· a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of...

30
Part-II/D/55 ( 3 ) P. T. O. 1. fdl oSKkfud us ijek.kq dk DokaVe ekMy fn;k (1) jnjQksMZ (2) cksj (3) U;wVu (4) QSjkMs 1. Who gave quantum model of atom (1) Rutherford (2) Bohr (3) Newton (4) Faraday 2. bl czãk.M ds vkdkj ds ckjs esa dkS u-lk dFku lR; gS (1) nl yk[k çdk’k o"kZ (2) ,d yk[k çdk’k o"kZ (3) lkS yk[k çdk’k o"kZ (4) nl gtkj çdk’k o"kZ 2. Size of Universe is about (1) ten million light years (2) one million light years (3) hundred million light years (4) ten thousand light years 3. fdlh fo|qr vkos’k ds fy, mlds ek=d dk vuqikr e.m.u. rFkk e.s.u. esa D;k gksxk (1) 10 10 3 × (2) 19 10 4.8 × (3) 10 1 (4) 30 1 3. The ratio of e.m.u. and e.s.u. of charge is (1) 10 10 3 × (2) 19 10 4.8 × (3) 10 1 (4) 30 1 4. fof’k"V Å"ek dk foeh; lw= gS (1) [ ] K T ML 2 2 (2) [ ] 1 2 2 K T ML (3) [ ] 1 2 2 K T ML (4) [ ] 1 2 2 K T L 4. Dimensions of specific heat are (1) [ ] K T ML 2 2 (2) [ ] 1 2 2 K T ML (3) [ ] 1 2 2 K T ML (4) [ ] 1 2 2 K T L 5. fdlh ç;ksx esa yEckbZ dks Øe’k% 18.425 cm, 7.21 cm rFkk 5.0 cm esa ekik x;k] rk s bu rhuksa yEckb;ksa ds ;ksx dks fy[k ldrs gSa (1) 30.635 cm (2) 30.64 cm (3) 30.63 cm (4) 30.6 cm 5. Three measurements are made as 18.425 cm, 7.21 cm and 5.0 cm. The addition should be written as (1) 30.635 cm (2) 30.64 cm (3) 30.63 cm (4) 30.6 cm 6. fdlh oxkZdkj IysV dh Hkqtk L ij ,d cy F yxrk gSA ;fn mlds ekiu esa çfr’kr =qfV L ds fy, 2% rFkk F ds fy, 4% gks] rks nkc ds fy, laHkkfor çfr’kr =q fV gS (1) 2 % (2) 4 % 6. A force F is applied on a square plate of Disc of side L. If percentage error in determination of L is 2% and that in F is 4% what is permissible error in pressure (1) 2 % (2) 4 % www.satishlecturer.com http://www.examcompetition.com/

Upload: others

Post on 14-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 3 ) P. T. O.

1. fdl oSKkfud us ijek.kq dk DokaVe ekMy fn;k

(1) jnjQksMZ (2) cksj

(3) U;wVu (4) QSjkMs

1. Who gave quantum model of atom

(1) Rutherford (2) Bohr

(3) Newton (4) Faraday

2. bl czãk.M ds vkdkj ds ckjs esa dkSu-lk dFku lR; gS

(1) nl yk[k çdk’k o"kZ

(2) ,d yk[k çdk’k o"kZ

(3) lkS yk[k çdk’k o"kZ

(4) nl gtkj çdk’k o"kZ

2. Size of Universe is about

(1) ten million light years

(2) one million light years

(3) hundred million light years

(4) ten thousand light years

3. fdlh fo|qr vkos’k ds fy, mlds ek=d dk vuqikr e.m.u. rFkk e.s.u. esa D;k gksxk

(1) 10103× (2) 19104.8 −×

(3) 101

(4) 301

3. The ratio of e.m.u. and e.s.u. of charge is

(1) 10103× (2) 19104.8 −×

(3) 101

(4) 301

4. fof’k"V Å"ek dk foeh; lw= gS

(1) [ ]KTML 22 −

(2) [ ]122 KTML −−

(3) [ ]122 KTML −

(4) [ ]122 KTL −−

4. Dimensions of specific heat are

(1) [ ]KTML 22 −

(2) [ ]122 KTML −−

(3) [ ]122 KTML −

(4) [ ]122 KTL −−

5. fdlh ç;ksx esa yEckbZ dks Øe’k% 18.425 cm, 7.21 cm rFkk 5.0 cm esa ekik x;k] rks bu rhuksa yEckb;ksa ds ;ksx dks fy[k ldrs gSa (1) 30.635 cm (2) 30.64 cm

(3) 30.63 cm (4) 30.6 cm

5. Three measurements are made as 18.425

cm, 7.21 cm and 5.0 cm. The addition should be written as

(1) 30.635 cm (2) 30.64 cm

(3) 30.63 cm (4) 30.6 cm

6. fdlh oxkZdkj IysV dh Hkqtk L ij ,d cy F yxrk gSA ;fn mlds ekiu esa çfr’kr =qfV L ds fy, 2% rFkk F ds fy, 4% gks] rks nkc ds fy, laHkkfor çfr’kr =qfV gS

(1) 2 % (2) 4 %

6. A force F is applied on a square plate of Disc of side L. If percentage error in determination of L is 2% and that in F is 4% what is permissible error in pressure

(1) 2 % (2) 4 %

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 2:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 4 )

(3) 6 % (4) 8 % (3) 6 % (4) 8 %

7. dksbZ fi.M fdlh le; ;fn xfr’khy gks] rks fHkUu esa ls dkSu 'kwU; gks ldrk gS

(1) nwjh

(2) pky

(3) foLFkkiu

(4) buesa ls dksbZ ugha

7. Which of the following can be zero, when a particle is in a motion for some time

(1) distance

(2) speed

(3) displacement

(4) none of them

8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS

(1) ges’kk ,d ls de

(2) ges’kk ,d ds cjkcj

(3) ges’kk ,d ls vf/kd

(4) ,d ds cjkcj ;k ,d ls de

8. The numerical ratio of displacement to distance is

(1) always less than one

(2) always equal to one

(3) always more than one

(4) equal to or less than one

9. nks fi.M A rFkk B ,d gh txg ls ,d leku Roj.k 22m/s ls fojkekoLFkk ls pyuk çkjaHk djrs gSaA ;fn B ,d lsd.M ckn pyuk çkjaHk djrk gS rks vxys ,d lsd.M esa nksuksa ds chp dh nwjh gksxh

(1) 1 eh0 (2) 2 eh0

(3) 3 eh0 (4) 4 eh0

9. Two bodies A and B start from rest and from the same point with a uniform acceleration of 22m/s . If B starts one second later, then the two bodies are separated, at the end of the next second, by

(1) 1 m (2) 2 m

(3) 3 m (4) 4 m

10. fdlh ckWy dks dksbZ vkneh Å/okZ/kj Åij dh vksj Qsadrk gSA 6 lsd.M ckn iqu% ckWy mlds gkFkksa esa vk tkrk gSA rks bl nkSjku ckWy kjk vf/kdre Å/okZ/kj Å¡pkbZ r; djsxk (yhft, % g = 10m/ 2s )

(1) 10 eh0 (2) 30 eh0

(3) 45 eh0 (4) 90 eh0

10. A ball thrown up is caught by the thrower 6 s after start. The height to which the ball has risen is (take g = 10 m/ 2s )

(1) 10 m (2) 30 m

(3) 45 m (4) 90 m

11. fdlh oLrq kjk ewy fcUnq ls + x−vk dh vksj xfr’khy gksus ls mlds kjk r; dh xbZ nwjh dk lehdj.k x = 8t − 23t gSA rks t = 0

11. A body moves in a straight line along

x-axis, its distance from the origin is given by the equation x = 8t − 23t . The average

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 3:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 5 ) P. T. O.

ls t = 4 s rd ds fy, vkSlr osx gS

(1) 2 m/s (2) − 16 m/s

(3) − 4 m/s (4) 5 m/s

velocity in the interval from t = 0 to t = 4 s is

(1) 2 m/s (2) − 16 m/s

(3) − 4 m/s (4) 5 m/s

12. nks oLrqvksa dks Å/okZ/kj Åij dh vksj Qsadrs gSaA ;fn muds çkjfEHkd osxksa dk vuqikr 2 : 3 gS] rks muds kjk r; dh xbZ vf/kdre Å¡pkbZ dk vuqikr gksxk

