofimperfectsequentions,criterionsforfunctional

    imperfection,compatiblesequentions)

    3.6.Splittingandsplicingofsequentions................................................................. 91

    3.7.Sequentionallaws........................................................................................ 93

    (commutativity,associativity,distributivity,rulesofzeroing,absorption

    rules,splicingrule,splittingrule,postulates)

    3.8.Methodsfordecompositionofsequentions........................................................... 96 (non-systemizedsplitting,regularsplittingintominisequentions,separation

    ofelements)

    3.9.Formsforrepresentationofsequentions............................................................... 99

    (relationofsequentionwithvenjunction,representativeforms,conjunctive

    form,venjunctiveform,findings)

    3.10.Algorithmsofsequentionsincreasing.............................................................. 102

    3.11.Sequentor............................................................................................................... 103

    (logicalcircuitsofsequentor)

    3.12.Booleanoperationswithsequentions................................................ 106

    (generalprinciplesforconjunctions,generalprinciplesfordisjunctions,

    generalprinciplesforvenjunctions)

    3.13.Transformationofcomplicatedsequentions......................................................... 110

    (conjunctiveexpansion,venjunctiveseparation,unificationofsequentions)

    3.14.Graphicsofsequentionsandmemorydepth......................................................... 114

    (graphofsequention,memorydepthofcomplicatedsequentions)

    AFTERWORD.............................................................................................................. 117

  • 8/8/2019 A Synchronous Logic Elements

    6/118

    V.Vasyukevich-Asynchronouslogicelements 6

    1.VENJUNCTION

    1.1.Binarysetsandsequences

    Letusassumethat 1 2 n[ ... ] x x x isanorderedcollectionconsistingofallelementsofaset

    1 2 n{ , ,..., } x x x .Theseelementsarebinaryvariableswithlogicalvalues0or1.Byreplacing

    thevariableswiththeirvaluesabinarycombinationisformed.Generallythiscombination

    canbeconsideredasawordinthealphabet{0,1},andthereforetermedbinaryset.

    InthecontextofBooleanalgebra,asetissaidtobebinary,ifitcontainslogicalzero

    (0) and unity (1) signs as values of certain Boolean variables. For example, variables

    1 2 3 4 5{ , , , , }x x x x x with values 1 1x = , 2 1x = , 3 0x = , 4 1x = , 5 0x = form the binary set

    [11010] . Here, the first in order unit determines a value of the variable 1x because it

    occupiesthefirstpositioninthecorrespondingset.Similarly,secondunitassociateswith

    the second symbol of the set, that is, 2x . And so on, up to zero value of the last, fifth

    variable 5x .Thus,thereis positionalcorrespondencebetweenabinarysetanda sequence

    ofsymbolslocatedinasetofBooleanvariables.

    Formatofbinaryset

    For realization of the positional principle established above, the concept of a format of

    variables is entered. The format is represented in the form of a set of variables, the

    sequenceofwhichpredeterminesvaluesofthesevariablesintheappropriatebinaryset.

    Let's explain on an example. In view of the coordination of positions at values 1 1x = ,

    2 1x = , 3 0x = , 4 1x = , 5 0x = ,theappropriatingbinaryset[11010] ispresentedinaformat

    ofasetofvariables,ormoresimple,intheformat 1 2 3 4 5[ ]x x x x x .Therecordisallowed:

    1 2 3 4 5[ ] [11010]x x x x x = . (1-1)

    That same binary set, but formalized in a different format, namely 3 2 1 5 4[ ] x x x x x ,

    corresponds to values 3 1x = , 2 1x = , 1 0x = , 5 1x = , 4 0x = . As a result of the change of

    formatsotherequality,differentfromthepreviousone,isobtained:

  • 8/8/2019 A Synchronous Logic Elements

    7/118

    V.Vasyukevich-Asynchronouslogicelements 7

    1 2 3 4 5[ ] [01101]x x x x x = . (1-2)

    Thus,it ispossibletoconsiderthatbinarysetsarepositionedinaccordancewithaformat

    ofvariables.Thankstotheformat,binarysetsareabletorepresentBooleanvariablesinanexplicitform.

    Binarysequences

    Unlikeset abinary sequence representsvaluesonly forsingle variable,butnot for

    wholesetofthem.Sothesequence 11010 meansthatacertainvariablexispresentedby

    five values fixed during time, since the moment 1t and finishing 5t . Point in time 1t

    corresponds to the unity value 1( ) 1x t = , point 2t to 2( ) 1x t = , and further: 3( ) 0x t = ,

    4( ) 1x t = and 5( ) 0x t = . Time depending variable ( )x t forms the sequence

    1 2 3 4 5( ) ( ) ( ) ( ) ( )x t x t x t x t x t , which determines a format for the proper construction of

    binarysequences,answering x .Inconsideredcaseafollowingequalitytakesplace:

    1 2 3 4 5( ) ( ) ( ) ( ) ( ) 11010x t x t x t x t x t = . (1-3)

    Thus,abinarysequenceispositionedintime.Eachvalueofacorrespondingvariableis

    causedbyamomentoftimewhenthisvariableappearsinanexplicitform:0or1.

    Asynchronoussequences

    Adistinctivefeatureofasynchronousbinarysequenceisthatitdoesnotimplyanyexternal

    controloftimepoints 1 2 3, ,t t t ,andsoon.Thereisnoexternalsynchronizerwhichwould

    setthesepoints,placingthecertainmarksontheaxisoftimeduringwhichvariable ( )x t is

    traced.Inotherwords,thebinarysequenceofaformat 1 2 3 m( ) ( ) ( ) ... ( )x t x t x t x t iscalled

    asynchronousifatemporalsequence 1 2 3 m...t t t t isasynchronous.

    Intersectionofsetsandsequences

    Followingsaftereachotherbinarysets,aswellasasynchronoussequencescollected

    together,in fact,representhowandwhichvariableschangetheirvalueovera fixedtime.

    Inaddition,theserepresentationsareorthogonal;theyoverlap.Thereforebinarysetsand

    sequences are able to be jointly displayed within the framework of a common table

    (Table1.1).

  • 8/8/2019 A Synchronous Logic Elements

    8/118

    V.Vasyukevich-Asynchronouslogicelements 8

    Table1.1.Binarysetsandasynchronoussequences.

    1x 2x 3x 4x

    1t 1X 0 0 0 1

    2t 2X 0 1 0 1

    3t 3X 1 1 0 1

    4t 4X 1 1 0 0

    5t 5X 1 1 1 0

    Thistableisstructuredasfollows.Therearehorizontallylocatedbinarysets:

    1 [0001]X = , (1-4.1)

    2 [0101]X = , (1-4.2)

    3 [1101]X = , (1-4.3)

    4 [1100]X = , (1-4.4)

    5 [1110]X = , (1-4.5)

    whicharefixedinmomentsoftime 1t , 2t , 3t , 4t , 5t respectively.Allsetsarepresentedin

    the format 1 2 3 4[ ] x x x x composed of four binary variables. To these variables answer

    verticallylocatedsequences:

    1 ( ) 0 0111x t = , (1-5.1)

    2 ( ) 01111x t = , (1-5.2)

    3 ( ) 0 00 01x t = , (1-5.3)

    4 ( ) 1110 0x t = , (1-5.4)

    which are presented in the format 1 2 3 4 5X X X X X composed of binary sets.

    Asynchronouspropertyofbinarysequencesiscausedbyasynchronoustemporalsequence

    1 2 3 4 5t t t t t .

  • 8/8/2019 A Synchronous Logic Elements

    9/118

    V.Vasyukevich-Asynchronouslogicelements 9

    1.2.Logicalswitchings

    AttentionisdrawntothatdatapresentedinTable1.1canbeexaminedasaseriesoflogical

    switchings. Thus, underswitching is meant changing of valueof one or another binary

    variablefromalogicalzerotologicalunityorfromunitytozero:0/1or1/0respectively.

    Switchingsarecarriedoutinthefollowingorder.Firstitconcernsavariable 2x .Itchanges

    thevaluefromlogicalzerotounity,becauseatthemomentoftime 1t equality 2 1( ) 0x t = is

    observed, and at the next moment 2t 2 2( ) 1x t = . A switching on hand is 2 0 /1x = , it

    causeschangeofabinaryset 1 [0001]X = to 2 [0101]X = .Furtherswitchings 1 0 /1x = ,

    4 1/ 0x = and 3 0 /1x = , which meet the moments of time 3t , 4t and 5t with binary sets

    3 [1101]X = , 4 [1100]X = and 5 [1110]X = respectively,takeplace.

    Momentsofswitchings

    Momentsofswitchingsaretiedtothemomentsoftimewhenthevaluesofvariablesare

    fixed. This obvious circumstance admits different interpretations because of binary

    variablebehaviordirectlyatthetimeoflogicalswitching.Therefore,eliminatingpossible

    collisionsandwithoutlosingagenerality,webelievethatanyasynchronoussequence ( )x t

    intheneighborhoodsofthemomentoftime jt obeysthefollowingrules:

    j j-1( ) ( )x t t x t < = , (1-6.1)

    j j( ) ( )x t t x t = . (1-6.2)

    Untilthetime jt variablexdoesnotchangeitsvalue.Atthemoment jt switchingoccurs

    andvariabletakesonanothervaluethatmeets j( )x t .Thisnewvalueholdsconstantuntil

    the moment of the next switching. Concretely, if j-1( ) 0x t = but j( ) 1x t = , then at the

    momentoftime jt variablexisswitchedfromlogicalzerotounity: 0 /1x= .If j-1( ) 1x t =

    but j( ) 0x t = ,switching 1 / 0x= takesplace.

    Within the framework of the offered concept an imaginary, in sense of "pseudo",

    switchings of type 0 / 0x= and 1/1x= areallowedaswell.Asthistakesplace,equality

    j-1 j( ) ( ) x t x t = accordingtowhichavariabledoesnotchangeitsvalueatthemoment jt is

    obeyed.Realswitchingisalwaysaccompaniedbyaninequality j -1 j( ) ( ) x t x t .

  • 8/8/2019 A Synchronous Logic Elements

    10/118

    V.Vasyukevich-Asynchronouslogicelements 10

    Backgroundforswitchings

    If logical switching is an action, the role of background is rightly assigned to

    pseudoswitching.Anexamplemayclarifythis.Whenpassingfrombinaryset 2X toset

    3X (Table1.1)thefollowinghappens.Variable 1x changesitsvaluefromlogicalzeroto

    unity.Atthesametimeothervariablesdonotchangetheirownvaluesandthuscreatea

    peculiarbackgroundforswitching 1 0 /1x = .Backgroundswitchesatthemomentoftime 3t

    areformallydisplayedintheformofpseudoswitchings: 2 1/ 1x = , 3 0 / 0x = and 4 1/ 1x = .

    A background in itself is meaningful only in a combination with switching, for

    exampleswitching 1 0 /1x = onthebackground 2 1/ 1x = .Asimplifiedrecordisallowed

    also:switching 1 0 /1x = Xonthebackground 2 1x = .

    Rulesforswitchings

    Transitionfromanybinarysettothefollowingoccursduetoswitchingsofvariables.

    Orderoftheseswitchingsiscausedbythecertainrules.

    1.Allswitchingsareasynchronous.Theyareseparatedintimeinsuchamannerthat

    duringeachmomentaswitchingofonlyonevariablecanhappen.

    2.Eachswitchinggeneratesanewbinaryset.Thissetdiffersfrompreviousbyvalue

    ofasingleonevariablewhoseswitching,infact,fixesthemomentoftimewhenbinaryset

    changes.