(1) 2 : 3 (2) 4 : 9

(3) 1 : 1 (4) 2 : 3

12. Two bodies are thrown vertically

upwards with their initial speeds in the ratio 2 : 3. Then the ratio of the maximum heights attained by them is

(1) 2 : 3 (2) 4 : 9

(3) 1 : 1 (4) 2 : 3

13. ,d dkj ds osx 10 m/s gS rks 25 m nwjh r; djus ds ckn dkj #d tkrh gS rks mldk Roj.k gksxk

(1) 2m/s2− (2) 2m/s4−

(3) 2m/s2− (4) 2m/s61−

13. The acceleration of a car that comes to

stop from a velocity of 10 m/s in distance of 25 m is

(1) 2m/s2− (2) 2m/s4−

(3) 2m/s2− (4) 2m/s61−

14. ,d dkj igys vk/ks le; esa 40 fdeh/?kaVk ds osx ls rFkk nwljs vk/ks le; esa 60 fdyks/?kaVk ds osx ls pydj iwjh nwjh r; djrk gSA rks dkj dh vkSlr pky gS

(1) 40 fdeh/?kaVk (2) 48 fdehs/?kaVk

(3) 50 fdeh/?kaVk (4) 60 fdeh/?kaVk

14. A car covers the first half of the distance between two places at 40 km/hr and the other half at 60 km/hr. The average speed of the car is

(1) 40 km/hr (2) 48 km/hr

(3) 50 km/hr (4) 60 km/hr

15. ;fn nks lfn’k jkf’k;ksa dk ifj.kke vkil esa cjkcj gks rFkk mldk ifj.kkeh lfn’k dk Hkh ifjek.k mlds cjkcj gks rks nksuksa lfn’kksa ds chp dk dks.k gS

(1) 45° (2) 75°

(3) 90° (4) 120°

15. Two vectors have their resultant equal to

either of them. The angle between them is

(1) 45° (2) 75°

(3) 90° (4) 120°

16. nks lfn’k kj3i2a ++−= rFkk

k4j2ib −+= ds chp dk dks.k gS

(1) 0° (2) 90°

(3) 180° (4) dksbZ ugha

16. The angle between two vectors

kj3i2a ++−= and k4j2ib −+=

(1) 0° (2) 90°

(3) 180° (4) None

17. ;fn BABA −=+ rks lfn’k A

17. The vectors A and B are such that

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 4:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 6 )

rFkk B ds chp dk dks.k gS

(1) 45° (2) 60°

(3) 75° (4) 90°

BABA −=+ then angle between

the two vectors will be

(1) 45° (2) 60°

(3) 75° (4) 90°

18. ,d uko i`Foh ds lkisk ji ˆ4ˆ3 + ds osx ls xfr djrk gS rFkk unh dk osx i`Foh dh lrg ij ji ˆ4ˆ3 −− gS rks uko dk osx unh ds osx ds lkisk gS

(1) i8 (2) ji ˆ8ˆ6 −−

(3) ji ˆ8ˆ6 + (4) 25

18. A boat is moving with a velocity ji ˆ4ˆ3 +

with respect to ground. The water in the river is moving with a velocity ji ˆ4ˆ3 −− with respect to ground. The relative velocity of the boat with respect to water is

(1) i8 (2) ji ˆ8ˆ6 −−

(3) ji ˆ8ˆ6 + (4) 25

19. ,d cy k10j8i6F +−= fdlh fi.M ij yxdj 1eh/ls2 ds Roj.k mRiUu djrk gS rks fi.M dk æO;eku gksxk

(1) 210 fdxzk (2) 102 fdxzk

(3) 10 fdxzk (4) 20 fdxzk

19. A force vector applied on a mass is

represented as k10j8i6F +−= and accelerates with 1m/ 2s . What will be the mass of body

(1) 210 kg (2) 102 kg

(3) 10 kg (4) 20 kg

20. nks lfn’kksa 5 rFkk 10 ek=d dk ifj.kkeh lfn’k dk ifjek.k laHko ugha gS (1) 7 (2) 8

(3) 5 (4) 2

20. Which of the following cannot be resultant of the vectors of magnitude 5 and 10

(1) 7 (2) 8

(3) 5 (4) 2

21. lfn’k j)θsinA(i)θcosA(A += fdlh

nwljs lfn’k B ij yEcor gS rks lfn’k B gS

(1) j)θsinB(i)θcosB( +

(2) j)θsinB(i)θcosB( +

(3) j)θcosB(i)θSinB( −

(4) j)θsinA(i)θcosA( −

21. Let jAiAA ˆ)θsin(ˆ)θcos( += be any

vector. Another vector B which is

normal to B is

(1) j)θsinB(i)θcosB( +

(2) j)θsinB(i)θcosB( +

(3) j)θcosB(i)θSinB( −

(4) j)θsinA(i)θcosA( −

22. ;fn RQP =+ rFkk lfn’kP ] Q rFkk R dk ifjek.k Øe’k% 5, 12 rFkk 13 ek=d dk gks rks lfn’k Q rFkk R ds chp dk

22. If vector P , Q and R have

magnitudes 5, 12 and 13 units respectively and RQP =+ , the angle

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 5:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 7 ) P. T. O.

dks.k gksxk

(1) ⎟⎠⎞

⎜⎝⎛−125

cos 1 (2) ⎟⎠⎞

⎜⎝⎛−135

cos 1

(3) ⎟⎠⎞

⎜⎝⎛−1312

cos 1 (4) ⎟⎠⎞

⎜⎝⎛−137

cos 1

between Q and R is

(1) ⎟⎠⎞

⎜⎝⎛−125

cos 1 (2) ⎟⎠⎞

⎜⎝⎛−135

cos 1

(3) ⎟⎠⎞

⎜⎝⎛−1312

cos 1 (4) ⎟⎠⎞

⎜⎝⎛−137

cos 1

23. ;fn BABA +=+ rks lfn’k A

rFkk B ds chp dk dks.k gS (1) 90° (2) 120°

(3) 0° (4) 60°

23. If BABA +=+ , then angle between vector A and B will be (1) 90° (2) 120°

(3) 0° (4) 60°

24. ;fn fdlh fi.M ij yxk cy dk ifjek.k rFkk fn’kk esa dksbZ ifjorZu uk gks rks fi.M ds xfr dk iFk gksxk

(1) ljy js[kk (2) o`Ùkkdkj

(3) nh?kZ oÙkkdkj (4) buesa ls dksbZ ugha

24. The path of a particle moving under the

influence of a force fixed in magnitude and direction is

(1) straight line (2) circle

(3) ellipse (4) none of them

25. ,d fØdsV ds xsan dks Å/okZ/kj Åij dh vksj 19.6 m/s ds osx ls Qsadk tkrk gS rks xsan kjk r; dh xbZ vf/kdre Å¡pkbZ gksxh

(1) 9.8 eh (2) 19.6 eh

(3) 29.4 eh (4) 39.2 eh

25. A cricket ball is thrown up with a speed

of 19.6 m/s. The maximum height it can reach is

(1) 9.8 m (2) 19.6 m

(3) 29.4 m (4) 39.2 m

26. nks xsanksa dks kSfrt ds lkFk 30° rFkk 45° ij çksfir fd;k tkrk gS rFkk nksuksa xsan ds vf/kdre Å¡pkbZ ij osx leku gks rks muds çksfir osx dk vuqikr gS

(1) 2:3 (2) 2 : 1

(3) 3:2 (4) 3 : 2

26. Two balls are projected making an angle

of 30° and 45° respectively with the horizontal. If both have same velocity at the highest points of their paths, then the ratio of their velocities of projection is

(1) 2:3 (2) 2 : 1

(3) 3:2 (4) 3 : 2

27. fdlh fi.M dks 30° ij kSfrt ds lkFk çksfir fd;k tkrk gS rks muds xfrt ÅtkZ esa ifjorZu çkjafHkd fcUnq rFkk iqu% lrg ij vkus esa fdruk gksxk