    1.3.Methodsforrepresentationofvariablescollections

    (Table1.1asanexample)

    Judgingfromconfigurationoftable,itscontentcanbeexpressedinanalyticalform.For

    thispurposeitisenoughtotakeadvantageofthefollowingmethods.

    Method1.Sequenceofbinarysets:

    [0 0 01] [0101] [1101] [110 0] [1110] . (1-7)

    Here,allvaluesofbinaryvariablesareinagreementwiththefollowingdenotations:

    1 1 2 1 3 1 4 1 1[0 0 01] [ ( ) ( ) ( ) ( )]x t x t x t x t X = = , (1-8.1)

    1 2 2 2 3 2 4 2 2[0101] [ ( ) ( ) ( ) ( )]x t x t x t x t X = = , (1-8.2)

  • 8/8/2019 A Synchronous Logic Elements

    11/118

    V.Vasyukevich-Asynchronouslogicelements 11

    1 3 2 3 3 3 4 3 3[1101] [ ( ) ( ) ( ) ( )]x t x t x t x t X = = , (1-8.3)

    1 4 2 4 3 4 4 4 4[110 0] [ ( ) ( ) ( ) ( )]x t x t x t x t X = = , (1-8.4)

    1 5 2 5 3 5 4 5 5[1110] [ ( ) ( ) ( ) ( )]x t x t x t x t X = = . (1-8.5)

    Forageneralcaseasynchronoussequenceofbinarysetsisgivenbythefollowingformal

    expression:

    1 2 3 m -1 m[X] ...X X X X X = , (1-9)

    Heremisalengthofsequence,whichiscausedbynumberofpointsusedforfixingthe

    valuesofBooleanvariables.

    Method2. Set(collection)ofasynchronoussequences:

    [ 00111 01111 00 001 11100 ] . (1-10)

    Here,valuesassignedtobinaryvariablescorrespondtothecolumnsoftable:

    1 10 0111 ( ) x t x = = , (1-11.1)

    2 201111 ( ) x t x = = , (1-11.2)

    3 30 0 0 01 ( ) x t x = = , (1-11.3)

    4 41110 0 ( ) x t x = = . (1-11.4)

    Inthegeneralcaseasetofbinarysequencesispresentedbytheexpression:

    1 2 3 n -1 n[ X ] [ ... ] x x x x x = , (1-12)

    wherenisthecardinalityofasetofinvolvedBooleanvariables.

    Method3.Sequenceoflogicalswitchings.

    Switchings of variables occur in accordance with priority, which is defined in the

    followingsequence:

  • 8/8/2019 A Synchronous Logic Elements

    12/118

    V.Vasyukevich-Asynchronouslogicelements 12

    2 1 4 3( 0 /1) ( 0 /1) ( 1/ 0) ( 0 /1) x x x x = = = = , (1-13)

    With due account of the variables formatting logical switchings naturally present in

    equality:

    2 1 4 3 (0/1)(0/1)(1/0)(0/1)x x x x = , (1-14)

    whosecomponentssatisfythefollowingrelations:

    2 2 1 2 20 /1 ( ) / ( ) x x t x t = = , (1-15.1)

    1 1 2 1 30 /1 ( ) / ( ) x x t x t = = , (1-15.2)

    4 4 3 4 41/ 0 ( ) / ( ) x x t x t = = , (1-15.3)

    3 3 4 3 50 /1 ( ) / ( ) x x t x t = = . (1-15.4)

    1.4.Switchingfunctionvenjunction

    On the basis of logical switchings a switching function is built. For its realization anoperationcalledvenjunctionisinvolved.

    Operationofvenjunction

    Verbal expression written as switchingon the background has a formalized

    mathematicalrepresentation. Forthis purposea specialoperation named venjunctionand

    designatedbysign isintended.Thissignlinksbinaryvariables.Asanexample,for

    pairofvariablesxandytheexpressionswitchingxonthebackgroundyispresentedby

    formulax y .

    Venjunctionisanasymmetricallogicdynamicaloperation.Ittakesintoaccountthe

    valuesofvariablesnotonlycurrent,butalsotheirpreviousmomentoftime.Theoperation

    isasymmetricalinthesenseofinequality:

    x y y x . (1-16)

    Switchingxonthebackgroundyandreverseswitchingyonthebackgroundxaredifferent

    actions, not compatible in time of their realization. Venjunctions associated with these

  • 8/8/2019 A Synchronous Logic Elements

    13/118

    V.Vasyukevich-Asynchronouslogicelements 13

    switchingsaremirrorsintherelationtooneanother.

    Switchingfunction

    As a switching is named a binary function if it essentially depends on switchings of

    arguments Booleanvariables. Thecorrespondingchangesareconsidered owing to thevenjunction, logical truth of which is determined by the value of binary variablez in

    formula:

    z x y= . (1-17)

    Thisformulaserves asa basisfor construction ofswitchingfunctionwhich components

    aretabulated(Table1.2)inviewoftheformatofTable1.1.Variablesxandy,asbeing

    arguments,arefixedatthemomentsoftime j-1t and jt .Valuesofthesevariables j-1( )x t ,

    j-1( )y t and j( )x t , j( )y t belongtobinarysets j-1X and jX respectively.

    Table1.2.Componentsofswitchingfunction.

    x y z

    j-1t -1X j-1( )x t j-1( )y t j-1( )z t

    jt jX j( )x t j( )y t j( )z t

    Switchingfunctionispresentedbyavariablezdeterminedatthemomentoftime jt

    withhelpofthefunctionofthefollowingtype:

    j j j j -1 j-1 j-1( ) ( ( ), ( ), ( ), ( ), ( ))z t x t y t x t y t z t = . (1-18)

    Takingintoaccountswitchingsofvariablesxandyadependenceobtainedisadequately

    displayedbythefollowingformula:

    j j -1 j j-1 j j-1( ) ( ( ) / ( ), ( ) / ( ), ( ))z t x t x t y t y t z t = . (1-19)

  • 8/8/2019 A Synchronous Logic Elements

    14/118

    V.Vasyukevich-Asynchronouslogicelements 14

    Venjunctionasfunction

    Operationofvenjunctionimpliesthatthe truthofthe respectivefunction,which is

    expressedbythelogical unity j( ) 1z t = , is caused by switching j -1 j( ) / ( ) 0 /1x t x t = onthe

    background j-1 j( ) / ( ) 1/1y t y t = . Corresponding values of components of the switching

    functionarepresentedinTable1.3.

    Table1.3.Truthtableforvenjunction.

    x y z

    j-1t j-1X 0 1 J

    jt jX 1 1 1

    When a logical switching 0 /1x= on the background 1/1y= takes place, the

    operation of venjunction x y ensures the switching J/1z = , where J {0,1} . Symbol J

    characterizesindeterminacy,whichinthiscaseresultsfromtwoabilities: 0/1z = or 1/1z = .

    Equality j( ) 1z t = indicatesthatswitchingfunctionattainsalogicaltruevalue.Afalse,that

    is zero, value j( ) 0z t = , accompanies switchings which answer data of Table1.3. These

    casesare 0 / 1x= and/or 1/1y = .

    Fromequality j-1( ) Jz t = itfollowsthatavalueassignedtovariable j-1( )z t doesnot

    influenceon j( )z t .Therefore,forvenjunctionasforswitchingfunctionitischaracteristic

    thefollowingdependence:

    j j-1 j-1 j j( ) ( ( ), ( ), ( ), ( ))z z t x t y t x t y t = = . (1-20)

    Inthecauseofswitchingofvariablesx,yandz,venjunctivefunctionisabletogenerate

    variousbinarycombinations.AllofthemarecollectedintensubtablesofTable1.4.Each

    subtableisconstructedinviewoftheformatacceptedforTable1.3.

  • 8/8/2019 A Synchronous Logic Elements

    15/118

    V.Vasyukevich-Asynchronouslogicelements 15

    Table1.4.Switchingscausedbyvenjunction.

    1) 2) 3) 4) 5)

    0 1 0 0 0 0 1 1 0 1 1 1 1 0 0

    1 1 1 1 0 0 0 1 0 0 1 0 0 0 0

    6) 7) 8) 9) 10)

    1 0 0 0 0 0 1 1 0 1 1 1 0 1 0

    1 1 0 0 1 0 1 0 0 1 0 0 0 0 0

    Givenanalyticalcalculationsserveasabasisforanumberofassertions,bymeansof

    whichfunctionalpossibilitiesofvenjunctivedependencearecharacterizedinfullmeasure.Intermsoflogicalswitchingstheseassertionsareformulatedasfollows:

    o if 0 /1x= onthebackground 1/ 1y= ,then 0 /1x y = ; (1-21.1)o if 0 /1y= onthebackground 1/1x= ,then 0 / 0x y = ; (1-21.2)o if 1/ 0x= onthebackground 1/1y= ,and j-1( ) 1z t = ,then 1/ 0x y = ; (1-21.3)o if 1/ 0x= onthebackground 1/1y= ,and j-1( ) 0z t = ,then 0 / 0x y = ; (1-21.4)o if 1/ 0y= onthebackground 1/ 1x= ,and j-1( ) 1z t = ,then 1/ 0x y = ; (1-21.5)o if 1/ 0y= onthebackground 1/ 1x= ,and j-1( ) 0z t = ,then 0 / 0x y = ; (1-21.6)o ifabackgroundis 0 / 0x= or 0 / 0y= ,then 0 / 0x y = . (1-21.7)

    Formally,consideringpseudoswitchingsthefollowingexpressionsshouldbeadded:

    o if 1/1x= and 1/1y = ,but j-1( ) 1z t = ,then 1/1x y = ; (1-22.1)o if 1/1x= and 1/1y = ,but j-1( ) 0z t = ,then 0 / 0x y = ; (1-22.2)o if 0 / 0x= and 0 / 0y= ,then 0 / 0x y = . (1-22.3)

    1.5.Venjunctionincomparisonwithconjunction

    JudgingfromTable1.3function z x y= ,aswellasconjunction x y ,producesunity

    value,ifandasaresultofunityvaluesofinputvariables: 1x y= = .Butregarding 1x y =

  • 8/8/2019 A Synchronous Logic Elements

    16/118

    V.Vasyukevich-Asynchronouslogicelements 16

    thereisonemoresufficientcondition,namely:logicalunitysettingforxmustoccuratthe

    momentwhenunityvalue 1y= isalreadyfixed.Thatis,logicalswitching 0 /1x= mustbe

    realizedonthebackgroundofasteadyvalue 1y= .Anessenceofoperationisexplainedby

    adiagraminFigure.1.1.

    Accordingtothediagram,atthemomentsoftimet1andt9,when 1y= ,andvariable

    x changes the valuein connection with its switching from logical zero to unity (0/1), a

    resultingfunction reducestounity.On acontrary dueto 0y= , switching 0 / 1x= atthe

    moment t5 does not produce an effect on the graph of venjunction x y . Unity of the

    correspondingfunctionismaintainedbytheunityvaluesofarguments.Whenavariable x

    or y reduces to zero, function value becomes zero. In the diagram it is shown by the

    moments of time t2 and t10, which are connected with switchings 1/ 0y = and 1 / 0x =

    respectively.

    x

    y

    x y

    y x

    x y

    t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

    Figure.1.1.Venjunctionandconjunction.Comparativediagram.

    Amirrorfunction,asbeingvenjunction y x ,behavessimilarly.Ittakesonaunity

    valueatthemomentst3and t6 when switching 0 / 1y= happensonthebackground 1x= .

    Functionbecomeszeroatthemomentsoftime t4andt7.Accordingtodiagrammentioned

    above mirroring is expressed in a form of the inequality ( ) ( ) y x x y , with the

    following relation: if ( ) 1x y = , then ( ) 0y x = and vice versa. By such a manner a

    venjunctionfunctiondemonstratesitssensitivitytothevariablesinterchanging.Behaviors of venjunctions x y and y x in Figure1.1 are displayed in

  • 8/8/2019 A Synchronous Logic Elements

    17/118

    V.Vasyukevich-Asynchronouslogicelements 17

    comparisonwithconjunction x y .Soitisseen,thateachvenjunctioncanbeinterpreted

    asatruncatedconjunction.Actually,whileitisrealizedunityswitching 0 /1x= onthe

    background 1y= ,acoincidencebetweenvaluesoffunctions x y andx y isobserved.

    In the opposite case, when signaly produces a unity value on the background 1x= a

    conjunctionx y astoitsvaluedoesnotdifferfromthemirrorvenjunctiony x .

    Thus,functionofconjunctionunitesconnectedwithitmirrorvenjunctionsbymeans

    oftheformula:

    ( ) ( )x y x y y x = . (1-23)

    The givenexpression formalizes the rule of disjunctiveexpansion of a conjunctioninto

    twovenjunctionsascomponents.Orotherwise(reversereading),itisaruleofmerging

    ofvenjunctions.

    1.6.Methodsofvenjunctionformalizeddefinition

    Venjunction,orvenjunctivefunction,isdefinedinaccordancewithdependence z x y= .

    Without leaving the framework of Boolean algebra, we believe that operation x y

    generatesafunctionwitharangeofvalues{0,1}.Belowtherearepresentedvariouskinds

    ofmethods,whichareapplicableforavenjunctiondefining.

    Methods1.Onabasisofthebinarysetsandsequences.

    o if [ ] [11]x y = withcondition [ ] [01] [11]x y = ,then 1x y = ; (1-24.1)o if [ ] [11]x y = withcondition [ ] [10] [11]x y = ,then 0x y = ; (1-24.2)o if 0x= or 0y= ( 0x y = ),then 0x y = . (1-24.3)

    Method2.Withinvolvinganundeterminedvalue.

    Uncertain valueof avariabletakes placein the case, whenthis variableis not uniquely

    defined.To this variable canbe assignedunity aswellas zerovalue. Uncertaintyin the

    form of a symbol J isconvenient for using, if value of a variable is not known, or the

    choice of value is free or indifferent (depending on a context). Formally, J is a third,

    alongsidewith1and0,valueofabinaryvariable.However,thisvalueisnotself-sufficient

  • 8/8/2019 A Synchronous Logic Elements

    18/118

    V.Vasyukevich-Asynchronouslogicelements 18

    becauseof J {10} .

    Basedontheforegoingthefunctionofvenjunctionisdefinedasfollows:

    oif [ ] [[01] [11]x y = ,then 0 /1x y

    = ; (1-25.1)o if [ ] [10] [11]x y = ,then 0 / 0x y = ; (1-25.2)o if [ ] [J J] [ J 0]x y = ,then J / 0x y = ; (1-25.3)o if [ ] [J J] [0 J]x y = ,then J / 0x y = . (1-25.4)

    Method3.Withinvolvingaconjunction.

    o if 1x y = afteramoment 0 /1x= ,then 1x y = ; (1-26.1)o if 0x y = or 1y x = ,then 0x y = . (1-26.2)

    Method4.Withinvolvingtheadditionalbinaryvariable.

    Ontheabovediagram(Figure1.1)alongsidewithvariableswhichserveasargumentsfor

    venjunction function, there is the auxiliary binary variable designated by a symbol .

    Valuesofthisvariablearedefinedasfollows:

    o 1= afteramoment 0 /1x= when 1y= ; (1-27.1)o 0= afteramoment 0 /1y = when 1x= . (1-27.2)

    Momentsofswitching 0/1= arepointsintimet1andt9;switching 1/ 0= occursatthe

    momentt3.Byusingtheauxiliaryvariablevenjunctionisdefinedthroughaconjunctionin

    accordancewiththefollowingformula:

    x y x y = . (1-28)

    Similar expression for mirror venjunction differs only by the value of the auxiliary

    variable:

    y x x y = . (1-29)

  • 8/8/2019 A Synchronous Logic Elements

    19/118

    V.Vasyukevich-Asynchronouslogicelements 19

    Method5.Notformal.Verbalreadingofvenjunction.

    Thereareavarietyofoptions.Forexample,thedetailed(developed)record: thefunction

    z x y= takesonaunityvalueinthecaseofswitchingofvariablexfromzerotounityat

    theconstantunityvalueofvariabley.Establishedunityvalueoffunctionremainsuntilthemomentwhenxoryreducestozero .Truncatedvariant:thefunction z x y= becomes

    unityatswitching 0 /1x= onthebackground 1y= ;itstaysinunityuntilvariablesxandy

    retaintheirunityvalues .Exampleofminimizedreadingofvenjunction: 1z= fromthe

    moment 0 /1x= onthebackground 1y= ,andupto 0x= or 0y= .

    As required theopportunity exists,anditispossibleto introducevenjunctioninto

    algorithmicconstructionswithformulation:ifxwheny,then

    11.7.Truthtablesforvenjunction

    Truthofthefunction z x y= iscausedbyvaluesandswitchingsofvariablesx,y,andit

    canbeestablishedwiththehelpofthecorrespondingTables1.51.8.Table1.5represents

    thefollowingdependence:

    j-1 j j -1 j j-1 j( ) / ( ) ( ( ) / ( ), ( ) / ( ))z t z t x t x t y t y t = , (1-30)

    according to which a function (z) and its arguments (x, y) take the form of logical

    switchings.

    Table1.5.Venjunctivedependence(1-30).

    yz

    1/1 0/1 1/0 0/0

    1/1 J/J 0/0 J/0 0/0

    0/1 0/1 0/0

    1/0 J/0 0/0x

    0/0 0/0 0/0 0/0 0/0

    Leftcolumnofthetablecontainsswitchingsofthebinaryvariablex.Switchingsof

  • 8/8/2019 A Synchronous Logic Elements

    20/118

    V.Vasyukevich-Asynchronouslogicelements 20

    thebinaryvariableyareplacedinupperrow.Inthesquareslocatedattheintersectionof

    columnsandrows,switchingsofresultingvariablezarepresented.Forexample,if 0 /1x=

    and 1/1y = ,then 0 /1z = . Indeterminationof J / Jz = causedbypseudoswitchings 1/1x=

    and 1/1y= means that in the present context two results 0 / 0z = and 1/1z = can be

    equallysupposed.

    If switching values contradict the rules accepted for the binary variables, the

    correspondingsquaresforzremainnotfilled.Forexample,thecombinationofswitchings

    0 /1x= and 1/ 0y= is not subject to examination. This combination is considered

    inadmissible because at once two variables simultaneously change their values that is

    forbiddenapriori(p.1.2).

    Table1.5contains all switchings concerned with the operation of venjunction,

    including thosewhicharetypicalforavenjunctivefunction. Inview of accepted above

    definitions(p.1.6)valuesofthisfunctionarepresentedbythesecondcomponentofthe

    switching j-1 j( ) / ( )z t z t , that is j( )z t . The corresponding functional dependence is

    representedbyformula:

    j j -1 j j-1 j( ) ( ( ) / ( ), ( ) / ( ))z t x t x t y t y t = . (1-31)

    Onthebasisofgivendependenceatruthtableofvenjunctionisconstructed(Table1.6).

    Table1.6.Venjunctivedependence(1-31).

    yz

    1 0/1 1/0 0

    1 0 0

    0/1 1 0

    1/0 0 0x

    0 0 0

    Anotherwayofvenjunctionrepresentationiscausedbyfunctionaldependenceofthe

    followingtype:

  • 8/8/2019 A Synchronous Logic Elements

    21/118

  • 8/8/2019 A Synchronous Logic Elements

    22/118

    V.Vasyukevich-Asynchronouslogicelements 22

    [01] [11] [11] [10] [10] [00] [00][10] [10] [11] [11] [01] [01] [00] [00][01] .

    (1-33)

    Thesequencecanbeadequatelyminimizedbyremovingallrepeatedsets.Then:

    [01] [11] [10] [0 0] [10] [11] [01] [0 0] [01] . (1-34)

    Inthegivensequenceallswitchingswhicharetypicalfortwovariablesarepresented.This

    featureserves asabasisfor constructing yet anothertable (Table1.8).Thismastertable

    asidefromabasicvenjunctionx y incorporatesallitsmodificationswhicharegenerated

    bypermutationandlogicalinversionofthevariablesxandy.

    Table1.8.Mastertruthtableforvenjunctions.

    z x y

    x y y x x y x y y x x y y x y x

    1t 1X 0 1 0 0 0 0 0 J 0 J

    2t 2X 1 1 1 0 0 0 0 0 0 0

    3t 3X 1 0 0 1 0 0 0 0 0 0

    4t 4X 0 0 0 0 1 0 0 0 0 0

    5t 5X 1 0 0 0 0 1 0 0 0 0

    6t 6X 1 1 0 0 0 0 1 0 0 0

    7t 7X 0 1 0 0 0 0 0 1 0 0

    8t 8X 0 0 0 0 0 0 0 0 1 0

    9

    t 1

    X 0 1 0 0 0 0 0 0 0 1

    Inthetablevenjunctivedependencesarepresentedinfunctionform:

    ( ) ( [X] )z t = . (1-35)

    Theorder,inwhichbinarysets [ ]X x y= arearranged,iscausedbytheformat:

  • 8/8/2019 A Synchronous Logic Elements

    23/118

    V.Vasyukevich-Asynchronouslogicelements 23

    1 2 3 4 5 6 7 8 1[X] X X X X X X X X X = . (1-36)

    The values of each venjunctive function are displayed in the form of asynchronous

    sequence:

    1 2 3 4 5 6 7 8 9( ) ( ) ( ) . ( ) ( ) ( ) ( ) ( ) ( ) ( )z t z t z t z t z t z t z t z t z t z t = . (1-37)

    Forexample,truthvalueofthevenjunction y x ischaracterizedbyasequence:

    ( ) 0 0 1 0 0 0 0 0 0z t = . (1-38)

    1.8.Venjunctivefunctionsandtheirenumeration

    Venjunctivefunctionsinessenceareswitchingfunctions;theiranalyticalrepresentationis

    inextricably linked with application of the operation named venjunction. Venjunctive

    function in the minimal form is an elementary venjunction of two variables. All logic

    functionsoftwovariablesaresubjecttotheannouncedenumeration.

    Venjunctivecompleteform

    Venjunctivecompleteformistheuniversalformalwayavailableforrepresentingthelogic

    functions having two variables. Such opportunity is a result of the informative part of

    Table1.8, where each eight venjunctions becomes unity exclusively at one set of the

    binarysequence.Itisnotablethatunderthissetallothervenjunctionsarereducedtozero.