(1) 'kwU; (2) 30%

(3) 60% (4) 100%

27. A projectile is fired at 30°, neglecting air

friction, the change in kinetic energy when it returns to the ground will be

(1) zero (2) 30%

(3) 60% (4) 100%

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 6:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 8 )

28. fdlh oLrq dks kSfrt ds lkFk θ dks.k ij çksfir fd;k tkrk gS rFkk mudk vf/kdre Å/okZ/kj Å¡pkbZ h gks rks mM~M;u dky gksxk

(1) g

θsinh2 (2)

g

θsinh22

(3) 2g

2h (4)

gh2

28. A stone thrown at an angle θ to the

horizontal reaches a maximum height h. The time of flight of the stone is

(1) g

θsinh2 (2)

g

θsinh22

(3) 2g

2h (4)

gh2

29. ,d cUnwd dk æO;eku 5 kg gSA mlds kjk 50 gm ds xksyh dks 400 m/s ds osx ls 30 xksyh çfr feuV dh nj ls NksM+k tkrk gS rks cUnwd dks viuh txg j[kus ds fy, fdruk cy cUnwd ij yxkuk gksxk

(1) 10 N (2) 5 N

(3) 15 N (4) 30 N

29. A machine gun has a mass 5 kg. It force

50 gm bullets at the rate of 30 bullets per minute at a speed of 400 m/s. What force is required to keep the gun in position

(1) 10 N (2) 5 N

(3) 15 N (4) 30 N

30. ,d oLrq dks fojkekoLFkk ls 1 m f=T;k okys mHkjs o`Ùkh; iFk ij yq<+dk;k tkrk gSA lrg dks ?k"kZ.kjfgr ekudj oLrq dks lrg ij vkus ij mldk osx gksxk

(1) 2 m/s (2) 0.5 m/s

(3) 4.43 m/s (4) 19.6 m/s

30. A body of mass 2 kg slides down a curved track, which is quadrant of a circle of radius 1 m. All the surface are frictional if two body starts from rest, its speed at bottom of track is

(1) 2 m/s (2) 0.5 m/s

(3) 4.43 m/s (4) 19.6 m/s

31. ,d oLrq dks Å/okZ/kj Åij dh vksj Qsadrs gSa rks muds laosx esa ifjorZu fdruk gksxk ¼m = æO;eku, s = lsd.M] h = Å/okZ/kj Å¡pkbZ½

(1) mgs (2) /smg2

(3) mg (4) 2 mgh

31. An object of mass m is thrown vertically upwards. At what rate will its momentum change ( S = Second, h = vertical height)

(1) mgs (2) /smg2

(3) mg (4) 2 mgh

32. rhu oLrq A, B rFkk C dk æO;eku Øe’k% 2 kg, 5 kg rFkk 10 kg gSA ;fn rhuksa dh xfrt ÅtkZ leku gks rks fdl oLrq dk laosx vf/kdre gksxk

(1) oLrq A

(2) oLrq B

(3) oLrq C

32. Three bodies A, B and C have masses of 2 kg, 5 kg and 10 kg respectively. If all the bodies have equal kinetic energies, then which body has a greater momentum

(1) body A

(2) body B

(3) body C

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 7:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 9 ) P. T. O.

(4) dqN dgk ugha tk ldrk (4) cannot be predicted

33. ,d oLrq ftldk æO;eku 1 kg gS ftlij 6 N dk cy yxkdj muesa 30 m/s dk osx çnku fd;k tkrk gSA rks fdrus le; rd oLrq ij cy yxk gS

(1) 10 lsd.M (2) 8 lsd.M

(3) 7 lsd.M (4) 5 lsd.M

33. A force of 6 N acts on a body of mass

1 kg and during this time, the body attains a velocity of 30 m/s. The time for which the force acts on a body is

(1) 10 seconds (2) 8 seconds

(3) 7 seconds (4) 5 seconds

34. ;fn jkdsV dk osx lrg ds lkisk 1v rFkk jkdsV kjk fudyrs xSl dk osx lrg ds lkisk 2v gks rks xSl dk osx jkdsV ds lkisk fdruk gksxk

(1) 2v (2) 21 vv +

(3) 21 vv − (4) 21 vv ×

34. The velocity of rocket with respect to ground is 1v and velocity of gasses ejecting from rocket with respect to ground is 2v . Then velocity of gasses with respect to rocket is given by

(1) 2v (2) 21 vv +

(3) 21 vv − (4) 21 vv ×

35. nks fi.M fojkekoLFkk ls ,d nwljs dh vksj lkisk cy ds dkj.k xfreku gSA oLrq A dk osx v rFkk oLrq B dk 2v gks rks bl le; æO;eku dsUæ dk osx fdruk gksxk

(1) 'kwU; (2) 1.5 v

(3) 1 v (4) 3.0 v

35. Two particles initially at rest moves

towards each other under the mutual attraction. At the instant when the speed of A is v and the speed of B is 2v, the speed of the centre of mass of the system is

(1) zero (2) 1.5 v

(3) 1 v (4) 3.0 v

36. ,d 12 kg dk ce nks Hkkxksa esa foLQksV ds dkj.k cV tkrk gSA igys 8 kg ds Hkkx dk osx 6 m/s gks rks nwljs Hkkx dh xfrt ÅtkZ fdruh gksxh

(1) 48 J (2) 32 J

(3) 24 J (4) 288 J

36. A bomb of 12 kg explodes into two

pieces of masses 4 kg and 8 kg. The velocity of 8 kg mass is 6 m/s. The kinetic energy of the other mass is

(1) 48 J (2) 32 J

(3) 24 J (4) 288 J

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 8:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 10 )

37. nks oLrq ftldk æO;eku Øe’k% 3 kg rFkk 4 kg ,d ?k"kZ.kjfgr iqyh ds lkFk yVdk fn;k x;k gSA rks æO;eku jfgr Mksjh kjk yVds æO;ekuksa ds fy, ruko fdruk gksxk

(fyft, % g = 10m/ 2s )

(1) 7

120 N (2)

7240

N

(3) 7

480 N (4)

7360

N

37. Two bodies of masses 3 kg and 4 kg are

tied to the ends of a massless string. This string passes over a frictionless pulley. The tension in the string is (take g = 10m/ 2s )

(1) 7

120 N (2)

7240

N

(3) 7

480 N (4)

7360

N

38. ,d 10 kg æO;eku okys fi.M dks ,d jQ lrg ij j[kk x;k gSA bl fi.M ij 100 N dk cy kSfrt fn’kk esa yxkus ij mRiUu Roj.k gksxkA (µ = 0.5, g = 10m/ 2s )

(1) 'kwU; (2) 10 m/ 2s

(3) 5 m/ 2s (4) 5.2 m/ 2s

38. A 100 N force acts horizontally on a

block of 10 kg placed on horizontal rough table of coefficient of friction µ = 0.5 (takes g = 10m/ 2s ). The acceleration of the block is

(1) zero (2) 10 m/ 2s

(3) 5 m/ 2s (4) 5.2 m/ 2s

39. ,d o`Ùkkdkj iFk ij ,d dkj 10 m/s dh pky ls vklkuh ls xfr djus ds fy, o`Ùkkdkj iFk dh f=T;k fdruh gksxh \ ;fn µ = 0.5 (fyft, % g = 10m/ 2s )

(1) 10 eh0 (2) 4 eh0

(3) 5 eh0 (4) 20 eh0

39. A car turns a corner on a slippery road at a constant speed of 10 m/s. If coefficient of friction is 0.5, the minimum radius of the arc in which car turns is (take g = 10m/ 2s )

(1) 10 m (2) 4 m

(3) 5 m (4) 20 m

40. ,d fu;r cy ds dkj.k ,d oLrq fojkekoLFkk ls 250 m dh nwjh 10 lsd.M esa r; djrk gSA ;fn oLrq dk æO;eku 0.9 kg gS rks ml cy dk eku gksxk

(1) 3 N (2) 3.5 N

(3) 4 N (4) 4.5 N

40. A constant force acts on a body of mass

0.9 kg at rest for 10 s. If the body moves a distance of 250 m, the magnitude of the force is

(1) 3 N (2) 3.5 N

(3) 4 N (4) 4.5 N

41. ,d Hkkjghu Mksjh kjk nks fi.M dks fdlh ?k"kZ.kjfgr iqyh ls yVdk nsus ij muds Roj.k dk vuqikr g/8 gks rks fi.M ds æO;eku

1m rFkk 2m dk vuqikr gksxk

(1) 8 : 1 (2) 9 : 7

41. A light string passing over a smooth light

pulley connects two blocks of masses

1m and 2m vertically. If the acceleration of the systems is g/8, then the ratio of masses is

(1) 8 : 1 (2) 9 : 7

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 9:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 11 ) P. T. O.

(3) 4 : 3 (4) 5 : 3 (3) 4 : 3 (4) 5 : 3

42. fdlh iEi dh 'kfDr 2 kw gks rks 10 m dh Å¡pkbZ rd ikbi esa ty dks ,d feuV esa igq¡pkus esa fdrus ty yxsxk

(1) 2000 yhVj (2) 1000 yhVj

(3) 100 yhVj (4) 1200 yhVj

42. The power of a water pump is 2 kw. If

g=10 m/ 2s , the amount of water it can raise in one minute to a height of 10 m is

(1) 2000 litres (2) 1000 litres

(3) 100 litres (4) 1200 litres

43. ,d fy¶V dh 'kfDr 10 kw gSA fdrus le; esa fy¶V ,d 200 æO;eku ds vknfe;ksa dks 40 ehVj dh Å¡pkbZ ij ys tk ldk

(fyft, % g = 10m/ 2s )

(1) 4 s (2) 5 s

(3) 8 s (4) 10 s

43. A lift develops 10 kw of power. How

much time will it take to lift a man of 200 kg to a height of 40 m (take : g = 10m/ 2s ) (1) 4 s (2) 5 s

(3) 8 s (4) 10 s

44. ;fn xfrt ÅtkZ esa 0.1% dh o`f) gks rks laosx esa fdrus çfr’kr dh o`f) gksxh

(1) 0.05 % (2) 0.1 %

(3) 1.0 % (4) 10 %

44. If K. E. of a body increases by 0.1 %, the

percentage increase in its momentum will be

(1) 0.05 % (2) 0.1 %

(3) 1.0 % (4) 10 %

45. ,d 2 kg æO;eku okyk fi.M ,d o`Ùkkdkj iFk ij xfr djrk gS ftldh f=T;k 1m gSA ;fn blds dksf.k; pky 2 π rad/s, gks rks vfHkdsUæ cy fdruk gksxk (1) 4 π N (2) 4 2π N

(3) 8 π N (4) 8 2π N

45. A particle of mass 2 kg is moving along

a circle path of radius 1m. If its angular speed is 2 π rad/s, the centripetal force will be (1) 4 π N (2) 4 2π N

(3) 8 π N (4) 8 2π N

46. fdlh oLrq dk æO;eku dsUæ dk osx fuHkZj djrk gS

(1) dqy ckg~; cy ij

(2) dqy vkarfjd cy ij

(3) nksuksa (a) rFkk (b) ds ;ksx ij

(4) buesa ls dksbZ ugha

46. The motion of the centre of mass

depends on

(1) total external forces

(2) total internal forces

(3) sum of (a) and (b)

(4) none of these

47. ;fn fdlh fudk; ij yxus okyk dqy cyksa dk ;ksx 'kwU; gks rks fuEu esa ls dkSu ifjorZu’khy gS

(1) fudk; dk laosx

47. If the net force acting on the system of particles is zero, then which of the following may vary

(1) momentum of the system

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 10:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 12 )

(2) æO;eku dsUæ dh fLFkfr

(3) æO;eku dsUæ dk osx

(4) fudk; dh xfrt ÅtkZ

(2) position of centre of mass

(3) velocity of centre of mass

(4) K. E. of the system

48. ;fn nks oLrq ftldk æO;eku Øe’k% 1 kg rFkk 2 kg gS rFkk bldk funsZ’kkad (1, 2) rFkk (−1, 3) gks rks æO;eku dsUæ dk D;k funsZ’kkad gksxk

(1) ( )25,0

(2) ( )0,25

(3) ( )38

31 ,−

(4) buesa ls dksbZ ugha

48. Two bodies of mass 1 kg and 2 kg are

located at (1, 2) and (−1, 3) respectively. The co-ordinates of the centre of mass are

(1) ( )25,0

(2) ( )0,25

(3) ( )38

31 ,−

(4) none of these

49. fdlh oLrq dh tM+Ro vk?kw.kZ fuHkZj djrk gS

(1) vk;ru ij

(2) ÅtkZ ij

(3) lrg ds ks=Qy ij

(4) æO;eku vkSj blds vkdkj ij

49. The moment of Inertia of a body depends

on its

(1) volume

(2) energy

(3) surface area

(4) mass and size

50. ,d xksyh; fi.M 1 kg dks ,d ?kw.kZu vk ds pkjksa vksj 3 lseh f=T;k ds Mksjh ls ?kqek;k tkrk gSA ;fn bldk dksf.k; osx 50 rad/s gks rks xfrt ÅtkZ fdruh gksxh

(1) 450 J (2) 45 J

(3) 90 J (4) 0.45 J

50. A spherical solid ball of 1 kg mass and

radius 3 cm is rotating about an axis passing through its centre with an angular velocity of 50 rad/s. K. E. of rotation is

(1) 450 J (2) 45 J

(3) 90 J (4) 0.45 J

51. ,d Bksl xksyh; æO;eku okys fi.M dk mlds lrg ij yEcor vk ds lkisk tM+Ro vk?kw.kZ fdruk gksxk

(1) 2MR32 (2) 2MR

52

(3) 2MR57 (4) 2MR

35

51. Moment of Inertia of a solid sphere about

an axis tangential to its surface is

(1) 2MR32 (2) 2MR

52

(3) 2MR57 (4) 2MR

35

52. ;fn R f=T;k okys ,d ifg;s dks θ dks.k ls ?kqek fn;k tk; rFkk ifg;k s nwjh r; djrk gks rks

52. A wheel of radius R rotates through an

angle θ about the centre of the wheel. The distance s moved by the wheel is

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 11:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 13 ) P. T. O.

(1) θRS = (2) S = Rθ

(3) 22RθS = (4) 2θ

RS =

(1) θRS = (2) S = Rθ

(3) 22RθS = (4) 2θ

RS =

53. ,d ifg;k ?kw.kZu xfr djrs gq, 2 feuV esa og fojkekoLFkk ls pydj 240 rps dh pky çkIr dj ysrk gSA rks bldk Roj.k gksxk

(1) 2rps5 (2) 2rps2

(3) 2rps8 (4) 2rps11

53. A wheel starts from rent and acquires a

rotational speed of 240 rps in 2 min. Its acceleration is

(1) 2rps5 (2) 2rps2

(3) 2rps8 (4) 2rps11

54. ;fn ,d xksyk ?kw.kZu xfr djrk gS rks mlds LFkkukarfjr ÅtkZ rFkk ?kw.kZu ÅtkZ dk fdruk vuqikr gksxk (1) 7 : 10 (2) 2 : 5

(3) 10 : 7 (4) 5 : 7

54. If a sphere is rolling, the ratio of the

translational energy to total kinetic energy is given by

(1) 7 : 10 (2) 2 : 5

(3) 10 : 7 (4) 5 : 7

55. ;fn ?kw.kZu xfr djrs gq, fMLd ds Åij /khjs-/khjs ckyq fxjkbZ tk, rks fMLd dk dksf.k; osx gksxk

(1) de

(2) vf/kd

(3) ,d leku fu;r

(4) dksbZ ugha

55. When sand is poured on a rotational motion on a rotating disc, its angular velocity will be

(1) decreases

(2) increases

(3) remain constant

(4) none of these

56. ,d vkneh ?kwers gq, Vscqy ij gkFk dks eksM+dj cSBk gSA ;fn ,dk,d vkneh vius nksuksa gkFk dks QSyk ys rks Vscqy dk dksf.k; pky gksxk