    Therefore, it is not difficult to construct any of possible 28 functions by means of the

    Booleandisjunctiveoperation.Commonexpressionforthevenjunctivecompleteformis

    givenbythefollowing:

    i ii

    ( V )k , i {1, 2,...,8} . (1-39)

    LetterVdenotesvenjunction.Fordefiniteness,itisassumedthat:

    1Vx y = , (1-40.1)

    2Vy x = , (1-40.2)

  • 8/8/2019 A Synchronous Logic Elements

    24/118

    V.Vasyukevich-Asynchronouslogicelements 24

    3Vx y = , (1-40.3)

    4Vx y = , (1-40.4)

    5Vy x = , (1-40.5)

    6Vx y = , (1-40.6)

    7Vy x = , (1-40.7)

    8Vy x = . (1-40.8)

    Coefficientkregulatesthesamplingofsuchvenjunctionsthatarechosenforrepresentation

    ofoneoranotherfunctioninitscompleteform.Representationtakesplaceatunityvalue

    ofk( 1k= ).Intheoppositecase( 0k= )thecorrespondingvenjunctiondoesnottakepart

    informationoffunction.

    For example, if venjunctions V1, V2, V4, V5, and V6 are chosen, they form the

    functionwhichinitscompleteformlooksasfollows:

    ( ) ( ) ( ) ( ) ( )z x y y x x y y x x y = . (1-41)

    In view of the rule established above (p.1.5,1-23) for mirror venjunctions, the given

    formulaisminimizedtothecompactexpression:

    ( ) z x x y= . (1-42)

    Itis necessary tonote that acompact form cannot include more than fourvenjunctions.

    Wholesetofvenjunctionscontainsfourmirrorpairs.Therefore,anyfifthvenjunctionisa

    mirrorinrelationtoexistingvenjunction,andtogethertheygenerateaconjunction.

    Note

    In an effort to enumerate the functions, another expression is also applicable. It is an

    alternativecompleteform,wherelogicaloperationsofconjunctionandnegationareused

    insuchamanner:

    i ii

    ( V )k , i {1, 2,...,8} . (1-43)

    In this case chosen above venjunctions form a function represented by the following

  • 8/8/2019 A Synchronous Logic Elements

    25/118

    V.Vasyukevich-Asynchronouslogicelements 25

    expressions:

    1 2 4 5 6V V V V V ( ) ( ) ( ) ( ) ( )z x y y x x y y x x y = = , (1-44.1)

    3 7 8V V V ( ) ( ) ( )z x y y x y x x y y x = = = . (1-44.2)

    It is obvious that venjunctive completeformbased on the disjunctive operation is more

    convenient for enumeration in contrast with another form based on the conjunction.

    Alternative form is burdened with additional calculations, which are caused by logical

    negation.

    Enumerationoffunctionsoftwovariables

    General aim of the proposed enumeration is to obtain a full collection of binary

    functionswithtwovariables.Inthepresentcontextonlyvenjunctivefunctionsareimplied,

    thatisfunctionscontainingatleastoneoperationofvenjunction.

    All functional expressions listed bellowincorporate the venjunction ( )x y asat

    leastoneoperation.Asamatterofconvenience,functionsarepresentedincompactform

    and, what is more, they are classified depending on number of combined venjunctions,

    conjunctionsandvariables.

    Insuchamanner:

    Onevenjunction:itis ( ) z x y= .

    Venjunctionandavariable:

    ( ) z x y x= , (1-45.1)

    ( ) z x y y= . (1-45.2)

    Venjunctionandtwovariables:( )z x y x y= . (1-46)

    Venjunctionandconjunction:

    ( ) z x y x y= , (1-47.1)

    ( )z x y x y= , (1-47.2)

    ( )z x y x y= . (1-47.3)

  • 8/8/2019 A Synchronous Logic Elements

    26/118

    V.Vasyukevich-Asynchronouslogicelements 26

    Venjunctionandtwoconjunctions:

    ( )z x y x y x y= . (1-48)

    Twovenjunctions:

    ( ) ( ) z x y x y = , (1-49.1)

    ( ) ( ) z x y y x = , (1-49.2)

    ( ) ( ) z x y x y = , (1-49.3)

    ( ) ( ) z x y y x = , (1-49.4)

    ( ) ( ) z x y x y = , (1-49.5)

    ( ) ( ) z x y y x = . (1-49.6)

    Twovenjunctionsandavariable:

    ( ) ( )z x y x y x = , (1-50.1)

    ( ) ( )z x y y x x = , (1-50.2)

    ( ) ( )z x y x y y = , (1-50.3)

    ( ) ( )z x y y x y = . (1-50.4)

    Twovenjunctionsandconjunction:

    ( ) ( )z x y x y x y = , (1-51.1)

    ( ) ( )z x y x y x y = , (1-51.2)

    ( ) ( )z x y x y x y = , (1-51.3)

    ( ) ( )z x y x y x y = , (1-51.4)

    ( ) ( )z x y x y x y = , (1-51.5)

    ( ) ( )z x y x y x y = , (1-51.6)

    ( ) ( )z x y y x x y = , (1-51.7)

    ( ) ( )z x y y x x y = , (1-51.8)

    ( ) ( )z x y y x x y = , (1-51.9)

    ( ) ( )z x y y x x y = , (1-51.10)

    ( ) ( )z x y y x x y = , (1-51.11)

    ( ) ( )z x y y x x y = . (1-51.12)

  • 8/8/2019 A Synchronous Logic Elements

    27/118

  • 8/8/2019 A Synchronous Logic Elements

    28/118

    V.Vasyukevich-Asynchronouslogicelements 28

    01

    00

    11

    10

    Fourvenjunctions:

    (( ) ( ) ( ) )z x y x y x y x y = , (1-54.1)

    (( ) ( ) ( ) )z x y x y x y y x = , (1-54.2)

    ( ) ( ) ( ) ( )z x y x y y x x y = , (1-54.3)

    ( ) ( ) ( ) ( )z x y x y y x y x = , (1-54.4)

    ( ) ( ) ( ) ( )z x y x y y x x y = , (1-54.5)

    ( ) ( ) ( ) ( )z x y x y y x y x = , (1-54.6)

    ( ) ( ) ( ) ( )z x y x y y x y x = , (1-54.7)

    ( ) ( ) ( ) ( )z x y y x y x y x = . (1-54.8)

    To continuesearching for newfunctions andin such a manner to completecommenced

    enumeration,it issufficienttoperformrearrangementandlogicalnegationoperationsfor

    binaryvariablesofthegivenexpressions.

    Thus, having 16functions which can be constructed in the framework ofBoolean

    algebrausingtwovariables,itispossibletoadd240(!)venjunctivefunctions.

    1.9.Graphsofswitchingsforvenjunctivefunctions

    Alongsidewithtabularform(p. 1.7),avisualpresentationofvenjunctivefunctionscanbe

    madebyusinganadequategraphicalconstructions.Inparticular,dataofTable 1.6arein

    agreementwithagraphofvenjunction ( ) z x y= displayedinFigure1.2.

    1

    0

    0 0 0 0

    0

    0

    Figure1.2.Graphofoperationofvenjunction.

    Nodesofthegrapharebinarysets[01] ,[11] ,[10] and[0 0] ,presentedintheformat

  • 8/8/2019 A Synchronous Logic Elements

    29/118

  • 8/8/2019 A Synchronous Logic Elements

    30/118

    V.Vasyukevich-Asynchronouslogicelements 30

    Graphsandvenjunctivecompleteforms

    Graphsof switchingsofvenjunctivefunctionsinessencearegraphicimagesofcomplete

    formsofthesefunctions(p.1.8).Thereisone-to-onecorrespondencebetweenunityarcsof

    a graph and venjunctions of complete form. For examples in Figure1.4, mentionedcorrespondenceforunityarcs(unbrokenlines)isvalidatedbythefollowingformulae:

    ( ) ( ) ( )z x y x y y x = , (1-55.1)

    ( ) ( ) ( ) ( ) ( )z x y x y x y x y y x = . (1-55.2)

    1.10.Venjunctionproperties.Basicformulae

    Relationbetweenoperationsofconjunctionandvenjunction

    Expansionofconjunctionintotwomirrorvenjunctions:

    ( ) ( )x y x y y x = . (1-56)

    Absorptionofconjunctionbyvenjunction:

    ( ) ( ) ( )x y x y x y = . (1-57)

    Absorptionofvenjunctionbyconjunction:

    ( ) ( ) ( )x y x y x y = . (1-58)

    Inversion(negation)ofvenjunction

    LogicalnegationofvenjunctiondoesnotobeyDeMorganslaw:

    ( ) ( )x y x y y x = , (1-59.1)

    ( ) ( ) ( ) x y x y y x = . (1-59.2)

    Negationofnegation,ordoublenegation:

  • 8/8/2019 A Synchronous Logic Elements

    31/118

    V.Vasyukevich-Asynchronouslogicelements 31

    ( ) ( ) x y x y = . (1-60)

    Operationswithmirrorvenjunctions

    Disjunctionrules:

    ( ) ( )x y y x x y = , (1-61.1)

    ( ) ( ) ( )x y y x y x = , (1-61.2)

    ( ) ( ) 1 x y y x = . (1-61.3)

    Conjunctionrules:

    ( ) ( ) 0 x y y x = , (1-62.1)

    ( ) ( )x y y x x y = , (1-62.2)

    ( ) ( )x y y x x y = . (1-62.3)

    Commutativityandassociativity

    Commutativityandassociativityrulesarenotinherenttovenjunction:

    ( ) ( ) x y y x , (1-63.1)

    ( ) ( )x y z x y z . (1-63.2)

    Alongwithinequalities,thefollowingformulaearevalid:

    ( ) ( ) ( )x y z x y y z = , (1-64.1)

    ( ) ( )x y z x y z = , (1-64.2)

    ( )x y y x y = . (1-64.3)

    Distributivity

    Mainly,distributivityisnotinherenttovenjunction:

    ( ) ( ) ( )x y z x y x z , (1-65.1)

    ( ) ( ) ( )x y z x z y z , (1-65.2)

  • 8/8/2019 A Synchronous Logic Elements

    32/118

  • 8/8/2019 A Synchronous Logic Elements

    33/118

    V.Vasyukevich-Asynchronouslogicelements 33

    Rulesofzeroing

    Inthegivencontextzeroingrulescoincidewiththesimilarrulesforconjunctionsascanbe

    seenfromformulae:

    0x x = , (1-71.1)

    0x x = , (1-71.2)

    0 0x = , (1-71.3)

    0 0x = . (1-71.4)

    Venjunctionwithlogicalunity

    Inthecaseofvenjunctionabsorptions,whicharetypicalforconjunctions,donothappen.Theinequalitiestakeplace:

    1x x ; (1-72.1)

    1 x x . (1-72.2)

    1.11.Venjunctiverepresentationoflogicalindeterminacy

    Ifalogicfunctionafterandasaresultofsettingofknownvaluesofthevariablesdoesnot

    certainlyreduceeithertozeroorunity,suchafunctionisconsideredtobenotdetermined,

    thatisindeterminatefunction.Indeterminacygeneratesanambiguousnessintheformof

    not uniquely defined value J {0,1} . This uncertain situation can be equally decided in

    favorof J 1= aswellasinfavorof J 0= .

    Indeterminacy of venjunction z x y= is caused by the factor of switching of

    variables. Inthis context it is believed that the current values of argumentsare known.

    Provided that unity values 1x y= = takeplace,thecorrespondingswitchingfunctioncan

    notproduce aone-valuedsolution. In contrast, thevalue 0x= or 0y = ensuresacertain

    value 0z = .Other value 1z= isproducedattheunityset [ ] [11]x y = ifandonlyifthisset

    have beengenerated by the switching 0 /1x= on the background 1y= .Inothercaseof

    mirror switching 0 / 1y = onthebackground 1x= , a value 0z = takesplace.Inthecase,

    whenaswitchingisnotdeterminedproperly,anappropriativevenjunctiontakesaformof

    thefollowingoperation:

  • 8/8/2019 A Synchronous Logic Elements

    34/118

    V.Vasyukevich-Asynchronouslogicelements 34

    ( ) (1 1)x y = . (1-73)

    Thus,asconcerningthetermofindeterminacythefollowinglawsarepostulated:

    1) if 1z and 0z ,then Jz = ;2) if 1 1z = ,then Jz = .