(1) vf/kd

(2) de

(3) ,d leku fu;r

(4) dqN dgk ugha tk ldrk

56. A man is sitting with folded hands on a revolving table. Suddenly he stretches his arms, angular speed of table would

(1) increase

(2) decrease

(3) remain the same

(4) nothing can be said

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 12:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 14 )

57. ,d ,dleku NM+ ftldh yEckbZ L gks rks mlds æO;eku dsUæ ds ifjr% blds xkbjs’ku dh f=T;k fdruh gksxh

(1) 12

L (2)

12L2

(3) 3

L (4)

2

L

57. The radius of gyration of a uniform rod of

length L about an axis passing through its centre of mass is

(1) 12

L (2)

12L2

(3) 3

L (4)

2

L

58. ;fn i`Foh ,dk,d fldqM+ tk; vkSj bldh f=T;k ,d frgkbZ de gks tk; rks xq:Roh; Roj.k dk eku gksxk

(1) 32

g (2) 23

g

(3) 94

g (4) 49

g

58. If earth suddenly shrinks by one third of its present radius, the acceleration due to gravity will be

(1) 32

g (2) 23

g

(3) 94

g (4) 49

g

59. ,d vkneh dk Hkkj iFoh dh lrg ij 600 N gS budk Hkkj pk¡n dh lrg ij fdruk gksxk

(1) 'kwU; (2) 100 N

(3) 600 N (4) 3600 N

59. The weight of a person on earth is 600 N.

His weight on moon will appear as

(1) zero (2) 100 N

(3) 600 N (4) 3600 N

60. ,d oLrq dk Hkkj i`Foh dh lrg ij W gSA bl oLrq dk Hkkj i`Foh ds vUnj dsUæ ls vk/kh f=T;k ij fdruk gksxk

(1) 8W

(2) 4W

(3) 2W

(4) W

60. The weight of a body at earth’s surface is

W. At a depth half way to the centre of the earth it will be

(1) 8W

(2) 4W

(3) 2W

(4) W

61. ,d oLrq dk Hkkj i`Foh dh lrg ij 700

gwt gSA ml xzg ij fdruk Hkkj gksxk tcfd

xzg dk æO;eku 71 xq.kk i`Foh dk æO;eku

rFkk xzg dh f=T;k 21 xq.kk i`Foh dh f=T;k

ds cjkcj gS

(1) 50 gwt (2) 200 gwt

(3) 300 gwt (4) 400 gwt

61. A body weights 700 gwt on the surface of

the earth. How much will it weight on the surface of the planet whose mass is

71 and radius

21 of the earth

(1) 50 gwt (2) 200 gwt

(3) 300 gwt (4) 400 gwt

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 13:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 15 ) P. T. O.

62. i`Foh lrg ls Åij i`Foh dh f=T;k ds cjkcj Å¡pkbZ ij xq:Roh; Roj.k dk eku gksxk

(1) g (2) 2g

(3) 4g (4) 8

g

62. At a height equal to earth’s radius, above the earth surface, the acceleration due to gravity is

(1) g (2) 2g

(3) 4g (4) 8

g

63. xq:Roh; cy dk eku de gksxk

(1) Hkwe/; js[kk ij

(2) /kzqo ij

(3) Hkwe/; js[kk rFkk /kzqo ds chp

(4) buesa ls dksbZ ugha

63. Force of gravity is least at

(1) the equator

(2) the pole

(3) a point is between equator and pole

(4) none of these

64. i`Foh dh lrg ij xq:Roh; fLFkfrt ÅtkZ gS ¼M = i`Foh dk æO;eku] R = i`Foh dh f=T;k½

(1) R2

GM− (2) − gR

(3) + gR (4) R2

GM+

64. Gravitational potential on the surface of

the earth is (M = mass of the earth, R = radius of the earth)

(1) R2

GM− (2) − gR

(3) + gR (4) R2

GM+

65. ,d gh dkk esa nks mixzg i`Foh ds pkjksa rjQ pDdj yxk jgs gSA ;fn ,d mixzg dk æO;eku nwljs mixzg dk 100 xq.kk Hkkjh gks rks muds vkorZdky dk vuqikr gS

(1) 1 : 1 (2) 10 : 1

(3) 100 : 1 (4) 1 : 100

65. Two satellites are orbiting around the

earth in circular orbits of the same radius. One of them is 100 times greater in man than the other. Their period of revolution are in the ratio

(1) 1 : 1 (2) 10 : 1

(3) 100 : 1 (4) 1 : 100

66. xq:Roh; æO;eku rFkk tM+Ro æO;eku dk vuqikr fdruk gksxk

(1) 21 (2) 1

(3) 2 (4) dksbZ fuf’pr ugha

66. What is the ratio of gravitational mass

and inertial mass

(1) 21 (2) 1

(3) 2 (4) not fixed

67. i`Foh ds Hkwe/; js[kk ls /kzqo dh vksj tkus ij mlds g ds eku esa ifjorZu gksxk

67. As we go from equator to the pole the

value of g

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 14:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 16 )

(1) ,d leku fu;r

(2) de

(3) vf/kd

(4) 45° rd de gksxk

(1) remains the same

(2) decreases

(3) increases

(4) decreases upto a latitude of 45°

68. fdlh mixzg ds vkorZdky T gks rks mudk xfrt ÅtkZ lekuqikrh gksxk

(1) 3

21

T

(2) T1

(3) 2

1

T (4)

31

T

68. In a satellite of the time of revolution is T, then K. E. is proportional to

(1) 3

21

T

(2) T1

(3) 2

1

T (4)

31

T

69. fdlh Ñf=e mixzg dh vkh; pky fuHkZj ugha djrh gS

(1) i`Foh dk æO;eku

(2) mixzg dk æO;eku

(3) i`Foh dh f=T;k

(4) xq:Roh; Roj.k g

69. Orbital velocity of an artificial satellite

does not depends upon

(1) mass of earth

(2) mass of satellite

(3) radius of earth

(4) acceleration due to gravity

70. fdlh xzg ds fy, iyk;u osx ev gSA ;fn xzg dh f=T;k fu;r gks ijUrq æO;eku pkj xq.kk gks tk, rks mlds iyk;u osx gksxk (1) 4 (2) 2 ev

(3) ev (4) 2

ve

70. Escape velocity on a planet is ev . If the

radius of planet remain same and mass becomes 4 times, the escape velocity becomes

(1) 4 (2) 2 ev

(3) ev (4) 2

ve

71. fdlh oLrq dks mlds iyk;u osx ls de osx ij çksfir fd;k tk; rks mlds xfrt ÅtkZ rFkk fLFkfrt ÅtkZ dk ;ksx ges’kk (1) /kukRed gksxk

(2) 'kwU; gksxk

(3) _.kkRed gksxk

(4) buesa ls dksbZ ugha

71. In a missile launched with a velocity less

than escape velocity, the sum of its K. E. and P. E. is always

(1) + ve

(2) zero

(3) − ve

(4) none of them

72. rkieku ds o`f) dk ;ax çR;kLFkrk xq.kkad ij D;k çHkko iM+sxk

(1) ?kVsxk

(2) c<+sxk

72. With rise in temperature the Young’s

modulus of elasticity

(1) decreases

(2) increases

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 15:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 17 ) P. T. O.

(3) ,dk,d ifjorZu

(4) ,d leku fu;r

(3) changes erratically

(4) remains unchanged

73. fdlh oLrq esa vkdkj esa ifjorZu fd;k tk ldrk gS

(1) n`<+rk foÑfr

(2) n`<+rk çfrcy

(3) ekufld foÑfr

(4) vuqçLFk foÑfr

73. The change in the shape of a regular

body is due to

(1) shearing strain

(2) bulk strain

(3) mental strain

(4) longitudinal strain

74. ikblu fu;rkad dk S. I. esa ek=d gksxk (1) J/m (2) 2m/N

(3) 2Nm (4) ek=d jfgr

74. S. I. unit of Poission’s ratio is

(1) J/m (2) 2m/N

(3) 2Nm (4) unit less

75. vk;rukRed çR;kLFkrk dks mRiUu fd;k tk ldrk gS

(1) dsoy Bksl esa

(2) dsoy æo esa

(3) dsoy xSl esa

(4) rhuksa voLFkk esa

75. The volume elasticity is possessed by

(1) solid only

(2) liquid only

(3) gas only

(4) all the three states of matter

76. fdlh ruh gqbZ fLçax dh fLFkfrt ÅtkZ lekuqikrh gksxk

(1) cy fu;rkad ds oxZ ds

(2) c<+h gqbZ yEckbZ ds oxZ ds

(3) çkjafHkd yEckbZ ds oxZ ds

(4) buesa ls dksbZ ugha

76. The potential energy of a stretched

spring is proportional to

(1) the square of the force content

(2) the square of amount of stretch

(3) the square of the original length

(4) none of these

77. nks lkcqu ds cqycqys ds f=T;kvksa dk vuqikr Øe’k% 2 : 1 gS rks muds vkarfjd nkc dk vuqikr gS (1) 1 : 2 (2) 1 : 4

(3) 2 : 1 (4) 4 : 1

77. Two soap bubbles have radii in the ratio

of 2 : 1. What is the ratio of excess pressure inside them

(1) 1 : 2 (2) 1 : 4

(3) 2 : 1 (4) 4 : 1

78. ,d R f=T;k okys cqycqys dks vkB NksVs-NksVs

78. A spherical liquid drop of radius R is

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 16:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 18 )

,d leku cqycqys esa foHkkftr fd;k tkrk gSA ;fn i`"B ruko T gS rks fd;k x;k dk;Z gksxk (1) TR 22 π (2) TR 23 π

(3) TR 24 π (4) TR 22 π

divided into eight equal droplets. If surface tension is T, then the work done in this process will be

(1) TR 22 π (2) TR 23 π

(3) TR 24 π (4) TR 22 π

79. fdlh lkcqu ds cqycqys dk O;kl 4 cm gks rks mlesa mifLFkr fLFkfrt ÅtkZ fdruh gksxh tcfd i`"B ruko T = 0.07 N/m gS (1) J4107 −× (2) J4105.3 −×

(3) J21076.1 −× (4) J3108.8 −×

79. The energy stored in a soap bubble of diameter 4 cm is (surface tension T = 0.07 N/m) nearly (1) J4107 −× (2) J4105.3 −×

(3) J21076.1 −× (4) J3108.8 −×

80. fdlh æO; dh ';kurk xq.kkad η dk eku rkieku ds lekuqikrh gks

(1) Tαη (2) T

1αη

(3) 2Tαη (4) 2T

1αη

80. How does the viscosity η of gases vary

with temperature

(1) Tαη (2) T

1αη

(3) 2Tαη (4) 2T

1αη

81. fdlh fLçax dk cy fu;rkad K gks rks mls yEckbZ 1l ls yEckbZ 2l esa ifjofrZr djus ij fdruk dk;Z djuk gksxk

(1) ( )21 llK − (2) ⎟⎟⎠

⎞⎜⎜⎝

⎛ +2

llK 21

(3) ( )21

22 llK − (4) ( )2

122 ll

2K

81. K is the force constant of spring. The

work done in increasing its extention from 1l to 2l will be

(1) ( )21 llK − (2) ⎟⎟⎠

⎞⎜⎜⎝

⎛ +2

llK 21

(3) ( )21

22 llK − (4) ( )2

122 ll

2K

82. fdlh vkn’kZ xSl dk 27°C rkieku ij mldh xfrt ÅtkZ 1E gks rks 327°C rkieku ij xfrt ÅtkZ gksxh

(1) 2

E1 (2) 2

E1

(3) 1E2 (4) 1E2

82. At 27°C temperature, the kinetic energy of an ideal gas is 1E . If the temperature is increased to 327°C, then kinetic energy would be

(1) 2

E1 (2) 2

E1

(3) 1E2 (4) 1E2

83. N. T. P. ij oxZ ek/; ewy osx ukbVªkstu v.kq ds fy, fdruk gksxk

(1) 33 m/s (2) 492 m/s

(3) 517 m/s (4) 546 m/s

83. R. M. S. velocity of nitrogen molecules at

N. T. P. is

(1) 33 m/s (2) 492 m/s

(3) 517 m/s (4) 546 m/s

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 17:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 19 ) P. T. O.

84. ikblu vuqikr dk eku ifjorZu’khy gS

(1) − 1 ls 21 rd

(2) − 43 ls −

21 rd

(3) −21 ls 1 rd

(4) 1 ls 2 rd

84. The value of Poission’s ratio (theoretically)

lies between

(1) − 1 to 21

(2) − 43 to −

21

(3) −21 to 1

(4) 1 to 2

85. ,d Mksjh ls 2 kg dk Hkkj yVdkus ij mldh yEckbZ esa 1% dh o`f) gksrh gSA rks js[kh; foÑfr gksxh

(1) 0.01 (2) 0.001

(3) 0.1 (4) 0.0001

85. The length of a wire increases by 1% on

suspending 2 kg wt from it. The linear strain in the wire is

(1) 0.01 (2) 0.001

(3) 0.1 (4) 0.0001

86. 22 g ds 2CO dks 27°C rkieku esa 16 g ds 2O dks 37°C rkieku esa fefJr fd;k tkrk

gS rks feJ.k dk rkieku gksxk (1) 30.5°C (2) 32°C

(3) 27°C (4) 37°C

86. The 22 g of 2CO at 27°C is mixed with 16 g of 2O at 37°C. The temperature of the mixture is (1) 30.5°C (2) 32°C

(3) 27°C (4) 37°C

87. ,d crZu esa iwjh rjg ls 4°C ij ikuh Hkj fn;k x;k gSA ;g ikuh Åij ls fxjus yxsxk ;fn

(1) tc bldks xeZ fd;k tkrk gS

(2) tc bldks B.Mk fd;k tkrk gS

(3) nksuksa B.Mk rFkk xeZ djus ij

(4) uk rks B.Mk djus ij vkSj uk gh xeZ djus ij

87. A beaker is completely filled with water at

4°C, it will overflow

(1) when heated, but not when cooled

(2) when cooled, but not when heated

(3) both when heated or cooled

(4) neither when heated nor when cooled

88. ,d cksry esa 0°C ij ty Hkj dj mls pk¡n dh lrg ij [kksy fn;k tk, rks

(1) ty te tk;sxk

(2) ty mcyus yxsxk

(3) ty 2H vkSj 2O esa cV tk;sxk

88. A bottle of water at 0°C is opened on the

surface of moon. What happens

(1) water freezes

(2) water will boil

(3) water decomposes in 2H and 2O

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 18:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 20 )

(4) dqN Hkh ugha gksxk (4) none of these happens

89. nl eksy dk vkn’kZ xSl dks 600 k rkieku ij 100 fyVj ls 10 fyVj rd nck;k tkrk gSA bl nkSjku fdruk dk;Z laHko gS (1) J1011.4 4× (2) J1011.4 4×−

(3) J104.11 4× (4) J104.11 4×−

89. Ten moles of an ideal gas at constant

temperature 600 k is compressed from 100 litres to 10 litres. The work done in the process is (1) J1011.4 4× (2) J1011.4 4×−

(3) J104.11 4× (4) J104.11 4×−

90. fdlh fudk; dks 50 twy Å"ek nsus ij rFkk fudk; ij 15 J dk dk;Z djus ij fudk; dh vkarfjd ÅtkZ esa ifjorZu gksxk (1) 35 J (2) 50 J

(3) 65 J (4) 15 J

90. If amount of heat given to a system be 50 J

and work done on the system be 15 J, then change in internal energy of the system is

(1) 35 J (2) 50 J

(3) 65 J (4) 15 J

91. ,d vkn’kZ ,d ijek.kqfod xSl dks A → B → C → D → A rd ys tkus esa fdruk dk;Z gksxk

(1) PV

(2) 0.5 PV

(3) 2 PV

(4) 3 PV

91. An ideal monoatomic gas is taken around

the cycle ABCDA as shown in P versus V curve. Work done during the cycle is

(1) PV

(2) 0.5 PV

(3) 2 PV

(4) 3 PV

92. jsfÝtjsVj dk;Z djrk gS

(1) Å"eh; batu dh rjg

(2) Å"eh; iEi dh rjg

(3) 'khryu dh rjg

(4) fo|qr batu dh rjg

92. A refrigerator acts as

(1) a heat engine

(2) a heat pump

(3) an air cooler

(4) an electric motor

93. dkuksZV batu tc Å"ek dks òksr ls vo’kksf"kr djrk gS rks òksr dk rkieku gS

(1) vf/kd

(2) de

(3) ,d leku fu;r

(4) dqN ugha dgk tk ldrk

93. In a Carnot engine, when heat is

absorbed from the source, temp of source

(1) increases

(2) decreases

(3) remain constant

(4) cannot say

v

p

O x

y D (V, 2P) C

(2V, 2P)

B (2V, P)(P, V)

A

v

p

O x

y D (V, 2P) C

(2V, 2P)

B(2V, P)(P, V)

A

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 19:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 21 ) P. T. O.