    The above concept is corroborated and can be proved onthe following formal grounds.

    Earlier (p.1.6) it was defined that a binary variable in the formula

    ( ) z x y = changes the value exclusively at the moment of switchings 0 /1x= and

    0 /1y = .Therefore,iftheswitchingsthemselvesareonlypartlydeterminedas J /1x= and

    J /1y= ,existingindeterminacyisextendedtoauxiliaryvariable,and J= .Then:

    ( ) J z x y= . (1-74)

    As expected in the case of unity values 1x= and 1y= , logical indeterminacy is really

    formed: Jz = .

    Criterionforindeterminacy

    Thereisarule,whichisvalidinlawonlyinreferencetoindeterminatevalues.This

    ruleservesasasortofdistinguisherforJincontrastwith1and0.

    Rule.Logicalnegationoftheindeterminacyisindeterminacy: J = J .

    Assumption.Operation1 1 obeystherule J = J .

    Statement.Venjunctionoftwologicalunitiesisindeterminacy:1 1 J = .

    Proof:

    J (1 1 1 1 (1 1) 0 0 (1 1) 1 1) J = = = = = . (1-75)

  • 8/8/2019 A Synchronous Logic Elements

    35/118

  • 8/8/2019 A Synchronous Logic Elements

    36/118

    V.Vasyukevich-Asynchronouslogicelements 36

    defined.Correspondinglogicalrelationshipsaredisplayedintheformofswitchingtables.

    Tables2.1showwhatkindofbinaryswitchingsappearontheoutputsofbistablecell

    in response to the switchings of input signals. For example, appearance X J/1Z = in

    response to 1/0X= and 1/1Y= means that owing to switching 1/0X= on the

    background 1Y= bistable cell is transferred to unity state of the output XZ . Sign J

    symbolizesdependencyoftheoutputsignalfromitsinitial,andthereforeunknown,value.

    According to p.1.4, venjunctive function is defined at such values that complete

    switchingsofoutputsignalinTables2.1.Inviewofthegivencircumstance,theexamined

    bistablecellrespondstoinputswitchingsincompliancewiththedataofTables 2.2.These

    tablesrepresentthefollowingfunctionaldependences:

    X X ( , ) Z X Y = , (2-1.1)

    Y Y ( , ) Z X Y = , (2-1.2)

    where {1, 0/1,1/0, 0}X , {1, 0/1, 1/ 0, 0}Y , {1, 0}Z .

    Tables2.2.Bistablecell(Figure2.1)functioning.

    Y YZX

    1 0/1 1/0 0 ZY

    1 0/1 1/0 0

    1 0 0 1 1 1

    0/1 1 0 0/1 0 1

    1/0 1 1 1/0 0 1X

    0 1 1

    X

    0 0 1

    Transforming tabulated switchings into venjunctions, and applying these

    venjunctions to the given above dependences, the following logical expressions are

    formed:

    X ( ) ( ) ( ) ( ) ( )Z X Y X Y Y X Y X X Y = , (2-2.1)

  • 8/8/2019 A Synchronous Logic Elements

    37/118

    V.Vasyukevich-Asynchronouslogicelements 37

    Y ( ) ( ) ( ) ( ) ( )Z Y X Y X X Y X Y Y X = . (2-2.2)

    Theseexpressionsareoutputfunctionspresentedintheirvenjunctivecompleteform.They

    combine all input venjunctions, unity values of which cause the outputs of X 1Z = and

    Y 1Z = .Afterminimizations(p.1.10)onthebasisofequalities:

    ( ) ( )X Y Y X X Y = , (2-3.1)

    ( ) ( )X Y Y X X Y = , (2-3.2)

    X Y X Y X = , (2-3.3)

    outputfunctionsarereducedtothecompactformsasfollows:

    X ( ) Z X X Y = , (2-4.1)

    Y ( ) Z Y Y X = . (2-4.2)

    Thus, unity value of outputZX (ZY) takes place at zero signal of inputX (Y), or at the

    switching 0 /1X= ( 0 /1Y= ) on the background 1Y= ( 1X= ). Specifics of formulae

    allowtheirotherwisereading,forexamplereferringtoZX:ifsignalX=0occurs,function

    takesunityvalueandretainsit,evenwhenthevalueofXswitches,butonlyuntil asignal

    Y=1isunchangeable,thatisuntilthemomentofswitchingY=1/0.

    For X 0Z = (Tables2.2)acompactformulaanditscompleteformarepresentedas

    follows:

    X ( ) Z X Y Y X = , (2-5.1)

    X ( ) ( ) ( )Z X Y Y X Y X = . (2-5.2)

    Similarexpressionsforzerovalue Y 0Z = aregivenbytheformulae:

    Y ( ) Z X Y X Y = , (2-6.1)

    Y ( ) ( ) ( )Z X Y Y X X Y = . (2-6.2)

  • 8/8/2019 A Synchronous Logic Elements

    38/118

    V.Vasyukevich-Asynchronouslogicelements 38

    BistablecellwithNOR-elements

    BistablecellbasedonthelogicalelementsofNORispresentedbyitsstructuralschemein

    Figure2.2.Output signalsZXandZY depending ontheinput switchings are displayedin

    Table2.3.

    ZX ZY

    NOR

    NOR

    X Y

    Figure.2.2.LogicalcircuitofbistablecellbuiltwithNOR-elements.

    Table2.3.Bistablecell(Figure2.2)functioning.

    Y YZX

    1 0/1 1/0 0 ZY

    1 0/1 1/0 0

    1 0 0 1 0 1

    0/1 0 0 0/1 0 1

    1/0 1 0 1/0 0 1X

    0 1 1

    X

    0 0 0

    From comparing the data in Tables2.3 with the corresponding data in Tables2.2

    followsthatafterreplacementoflogicalNAND-elements(Figure2.1)withNOR-elements

    (Figure2.2)functioningofbistablecellchangesinacertainway.Formerlogicoperations

    andstructureofformulaeremainvalid,butinputandoutputsignalsaresubjecttonegation.

    Thus,functionsassumetheformofdependences:

    X X ( , ) Z X Y = , (2-7.1)

    Y Y ( , ) Z X Y = . (2-7.2)

    Correspondingchangeshave aneffectonvenjunctiveexpressions.Logicofbistablecell(Figure2.2)functioningisdefinedbyformulae:

  • 8/8/2019 A Synchronous Logic Elements

    39/118

    V.Vasyukevich-Asynchronouslogicelements 39

    X ( ) Z X X Y = , (2-8.1)

    Y ( ) Z Y Y X = , (2-8.2)

    X ( ) Z X Y Y X = , (2-8.3)

    Y ( ) Z X Y X Y = . (2-8.4)

    2.2.Bistableelementsofasynchronouslogic

    Bistableelementsof asynchronouslogic aredisplayed inFigure2.3.Theseelementsare

    chosen for consideration because of theirunique functionality.There are fourelements.

    Bistablecellispresentedbytworealizations:BCbasedonNAND-elements(Figure2.1)

    and BC based on NOR-elements (Figure2.2). Other asynchronous elements realize

    venjunctivefunctionsofspecialkind.Thecorrespondingdevicesarevenjunctormarkedby

    characterVanddoublevenjunctorDV.

    ZX ZY ZX ZY Z ZX ZY

    1) BC 2) BC

    3) V

    4) DV

    X Y X Y X Y X Y

    Figure2.3.Asynchronouslogicelements:

    1)BCbistablecell;2)BC invertedbistablecell;

    3)VVenjunctor;4)DVDoublevenjunctor.

    Venjunctorisa two-inputlogicaldeviceintendedforimplementingthevenjunctive

    function:

    Z X Y = . (2-9)

    Bistable V-element is displayed taking into account that venjunction is asymmetrical

    operation. ThereforeZ output is displaced in the direction ofX input. In this way it is

    denotedthattheinputsofvenjunctorarenotgraphicallyequalintheirrelationswiththe

    output.Figure2.3-3presentsV-element,whichisintendedtorealizeaswitching 0 /1X=

    on the background 1Y= . Accordingly,X input is assumed to be active in contrast to

  • 8/8/2019 A Synchronous Logic Elements

    40/118

    V.Vasyukevich-Asynchronouslogicelements 40

    passiveinputY.

    Double venjunctor unitestwovenjunctors so thattwo mirror venjunctivefunctions

    areperformed.Theyare:

    X Z X Y = , (2-10.1)

    Y Z Y X = . (2-10.2)

    2.3.Venjunctor

    Venjunctorasalogicalelementisbuiltonabaseofbistablecell.Functionalpropertiesof

    thiscellallowconstructingavenjunctorusingdifferentmethods.Ifabistablecell(Figure

    2.3-1,Figure2.1)isapplied,itissuitabletodeduceavenjunction X Y bythefollowing

    transformations:

    X( ( ))Z X Z X X X Y X Y = = = , (2-11.1)

    Y( ( ))Z X Z X X Y X Y X Y = = = , (2-11.2)

    X( )Z X Y Z X Y = = , (2-11.3)

    Y( ) Z X Y Z X Y = = . (2-11.4)

    Thegivenfourformulaeserveas areferencefor constructinglogicalcircuits(Figure2.4,

    Figure2.5, Figure2.6, Figure2.7). Each of these circuits performs the operation of

    venjunction: Z X Y = .

    Fromastructuralredundancyandsignalsracestandpoint,itcanbedeterminedthat

    the logical circuit shown in Figure2.5 realizes a functionality of a venjunctor most

    efficiently.

    Z

    AND

    NAND NAND

    X Y

    Figure2.4.Logicalcircuitofvenjunctor(2-11.1).

  • 8/8/2019 A Synchronous Logic Elements

    41/118

  • 8/8/2019 A Synchronous Logic Elements

    42/118

    V.Vasyukevich-Asynchronouslogicelements 42

    involved:

    X ( ( ))X Z X X X Y X Y = = , (2-12.1)

    Y ( ( ))X Z X X Y X Y X Y = = . (2-12.2)

    Doublevenjunctor

    Double venjunctor (Figure2.3-4) is presented by its logical circuit in Figure2.8.

    Logicschemecontainstwobistablecellsconnectedconsecutivelyinsuchamannerthat

    outputsofthefirstcellarelinkedwiththeinputsofanothercell.Inputsignalsareapplied

    tobothcells.Onthecircuitoutputs,twoinventors(NOT-elements)areplaced.

    Accordingtothelogicalcircuit,adependenceofoutputsignalZXfrominputsignals

    XandYisrepresentedbythefollowingformula:

    X ( ( )) (( ( )) ( ( )))Z X X X Y X X X Y Y Y Y X = . (2-13)

    Taking into account equalities ( ( ))X X X Y X Y = and ( ( ))Y Y Y X Y X = ,

    thegivenexpressionisminimizedasfollows:

    X ( ) (( ) ( ))Z X Y X Y Y X = . (2-14)

    ZX ZY

    NOT NOT

    NAND NAND

    NAND NAND

    X Y

    Figure2.8.Logicalcircuitofdoublevenjunctor.