94. fdlh batu dh nkrk 31 gS rks bl batu

kjk vUos"k.k Å"ek dk eku fdyks dSyksjh esa gksxk

(1) 1400 cal (2) 700 cal

(3) 700 J (4) 1400 J

94. An engine has an efficiency of

31 . The

amount of work this engine can perform per kilocalorie of heat input is (1) 1400 cal (2) 700 cal

(3) 700 J (4) 1400 J

95. :nks"e çfØ;k ds nkSjku 10 eksy xSl dh vkarfjd ÅtkZ 50 twy rd de gksrh gSA bl nkSjku fdruk dk;Z laHko gS (1) + 50 J

(2) − 50 J

(3) zero

(4) cannot say

95. During adiabater expansion of 10 moles of a gas, the internal energy decreases by 50 J. Work done during the process is

(1) + 50 J

(2) − 50 J

(3) 'kwU;

(4) dqN dgk ugha tk ldrk

96. fdlh vkn’kZ ';ke oLrq dk rkieku 5% rd c<+k;k tkrk gS rks Å"eh; ÅtkZ fdruk c<+sxk (1) 25 % (2) 15 %

(3) 12.5 % (4) 21.55 %

96. If temperature of a hot black body is

raised by 5% heat energy radiated would increases by

(1) 25 % (2) 15 %

(3) 12.5 % (4) 21.55 %

97. fdlh /kkrq ds IysV dks 27°C ls c<+kdj 84°C rkieku dj fn;k tkrk gSA rks Å"eh; Å"ek dk eku fdl nj ls c<+sxk (1) pkj xquk rd

(2) nks xquk rd

(3) N% xquk rd

(4) vkB xquk rd

97. The temperature of a piece of metal is

increased from 27°C to 84°C. The rate at which energy is radiated is increased to

(1) four times

(2) two times

(3) six times

(4) eight times

98. ,d oLrq 60°C ls 50°C rd B.Mk gksus esa 10 feuV yxkrk gS rFkk mlds pkjksa rjQ ds ek/;e dk rkieku 25°C gS rks vxys 10 feuV esa fdruk rkieku gks tk;sxk (1) 48°C (2) 46°C

(3) 49°C (4) 42.85°C

98. A body takes 10 minutes to cool from

60°C to 50°C. If the temperature of surroundings is 25°C, then temperature of body after next 10 minutes will be (1) 48°C (2) 46°C

(3) 49°C (4) 42.85°C

99. nks rkjs x rFkk y Øe’k% ihyk rFkk uhyk jax dk çdk’k mRlftZr djrk gSA buesa ls fdl rkjk dk rkieku T;knk gksxk (1) x

99. Two stars x and y emit yellow and blue

lights respectively. Out of these, whose temperature, will be more

(1) x

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 20:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 22 )

(2) y

(3) fdlh dk ugha

(4) dqN ugha dg ldrs

(2) y

(3) no one

(4) cannot say

100. fdlh vkn’kZ xSl ds lerkih vk;rukRed çR;kLFkrk xq.kkad fdruk gksxk

(1) 32 P (2) P

(3) 23 P (4) 2 P

100. A given mass of an ideal gas is at pressure

P and absolute temperature T. The isothermal bulk modular of the gas is

(1) 32 P (2) P

(3) 23 P (4) 2 P

101. fdlh vkn’kZ xSl ds ,d eksy dh xfrt

ÅtkZ RT23

E = gS rks pC dk eku gksxk

(1) 0.5 R (2) 0.1 R

(3) 1.5 R (4) 2.5 R

101. The kinetic energy of one mole of an

ideal gas is RT23

E = . Then pC will be

(1) 0.5 R (2) 0.1 R

(3) 1.5 R (4) 2.5 R

102. fdlh ,d ijek.kqfod xSl dks :nks"e çØe kjk ,dk,d mldk vk;ru

81 rd de dj

fn;k tkrk gSA rks vafre nkc rFkk çkjafHkd nkc dk vuqikr fdruk gksxk ( )3

5=r

(1) 32 (2) 3

40

(3) 5

24 (4) 8

102. A monoatomic gas is suddenly

compressed to 81 th of its initial volume

adiabatically. The ratio of its final pressure to initial pressure is ( )3

5=r

(1) 32 (2) 3

40

(3) 524 (4) 8

103. fdlh ';ke oLrq kjk 2000 k rkieku ij vf/kdre mλ dk rjaxnS/;Z mRiUu fd;k tkrk gSA rks 3000 k rkieku ij fdrus rjaxnS/;Z dh Å"ek mRiUu gksxh

(1) m23λ (2) m3

(3) m8116

λ (4) m1681

λ

103. A black body has maximum wavelength

mλ at 2000 k. Its corresponding wave-length at 3000 k will be

(1) m23λ (2) m3

(3) m8116

λ (4) m1681

λ

104. fdlh fn;s x;s çØe esa vkn’kZ xSl ds fy, dW = 0 rFkk dQ < 0A rc bl xSl dk (1) rkieku de gksxk

(2) vk;ru vf/kd gksxk

(3) fudk; esa dksbZ ifjorZu ugha gksxk

(4) rkieku c<+sxk

104. In a given process on an ideal gas dW = 0

and dQ < 0. Then, for the gas

(1) the temperature will decreases

(2) the volume will increases

(3) the pressure will remain constant

(4) the temperature will increases

105. fdlh ljy vkorZ xfr esa rkkf.kd osx rFkk

105. The phase difference between the

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 21:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 23 ) P. T. O.

rkkf.kd Roj.k ds chp fdruk dykUrj gksxk

(1) 'kwU; (2) 2π

(3) π (4) 0.707 π

instantaneous velocity and acceleration of a particle executing S.H.M. is

(1) zero (2) 2π

(3) π (4) 0.707 π

106. fdlh ljy vkorZ xfr esa ;fn Roj.k dk eku c<+rk gS rks mlds vkorZdky dk eku (1) ?kVsxk

(2) c<+sxk

(3) ,d leku fu;r jgsxk

(4) vk/kk gks tk;xk

106. A particle is executing S.H.M. when its acceleration increases, its time period

(1) decreases

(2) increases

(3) remain constant

(4) becomes half

107. fdlh ljy vkorZ xfr ds fy, vf/kdre osx rFkk vf/kdre Roj.k Øe’k% 0v rFkk 0a gks rks mldk vk;ke fdruk gksxk

(1) 2

0

0

a

v (2) 00 av

(3) 2

0

0

v

a (4)

00

1va

107. The maximum acceleration of a body moving S.H.M. is 0a and maximum velocity is 0v . The amplitude is given by

(1) 2

0

0

a

v (2) 00 av

(3) 2

0

0

v

a (4)

00

1va

108. fdlh ljy vkorZ xfr esa th83 pDdj ds

fy, fdruk le; gksxk tcfd vkorZdky T gS

(1) 83

T (2) 85

T

(3) 125

T (4) 127

T

108. A particle undergoes S.H.M. having time

period T. The time taken in th83

oscillation is

(1) 83

T (2) 85

T

(3) 125

T (4) 127

T

109. fdlh ljy vkorZ xfr dk foLFkkiu dk lw= y = 0.25 sin (200t) cm gS rks vf/kdre osx dk eku fdruk gksxk (1) 200 cm/sec

(2) 100 cm/sec

(3) 50 cm/sec

(4) 5.25 cm/sec

109. The displacement of a particle executing

S.H.M. is given by y = 0.25 sin (200t) cm. The maximum speed of the particle is (1) 200 cm/sec

(2) 100 cm/sec

(3) 50 cm/sec

(4) 5.25 cm/sec

110.

fdlh fLçax dks rhu cjkcj Hkkxksa esa dkV fn;k tk;s rks çR;sd VqdM+s dk fLçax cy fu;rkad fdruk gksxk tcfd K = fLçax cy fu;rkad (1) K (2) 3 k

110.