  • 8/8/2019 A Synchronous Logic Elements

    43/118

    V.Vasyukevich-Asynchronouslogicelements 43

    Further logical actions, including zeroing ( ) ( ) 0 X Y Y X = , produce a

    venjunctionasaresultofthefollowingoperation:

    X

    ( ) Z X Y X Y = = . (2-15)

    SimilartransformationsrelatedtooutputsignalZYensurededucibilityofanother(mirror)

    venjunction:

    Y ( ) Z Y X Y X = = . (2-16)

    Thus,astodoublevenjunctor,itsfunctionalvalidityiscertainlyconfirmedbythelogical

    circuitinFigure2.8.

    2.4.Logicalcircuitsforexoticfunctions

    Asexoticarenamedfunctions,whicharepracticallyuseless.Theironlyjustificationis

    thattheyexistandcanbeexpressedanalyticallyaswellasdisplayedinformsoftablesand

    logicalcircuits.Correspondingfunctionstakeplaceinthecaseofvenjunctiveoperations

    withaconstantvaluelogicalunity.

    Example1.Truncatedvenjunctionwithfunction 1Z X= .

    ThelogicofvenjunctionfunctioningispresentedinTables 2.4.Correspondingrealization

    ismadeonthebasisofvenjunctor(Figures2.42.7)keepinginviewthatthefunctionality

    is restricted (truncated) because of the constant value 1Y = . In these conditions the

    resultinglogicalcircuitisdisplayedinFigure2.9.

    Tables2.4.Venjunction 1Z X= :

    1)signalsswitchings; 2)switchingfunction.

    1) Y 2) Y

    Z

    1/1 Z

    1

    1/1 J/J 1 J

    0/1 0/1 0/1 1

    1/0 J/0 1/0 0

    X

    0/0 0/0

    X

    0 0

  • 8/8/2019 A Synchronous Logic Elements

    44/118

    V.Vasyukevich-Asynchronouslogicelements 44

    Z

    AND NAND NOT

    X

    Figure2.9.Logicalcircuitofvenjunction 1Z X= .

    Example2.Truncatedvenjunctionwithfunction 1Z Y= .

    ThelogicofvenjunctionfunctioningispresentedinTables 2.5.Correspondingrealization

    ismadeonthebasisofvenjunctor(Figures2.42.7)keepinginviewthatthefunctionality

    istruncatedbecauseoftheconstantvalue 1X = .Intheseconditionstheresultinglogical

    circuitisdisplayedinFigure2.10.

    Tables2.5.Venjunction 1Z Y= :

    1)signalsswitchings; 2)switchingfunction.

    1) Y 2) Y

    Z

    1/1 0/1 1/0 0/0

    Z

    1 0/1 1/0 0/0

    X 1/1 J/J 0/0 J/0 0/0 X 1 J 0 0 0

    Z

    AND

    Y

    Figure2.10.Logicalcircuitoffunction 1Z Y= .

    Example3.Indefinitevenjunctionwithdegenerativefunction 1 1Z = .

    Thelogic of venjunction functioning is presentedin Table2.6, whereit is seen that the

    functiondegeneratesintoindeterminacy.Correspondingrealizationismadeonthebasisof

    venjunctor(Figures2.42.7)keepinginviewthatthefunctionalityisrestrictedbecauseof

  • 8/8/2019 A Synchronous Logic Elements

    45/118

    V.Vasyukevich-Asynchronouslogicelements 45

    the constant values 1X = and 1Y = .Intheseconditionstheresultinglogicalschemeis

    displayedinFigure2.11.

    Table2.6.Indeterminacy.

    YZ

    1

    X 1 J

    Figure2.11.Imageoflogicalindeterminacy1 1 .

    (Elementwithoutinputdeadloop,orpointelementoutputfromnowhere).

    Remark

    Above mentioned examples are remarkable because of their clarity. It seems to be the

    simplestwaytodemonstratethosenottrivialpossibilitiesthatbecomeavailableowingto

    mathematicsofvenjunctiveformulae.

    2.5.Triggers

    Atriggerisassumedtobeacommonnameforallkindsofbinarydevices(includingflip-

    flops,latches,bistablemultivibrators,etc.)withtwostableoutputstates.Eachstate,being

    set,remainsstableuntilswitchingsignalappears.Logicalcircuitsfortriggersofvarious

    typesareconstructedonthebasisofbistablecell.

    SRflip-flop

    ThelogicoftriggerfunctioningisgiveninTable2.7.Symbols SandRdenotethe

    input signals. Output signal of the device is marked as Q. The S input is intended for

    settingthetriggerinitsunitystate,thatmeanslogicalunityappearanceatthe Qoutput:

    or

  • 8/8/2019 A Synchronous Logic Elements

    46/118

  • 8/8/2019 A Synchronous Logic Elements

    47/118

  • 8/8/2019 A Synchronous Logic Elements

    48/118

    V.Vasyukevich-Asynchronouslogicelements 48

    setting.Furthermore,SinputshouldbereplacedwithJ,andRinputwithK.Asaresult,

    thefunctiondisplayedinTable2.8,aswellastheJKtrigger,isformed.

    Table2.8.JKflip-flopfunctioning.

    KQ

    1 0/1 1/0 0

    1 0 1

    0/1 1 1

    1/0 0 1J

    0 0 0

    Accordingtothetable,logicofJKflip-flopfunctioningisdefinedbythefollowing

    venjunctiveexpressions:

    ( ) ( ) ( ) ( )Q J K K J J K J K = , (2-21.1)

    ( ) ( )Q J K J K J K = . (2-21.2)

    Anotheranalyticalrepresentationofthetriggerisgivenbytheformula:

    ( ) ( ) ( )Q J K J K J K J K J K K J = , (2-22)

    containinglogicalexpressions ( )J K J K and ( )J K K J ,whichareassignedfor

    outputunityandzerosettingsrespectively.

    Classical implementation of JK flip-flop is based on the feedback usage with the

    output signal participation. As a result, the function takes the form of functional

    dependence ( , , )Q J K Q= ,whichisspecifiedbytheformula:

    ( ) ( ) ( )Q J Q J Q K Q= . (2-23)

    Fromanasynchronouslogicstandpoint,theobtainedfunctionisnotwhollycorrect,

  • 8/8/2019 A Synchronous Logic Elements

    49/118

    V.Vasyukevich-Asynchronouslogicelements 49

    becausethereareinputswitchingswithindefiniteoutputafter-effects.While 1J= setting

    at the time of 1K = and 0Q = takes place, the output signal changes because of the

    switching 0 /1Q = .Underthisswitchingthefollowingchangesoccur: ( ) 1/ 0J Q = and

    ( ) 0 /1K Q = . I f applied t o v enjunction ( ) ( ) J Q K Q , the occurred changes donot

    ensure an expected switching ( ) 0 /1J Q = on t he background ( ) 1K Q = , while itis

    necessaryforoutputsignaltobekeptinitsunitystate.Inthesecircumstancesareverse

    switching 1/ 0Q = isadmissibleaswell.So,itispossibleforoutputsignaltoreturntothe

    initialzerostate,thatsymbolizeanunsuccessfulefforttoperformtheunityvaluesetting:

    1Q = .

    Inactualpractice,aproblemoffunctionalindeterminacyisconsideredandsolvedasa problem of race hazard dangerous race of signals. To avoid these hazards various

    schematic andtechnical methods areused. Usually, suchtime delays andsuch waysfor

    signalspassingaredesigned,thattherightsignalalwaysturnsouttobeawinner.

    In principle, existing race problem can be solved even at a function level. It is

    sufficienttoblockundesirablesignals,andinthiswaytoexcludeindeterminacy.AstoJK

    trigger,apossibleindeterminationsarecausedbyswitchings 0 /1Q = and 1/ 0Q = onthe

    background[ ] [11]J K = .Thisproblemcanbesolvedanalytically,forexample,bymeansofthefollowingfunction:

    ( ) ( ) ( )Q J Q J Q K Q = , (2-24)

    where venjunctions J Q and K Q are involved for performing unity and zero state

    settingsrespectively.Correspondingswitchingsremovetheproblemofhazards.Duetothe

    givenupdatesaJKflip-flopisfreefromhazardousfunctionalrace.

    Remark

    Generally JK flip-flop is realized as a synchronous device with additional clock signal.

    Therefore,itwillbemorecorrecttorepresentupdatedtriggerasanasynchronousmodule

    ofJKtrigger.

    Tflip-flop(toggletrigger)

    TherearetwotypesofTflip-flops:staticanddynamic.Theydifferfromeachother

    bythemannerofactingoftheclockingprocedure.Statictriggeristoggledrespondingto

  • 8/8/2019 A Synchronous Logic Elements

    50/118

    V.Vasyukevich-Asynchronouslogicelements 50

    theclocksignalidentifiedbyitsvalue,anddynamictriggerrespondstotheswitchingof

    thesignal.

    InstaticmodeTflip-floprealizesthefollowingfunction:

    ( ) ( )Q T Q T Q T Q= . (2-25)

    Forthisfunction(aswellasinthecaseofJKflip-flop),araceproblemischaracteristic.

    Switching 0 /1T = on the background 0Q = producesoutputswitching 0 /1Q = ,which

    provokesraceprocessprolongeduptothemomentof 1/ 0T = .Atthistimeastableoutput

    stateisformed,anditssignalcanbesettozeroaswellastounityvalue.Inthefirstevent

    after output setting 1Q = invalid switching 1 / 0Q = takes place. In other case trigger

    maintainstheunitystate,andsoperformsitsowntogglefunction.

    InanefforttoprovideavalidfunctioningfortheTflip-flop,racehazardsmustbe

    blocked,forexample,bytheclockpulsereduction.Combiningmentionedaboveandother

    schematicandtechnicalmethods,itispossibletoavoidthehazardousswitchings 0 /1Q =

    and 1/ 0Q = on the background 1T= completely. The logic of static toggle trigger

    functioningispresentedinTable2.9.

    Table2.9.StaticTflip-flopfunctioning.

    QQ

    1 0/1 1/0 0

    1 F F

    0/1 0 1

    1/0 1 0

    T

    0 1 0

    Dynamic T flip-flop in contrast to static trigger is free from dangerous problem

    causedbyracedsignals.Allsolutionsrelatedwithblockingofhazardousswitchingsare

    avoided not during the process of construction or realization, but beforehand when

    logical function is produced. Considering that input signal always overtakes returnedoutput signal (in practice such assumption is quite justified), dynamic trigger can be

  • 8/8/2019 A Synchronous Logic Elements

    51/118

    V.Vasyukevich-Asynchronouslogicelements 51

    implementedonthebaseofthefollowingvenjunctivefunction:

    ( ) ( )Q T Q T Q T Q = . (2-26)

    Obtained toggle trigger is dynamical because of its output settings, that are

    performed not during the time of unity signal 1T= , but at the moment of switching

    0 /1T= .Allpossibleinputswitchingstherewithareallowedandeachofthemcausesa

    validhazard-freetransitiontothenextstate.Thesestatesarepresentedbytriggeroutput

    valuesinTable2.10.

    Table2.10.DynamicTflip-flopfunctioning.

    QQ

    1 0/1 1/0 0

    1 1 0

    0/1 0 1

    1/0 1 0T

    0 1 0

    Remark

    Dynamic toggle trigger is able to function without any restrictions in relation to input

    signals,andthereforedynamicTflip-flopbelongstoasynchronouslogic.

    ClockedD-latch

    In analogy with a toggle trigger, clocked D-latches are also subdivided into two

    types.Staticanddynamictriggersdifferfromoneanotherbytheirfunctionalpossibilities.

    CorrespondingTables2.11clearlydemonstratehowmentioneddifferencesarepresented

    ontheoutputsofcomparedtypesoftriggers.

    D-latch is clocked by T signal. Symbol J with apostrophe characterizes so called

    conditional (partial) indeterminacy, when a signal is not certainly defined, because it

    depends on another signal or on the previous value of the same signal. Partial

    independency is secondary in relation to unconditional independency marked J. In this

  • 8/8/2019 A Synchronous Logic Elements

    52/118

    V.Vasyukevich-Asynchronouslogicelements 52

    case,updatedsymboldenotes,thatapreviousoutputsignalisrepeated,previousvalueis

    storedaccordingtopseudoswitchings 0 /0Q= or 1/1Q= .

    Tables2.11.ClockedD-latchfunctioning:

    1)statictype; 2)dynamictype.

    D DQ

    1 0/1 1/0 0 Q

    1 0/1 1/0 0

    1 1 0 1 J J

    0/1 1 0 0/1 1 0

    1/0 1 0 1/0 J

    J

    T

    0 J J

    T

    0 J J

    Analytically,functionsofstaticanddynamictriggersareexpressedbythefollowing

    formulae:

    ( ) ( )Q T D T D T D= , (2-27.1)

    (( ) ( ))Q T D T D T D = . (2-27.2)

    Static D-latch is able to change its output signal repeatedly during a clock period

    when 1T= . This circumstance produces independency as a factor of trigger behavior,

    because it is not known, what a state will beset at the moment ofclocksignal reverse

    switching 1/ 0T= .Toavoidconfusion,itisusuallyrecommendedtoshortenclockpulse.

    However, even a short clock signal does not eliminate but only reduces the hazard of

    triggernotproperfunctioning.Tosolvethisproblemcompletely,itisnecessarytoblock

    dangerousswitchings 0 /1D = and 1/ 0D = onthebackground 1T= ,ortoassignoutput

    valuesfortheseswitchings.Thelastsolutionisbasicallyusedfordynamictypetriggers

    constructingpurposes.

    Setting actions for dynamic D-latch are performed by venjunctions instead of

    conjunctionsrelatedtostaticlatch.Asaresultofthisreplacement,triggerbecomesfree

    from invalid consequences caused by repeated switchings. Changes of output state are

  • 8/8/2019 A Synchronous Logic Elements

    53/118

    V.Vasyukevich-Asynchronouslogicelements 53

    exclusively controlled by switching 0 /1T= , under impact of which trigger reaches a

    stable condition. Signal ofD input remains blocked until the next switching 0/1T=

    appears.

    When clock pulse is regulated in time, static D-latch functions as a synchronizedlogicaldevice.Astodynamictrigger,itsbelongingtoasynchronouslogicisundoubted.

    Note

    ResultsofD-latchswitchings(Tables2.11)arepartlynotdetermined.Thereareswitchings

    inresponsetowhich,function Qreactsambiguously(J symbol). Itmeans thatmemory

    depth of trigger device exceedsthe levelwhichcan be provided and maintained bythe

    elementary venjunctions.Due to thisreason thefunctionof D-latchcannotbeexpanded

    intocomponentsofvenjunctivecompleteform(p.1.8).

    2.6.Triggerfunction

    Allkindsofpresentedabovetriggersintheirimplementationsexploit,asa rule,a logical

    constructionsbasedonthefollowinggeneralformulae:

    Z X X Y = , (2-28.1)

    Z Y Y X = . (2-28.2)

    Theseformalexpressionsdefineatriggerfunction.Toidentifythisfunctionitisnecessary

    toobeythefollowingconditions:

    0X Y = ,( 0X , 0Y ); (2-29.1)

    X Y , (2-29.2)

    0X Y , (2-29.3)

    0Y X . (2-29.4)

    In the case when the conditional requirements are wholly satisfied, any function is

    recognizedasthetriggerfunction,andaprocedureofitsrealizationbylogicaldeviceof

    triggertypebecomesmucheasier.

    Triggerfunctionis controlled bysubfunctionsXand Yaswellasbyvenjunctions

  • 8/8/2019 A Synchronous Logic Elements

    54/118

    V.Vasyukevich-Asynchronouslogicelements 54

    X Y and Y X .Unitysignal 1X= formsthecorrespondingoutputstateof 1Z= .Zero

    stateissetbyasignal 1Y= .

    Aroleofkeeperforfixedstablestatesisassignedtomirrorvenjunctions.Switching

    1/ 0X= on the background 0Y= maintainsthefunctioninitsunitystate,andswitching

    1/ 0Y= onthebackground 0X= holdszerostate.

    Trigger function in essence is a specific representation form for venjunctive

    functionsofasynchronouslogic.Thisspecificityisexpressedbymeansofthefollowing

    features.

    Negationwithoutcalculations

    Aresultoflogicalnegationorinversionprocedurefortriggerfunctionisatriggerfunction.

    Structureof the functiondoesnot change.Negation asa logical operation is reduced to

    interchangingthearguments:subfunctionXisreplacedwithsubfunctionY,andviceversa.

    Conflict-freesettings

    Conflictsofsettingsareusuallyprovokedbysimultaneousactionsofsignalswithopposite

    purposes: 1X= and 1Y= . Trigger function is protected from suchlike conflicts by

    definition, owing to zero equality 0X Y = .Conflictingsituationbetweenoutputvalues

    1Z= and 0Z= isexpelled already atfunction levelas it isseenfromthe conjunction,

    whichisreducedtozeroasfollows:

    (( ) ( ) ) 0Z Z X X Y Y Y X X Y = = = . (2-30)

    Butifinequality 0X Y isallowed,then 0Z Z ;thatisnotlogicallycorrectatleast

    intheframeworkofBooleanalgebra.

    Stabilizationofsettings

    Stabilizationofsetstatesisensuredintriggerfunctionowingtoinequalities 0X Y and

    0Y X .Correspondingvenjunctionsarenotzero,andsoeachofthemisabletokeep

    its own state. Conflicts between the states are expelled, because of zero conjunction:

    ( ) ( ) 0 X Y Y X = .

    Realizationfeatures

    Triggerfunctionisperformedbyrealizingthe correspondingoperationsat theoutputsZX

    andZY,logicalunityvaluesofwhicharesetbysignalsXandYrespectively.Obeyingtherule:

  • 8/8/2019 A Synchronous Logic Elements

    55/118

  • 8/8/2019 A Synchronous Logic Elements

    56/118

    V.Vasyukevich-Asynchronouslogicelements 56

    Forexample,amemoryofSRflip-flopisexpressedbythefollowingformula:

    S R S R= , (2-33)

    accordingtowhichandtakingintoaccountthelockedbinaryset [ ] [11]S R ,outputstate

    isstoredduringthetimeof[ ] [00]S R = .AsforstaticDlatch,itsmemoryismaintainedby

    zerovalueofclocksignal,asfollows:

    ( ) ( )T D T D T = = . (2-34)

    Memory formulaisrelated with triggerfunctionby meansofthe rule:if 0 /1 = , then

    1/1Z= or 0 /0Z= .

    Note

    Initially,triggerfunctionwasconsideredtobeananalyticalrepresentationfortriggertype

    devices.Howeveralongwiththis,triggerfunctionpossessesfundamentalopportunityto

    represent wide variety of venjunctive expressions on the basis of this specific form. In

    particular,itcanbeusedasanoff-beattemplateforgeneratingvariouslogicaldevices.As

    well trigger function can represent sequential devices with memory that could not be

    displayedusingvenjunctivecompleteform.

    2.7.Triggerapplications

    Triggeredlambda-function

    Introduced above (p.1.6)auxiliaryvariable(lambda) is controlled byswitchings

    0/ 1x= on the background 1y= and 0/1y= on the background 1x= .Inthecontextof

    triggerfunctionstheseswitchingsserveasabasisfordefiningsettingsubfunctionsbythe

    following venjunctions: X x y= and Y y x= . Availability of settings permits to

    characterizethelogicoflambda-variablebehaviorbymeansoftriggertypefunction:

    ( ) ( )Z x y x y y x = . (2-35)

    It is real trigger function because all required conditions are satisfied by the following

  • 8/8/2019 A Synchronous Logic Elements

    57/118

    V.Vasyukevich-Asynchronouslogicelements 57

    01

    00

    11

    10

    expressions:

    (( ) ( )) 0 X Y x y y x = = , (2-36.1)

    ( ) ( ( ) ( ))X x y Y y x x y x y = = = , (2-36.2)

    0X Y (forexample,at 1/ 0x= onthebackground 1y= ); (2-36.3)

    0Y X (forexample,at 1/ 0y= onthebackground 1x= ). (2-36.4)

    Memoryformulaisformedasaresultofthefollowingcalculations:

    (( ) ( ) ( ) ( ))x y y x x y y x x y x y x y = = = . (2-37)

    Logicoflambda-triggerfunctioningispresentedinTable2.12.Thecorrespondinggraphis

    showninFigure2.12.

    Table2.12.Lambda-triggerfunctioning.

    YZ

    1 0/1 1/0 0

    1 0 J

    0/1 1 J

    1/0 J J

    X

    0 J J

    1

    J

    J J 0J

    J

    J

    Figure2.12.Graphoflambda-function.

  • 8/8/2019 A Synchronous Logic Elements

    58/118

    V.Vasyukevich-Asynchronouslogicelements 58

    In Figure2.13, a structural logic scheme for lambda-trigger is displayed. It is

    constructedonthebasisofasynchronouselements:DVand BC .Twooutputsofdoubled

    venjunctorarelinkedtotheinputsofnegatedbistablecell.

    Z Z

    BC

    DV

    x y

    Figure2.13.Structuralschemeoflambda-trigger.

    TriggerfunctionofC-element(MullerC-gate)

    C-element is asynchronous logical gate. Regardless of realization, the logic of its

    functioningiscertainlypresentedbyTable2.13.

    Table2.13.C-elementfunctioning.

    B

    1 0/1 1/0 0

    1 1 1

    0/1 1 0

    1/0 1 0

    A

    0 0 0

    Tabulateddataareadequatelyconvertedintothefollowingvenjunctiveforms:

    ( ) ( )C A B A B B A = , (2-38.1)

    ( ) ( )C A B A B B A = . (2-38.2)

  • 8/8/2019 A Synchronous Logic Elements

    59/118

    V.Vasyukevich-Asynchronouslogicelements 59

    Outputunityvalueissetbythebinarycombination[ ] [11]A B = ,andzerovalueby

    [ ] [0 0]A B = .Otherswitchingsensureastoragemodeforoutputstates.

    Setting signals are formed by conjunctions X A B= and Y A B= , which are

    wholly applicable forconstructing a trigger function,becauseof their satisfaction to the

    followingrules:

    (( ) ( )) 0 X Y A B A B = = , (2-39.1)

    ( ) ( ( ) ))X A B Y A B A B= = = , (2-39.2)

    0X Y (forexample,at 1/ 0A= onthebackground 1B= ); (2-39.3)

    0Y X (forexample,at 0/1A= onthebackground 0B= ). (2-39.4)

    Thus,C-elementrealizestriggerfunctionasfollows:

    ( ) ( )C A B A B A B= . (2-40)

    MemoryformulacombinesinputsignalsbymeansofXORoperationinaccordancewith

    theexpression:

    ( )X Y A B A B A B = = = . (2-41)

    Triggerfunctionfordoubledbistablecell

    In Figure2.14 a logical scheme is displayed. It consists of two bistable cells

    connected in such a manner that outputs of one bistable cell are attached to inputs of

    anothercell.Functionrealizedbythegivenschemeisdefinedbythefollowingformulae:

    ( ) ( ) ( )Z x x y x x y y y x = , (2-42.1)

    ( ) ( ) ( )Z y y x y y x x x y = . (2-42.2)

    Requiredsettingsarecausedbysubfunctions:

    ( ) X x x y= , (2-43.1)

  • 8/8/2019 A Synchronous Logic Elements

    60/118

  • 8/8/2019 A Synchronous Logic Elements

    61/118

    V.Vasyukevich-Asynchronouslogicelements 61

    Conditions, required for the function of doubled bistable cell to be considered as

    triggerfunction,aresatisfiedinviewoftheexpressions:

    (( ) ( ) ( ) ( )) 0X Y x x y y y x x y y x y x x y = = = , (2-44.1)

    ( ) ( )X x x y x y y x Y y y x = = = , (2-44.2)

    0X Y (forexample,at 1/ 0x= onthebackground 0y= ); (2-44.3)

    0Y X (forexample,at 1/ 0y= onthebackground 0x= ). (2-44.4)

    Memoryofthedoubledbistablecellisgivenbytheformula:

    x y= . (2-45)

    Remark

    AspresentedinTable2.14,thelogicofdoubledcellfunctioningcopiesthesimilarlogicof

    C-elementwithanaccuracytotheinputassociations:A x= ,B y= .

    2.8.Examplesoflogicaldevices

    Inthecontext of trigger functions, logical devices withatypical, thatmeans venjunctive

    settings,areofspecialinterest;aswellasdevices,storagemodeofwhichinsteadoftypical

    binarysetsismaintainedbyinputswitchings.

    Example1.

    Trigger,outputsettingsofwhicharecausedbysignalswitchingsformedonthebasisof

    venjunctionsofinitialvariables.

    Unitysetting: X x y= .

    Zerosetting:Y y x= .

    Function: (( ) )Z x y x y y x = .

    Memoryformula: ( ) ( )x x y x y x x y x y x y y x = = .

    Tabulatedswitchings:

  • 8/8/2019 A Synchronous Logic Elements

    62/118

    V.Vasyukevich-Asynchronouslogicelements 62

    Table2.15.

    yZ

    1 0/1 1/0 0

    1 J J

    0/1 1 J

    1/0 J J

    x

    0 J 0

    Example2.

    Triggerwithtwopairsofmirrorvenjunctionsintendedforsettingactions.Unitysetting: ( ) ( ) X x y x y = .

    Zerosetting: ( ) ( )Y y x y x = .

    Function: ( ) ( ) ( )Z x y x y x y x y y x y x = .

    Memoryformula: x y x y x y = = .

    Tabulatedswitchings:

    Table2.16.

    yZ

    1 0/1 1/0 0

    1 0 J

    0/1 1 J

    1/0 J 1x

    0 J 0

    Example3.

    Triggerwithsettingscausedbythreepairsofmirrorvenjunctions.

    Unitysetting: ( ) ( ) ( )X x y x y y x = .

    Zerosetting: ( ) ( ) ( )Y y x y x x y = .

    Function: ( ) ( ) ( )Z x y x y y x x y x y y x y x y x x y = .

    Memoryformula: x y = .

  • 8/8/2019 A Synchronous Logic Elements

    63/118

    V.Vasyukevich-Asynchronouslogicelements 63

    Tabulatedswitchings:

    Table2.17.

    yZ

    1 0/1 1/0 0

    1 0 J

    0/1 1 J

    1/0 0 1x

    0 1 0

    Example4.

    Triggerwithtwovenjunctionsintendedformemorystate.

    Unitysetting: X x y y x y x = .

    Zerosetting:Y y x x y y x = .

    Function: ( ) ( ) ( )Z x y y x y x x y y x y x y x x y y x = .

    Memoryformula: ( ) ( ) x y x y = .

    Tabulatedswitchings:

    Table2.18.

    yZ

    1 0/1 1/0 0

    1 0 0

    0/1 J 1

    1/0 0 J

    x

    0 1 1

    Example5.

    Triggerwiththreevenjunctionsintendedformemory.

    Unitysetting: X x y x y = .

    Zerosetting:Y y x x y y x = .

    Function: ( ) ( ) ( )Z x y x y x y x y y x x y y x = .

  • 8/8/2019 A Synchronous Logic Elements

    64/118

  • 8/8/2019 A Synchronous Logic Elements

    65/118

    V.Vasyukevich-Asynchronouslogicelements 65

    the expansion is limited, becauseof the limits of venjunctive complete form itself.Any

    compactlogicalexpressionusesnotmorethanfourvenjunctions(p.1.8).Thereforetwo-

    input triggers, their setting functions, and memory formulae are restricted by four

    components.

    2.9.Zonemodelforswitchingfunction

    Trigger-typeswitchingfunctionalwaysstaysinoneofthreestates.Theyare:thestateof

    unity setting, the state of zero setting, and the state of memory. In accordance with

    mentionedstates,threezonesareformed(Figure2.16).

    Figure2.16.Zonemodelforswitchingfunction.

    1-zoneisintendedforlogicalunitysettings.Itunitesallinputsignals(binarysetsand

    theirsequences)requiredforoutputunityvaluesetting.Withinthiszone,settingsignalsof

    X subfunction are active. While and because signal 1X= acts, trigger device holds the

    unitystate 1Q= .

    0-zoneisintendedforlogicalzerosettings.Itunitesallinputsignals(binarysetsand

    theirsequences)requiredforoutputzerovaluesetting.Withinthiszone,settingsignalsof

    Ysubfunctionareactive.Whileandbecausesignal 1Y= acts,triggerdeviceholdsthezero

    state 0Q= .

    M-zoneisintendedforstoringtheoutputstatethathasbeensetpreviously.Itunites

    allinputsignals(binarysetsandtheirsequences)requiredforkeepingoutputstateinits

    1-zone

    ( 1X= )

    0-zone

    ( 1Y = )

    -zone

    ( 1 = )

  • 8/8/2019 A Synchronous Logic Elements

    66/118

    V.Vasyukevich-Asynchronouslogicelements 66

    unityorzerovalue.Withinthiszone,memoryformulaisactive.Whileandbecausesignal

    1= acts, trigger device holds the constant output value, invariability of which is

    maintainedduetopseudoswitchings 1/1Q= and 0 / 0Q= .

    Allthreezonesareconnectedtogetherbytransitionchannels.Transitionfrom0-zoneinto 1-zone is initiated by switching 0 / 1X= on the background 0 = , and is

    accompaniedbyzeroing 1/ 0Y= andsetting 0 /1Q= .Reversetransitionfrom1-zoneinto

    0-zoneisinitiatedbyswitching 0 /1Y= onthebackground 0 = ,andisaccompaniedby

    zeroing 1/ 0X= withthesetting 1 / 0Q= .

    Transition from 1-zone into M-zone is initiated by switching 1 / 0X= on the

    background 0Y= , and is accompanied by switching 0 / 1 = and keeping 1/1Q= .

    Transitionfrom0-zoneintoM-zoneisinitiatedbyswitching 1/ 0Y= onthebackground

    0X= ,andisaccompaniedbyswitching 0 /1 = andkeeping 0 / 0Q= .

    Transition from M-zone into 1-zone is initiated by switching 0 / 1X= on the

    background 0Y= ,andisaccompaniedbyzeroing 1/ 0 = andsetting 1Q= .Transition

    fromM-zoneinto0-zoneisinitiatedbyswitching 0 /1Y= on the background 0X= ,and

    isaccompaniedbyzeroing 1/ 0 = andsetting 0Q= .

    Therearetransitions,whichdonotpresumemovingtootherzone.They arecalledintrazone(ascontrastwithinterzone)transitions.Intrazonetransitionsarecausedbysignal

    actions,thatoccurredinsideofzoneanddonotinitiateexitfromit.Asaresult,zonemodel

    retainsitsstate.Switchingfunction,subfunctionsXandY,andmemoryformulakeeptheir

    states.

    In accordance with the represented model, every switching of any input signal

    activates one of transitions, thus initiating the movement inside or outside the

    corresponding zone. Transition from one zone to another zone is performed without

    participation of the third zone, which holds zero state. Every transition process is

    completedbystablestatesetting.

    Dependingonthemodeledfunction,someswitchingscanprovetobenotrealized.

    Forthisreasonitispossiblethatsometransitions,aswellastheirchannels,disappear.

    Thiscircumstanceis reflectedin theobjectsof asynchronouslogic. Inthespecificzone

    configurationsonlyreal(active)transitionsaredisplayed.

    InTables2.21typicalzonemodelsarepresented.Thesemodelsareconstructedon

    thebasisoftheabovementionedtriggerfunctions(Examples16,p.2.8),whichareused

  • 8/8/2019 A Synchronous Logic Elements

    67/118

  • 8/8/2019 A Synchronous Logic Elements

    68/118

    V.Vasyukevich-Asynchronouslogicelements 68

    source function (Example1, p.2.8), zone model presented in Table2.21-1 is also

    characteristicofdynamicD-latch(p.2.5)andlambda-trigger(p.2.7).

    AccordingtoTable2.21-2,onlyfourinterzonetransitionscanbeused.Theyconnect

    both of the setting zones with the memory zone. Aside from the source function(Example2, p.2.8), the corresponding zone model is also characteristic of SR flip-flop

    (p.2.5)andC-element(p.2.7).

    Zone models presented in Table2.21-3 and Table2.21-4 are equally configured

    without transitions inside of the memory zone. Such a model is characteristic of the

    doubledbistablecell(p.2.7).

    In zone model presented in Table2.21-5, transition within the setting 1-zone is

    absent.ZonemodelinTable2.21-6doesnotuseintrazonetransitionsofthesettingzones.

    AnalogousconfigurationischaracteristicofstaticD-latch(p.2.5).

    Modeledtriggerdevisesareabletofunctionunderconditionswhenthenumberof

    transitionsisrestricted.Accordingtothetriggerfunctiondefinition(p.2.6),thefollowing

    transitionsmustbeobligatoryused:

    bothoftransitionsfromsettingzonesintothememoryzone; atleastonetransitionintosetting1-zoneaswellasinto0-zone.

    Four transitions is a minimal number of interzone transitions for any model of trigger

    function.Correspondingbasic configurationsarepresentedin Figure2.17. Basic models

    donotcontainoptionalintrazonetransitions.

    (1) (2) (3)

    Figure2.17.Basictransitionsofzonemodel.

    Basicmodel(1)exactlyconformstotransitionsthatareshowninTable 2.21-2.As

    forTable2.21-1,itsdatadiffersfromthebasicmodel(1)byoneintrazonetransition.In

    otherexemplarytransitiontables,incontrasttofourbasictransitions,allsixofthemare

    used.Similarconfigurationisformedasaresultofmergingthebasicmodels(2)and(3),

    1 0 1 0 1 0

  • 8/8/2019 A Synchronous Logic Elements

    69/118

    V.Vasyukevich-Asynchronouslogicelements 69

    that means(2plus3). Compositions, which combinebasic model(1) with model(2) as

    wellaswithmodel(3)containfiveinterzonetransitions.

    Zoneconfigurationsconformedtobasicmodel(1),aswellascompositionsformed

    by merging basicmodels (2) and (3), are symmetric from the memory zone standpoint.

    This symmetry is adequately revealed in Tables2.21. Interzone transitions are located

    symmetrically about the diagonal thatcrosses squares assign