A spring of force constant K is cut into three equal parts. The force constant of each part will be

(1) K (2) 3 k

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 22:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 24 )

(3) 3K (4) 9 K (3) 3

K (4) 9 K

111. fdlh ljy vkorZ xfr ds fy, vk;ke a, dqy ÅtkZ E gks rks ewy fcUnq ls fdrus foLFkkiu ij bldh xfrt ÅtkZ

4E3 gks

tk;sxh

(1) 2

ay =

(2) 2a

y =

(3) 2

3

ay =

(4) y = a

111. A particle starts S.H.M. from the mean

position. Its amplitude is a and total energy E. At one instant its kinetic energy is

4E3 its displacement at this

instant is

(1) 2

ay =

(2) 2a

y =

(3) 2

3

ay =

(4) y = a

112. fdlh ljy yksyd dh yEckbZ 45% rd c<+k nh tkrh gS rks mlds vkorZdky esa fdrus çfr’kr dh o`f) gksxh

(1) 44%

(2) 44 %

(3) 10%

(4) 20%

112. The length of a simple pendulum is

increased by 45%. What is the percentage increase in its time period

(1) 44%

(2) 44 %

(3) 10%

(4) 20%

113. +fdlh ljy vkorZ ds fy, lw=

y = 3 sin wt + 4 cos wt

gS rks mudk ifj.kkeh vk;ke gksxk

(1) 7 (2) 12

(3) 1 (4) 5

113. The S.H.M. of a particle is given by the

equation

y = 3 sin wt + 4 cos wt

The amplitude is

(1) 7 (2) 12

(3) 1 (4) 5

114. fdlh fLçax yksyd ij 200 gm ds oLrq dks j[k dj mls ljy vkorZ xfr djkbZ tkrh gS rks mldk vkorZdky fdruk gksxk \ ;fn fLçax cy fu;rkad k = 80 N/m

(1) 0.15 sec (2) 0.02 sec

(3) 0.31 sec (4) 0.05 sec

114. A particle of mass 200 gm executes S.H.M. The restoring force is provided by a spring of force constant k = 80 N/m. The time period of oscillations is

(1) 0.15 sec (2) 0.02 sec

(3) 0.31 sec (4) 0.05 sec

115. fdlh ljy vkorZ xfr ds fy, lkE;fLFkfr ls 3 cm nwjh ij mldk Roj.k 12 cm/ 2sec

115. The acceleration of a particle performing

S.H.M. is 12 cm/ 2sec at a distance of

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 23:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 25 ) P. T. O.

gks rks mlds vkorZdky dk eku gksxk (1) 2.0 sec (2) 3.14 sec

(3) 0.5 sec (4) 1.0 sec

3 cm from the mean position. Its time period is (1) 2.0 sec (2) 3.14 sec

(3) 0.5 sec (4) 1.0 sec

116. lkE;koLFkk ls x nwjh ij fdlh ljy vkorZ xfr ds fy, fLFkfrt ÅtkZ dk eku gksxk

(1) 22

21

xmw

(2) 22

21

amw

(3) ( )222

21

xamw −

(4) 'kwU;

116. The P.E. of a particle executing S.H.M.

from a distance x from its equilibrium position is

(1) 22

21

xmw

(2) 22

21

amw

(3) ( )222

21

xamw −

(4) zero

117. fdlh jsfM;ks LVs’ku ls 760 KHz ij rjax çlkfjr fd;k tkrk gS rks rjax dk rjaxnS/;Z fdruk gksxk (1) 395 m (2) 790 m

(3) 760 m (4) 197.5 m

117. A radio station broadcasts at 760 KHz.

What is wavelength of the station

(1) 395 m (2) 790 m

(3) 760 m (4) 197.5 m

118. 0°C ij /ofu dk osx gok esa 331 m/s gS rks 35°C ij /ofu dk osx fdruk gksxk (1) 331 m/s (2) 366 m/s

(3) 351.6 m/s (4) 332 m/s

118. If speed of sound is in air at 0°C is

331 m/s what will be its volume at 35°C (1) 331 m/s (2) 366 m/s

(3) 351.6 m/s (4) 332 m/s

119. fdlh vuqukn uyh esa çFke rFkk frh; vuqukn 22.7 cm rFkk 70.2 cm ij çkIr gksrk gS rks r`rh; vuqukn fdrus ij çkIr gksxk (1) 117.7 cm (2) 92.9 cm

(3) 115.5 cm (4) 113.5 cm

119. In a resonance column first and second

resonance are obtained at depths 22.7 cm and 70.2 cm. This third resonance will be obtained at a depth of

(1) 117.7 cm (2) 92.9 cm

(3) 115.5 cm (4) 113.5 cm

120. nks vkWxsZu ikbi 10°C ij 2 foLiUn çfr lsd.M mRiUu djrs gSA ;fn rkieku dks 20°C rd c<+krs gS rks çfr lsd.M foLiUn fdruk gksxk (1) 5

(2) 5 ls vf/kd

(3) 5 ls de

120. Two organ pipes produced 5 beats/sec at

10°C. When the temperature rises to 20°C, the number of beats is (1) 5

(2) more than 5

(3) less than 5

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 24:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 26 )

(4) ikbi ds yEckbZ ij fuHkZj djrk gS (4) depends on length of pipes

121. fdlh cUn vkWxsZu ikbi ds fy, ewyHkwr vko`fÙk 100 Hz gSA rks nksuksa rjQ ds fljs [kqys jgus ij fdruh vko`fÙk çkIr gksxh

(1) 200, 400, 600, 800,..........

(2) 200, 300, 400, 500,..........

(3) 100, 300, 500, 700,..........

(4) 100, 200, 300, 400,..........

121. A closed organ pipe has fundamental

frequency 100 Hz. What frequencies will be produced if its other end is also opened

(1) 200, 400, 600, 800,..........

(2) 200, 300, 400, 500,..........

(3) 100, 300, 500, 700,..........

(4) 100, 200, 300, 400,..........

122. MkIyj dk çHkko çHkkoh gksrk gS

(1) dsoy /ofu rjax ij

(2) dsoy çdk’k rjax ij

(3) nksuksa /ofu rFkk çdk’k rjax ij

(4) uk rks /ofu vkSj u gh çdk’k rjax ij

122. Doppler’s effect applies

(1) only to sound waves

(2) only to light waves

(3) to both sound and light waves

(4) to neither light nor sound waves

123. tc dksbZ òksr /ofu osx ls T;knk osx ls xfr djrk gS rks òksr rjax iSnk djrk gS (1) xksyh; rjax (2) lery rjax

(3) csyuuqek rjax (4) dksfudy rjax

123. When a source moves with a speed

greater than the velocity of sound in the medium, then the wave front of the wave is

(1) spherical (2) plane

(3) cylindrical (4) conical

124. fdlh vçxkeh rjax dk lehdj.k

y = 4 sin 3

2 xπ. cos 40 πt

gS rks nks LiUn ds chp dh nwjh fdruh gksxh tcfd x rFkk y lseh esa] t lsd.M esa gS (1) 3 cm (2) 1.5 cm

(3) 6 cm (4) 4 cm

124. The equation of stationary wave along a

stretched string is given by

y = 4 sin 3

2 xπ. cos 40 πt

where x and y are in cms and, t in secs. The separation between two adjacent modes is

(1) 3 cm (2) 1.5 cm

(3) 6 cm (4) 4 cm

125. fdlh oLrq dks çsj.k dh fØ;k kjk vkosf’kr fd;k tkrk gS rks oLrq

(1) mnklhu gks tk;sxk

(2) dksbZ vkos’k dks de ugha djsxk

(3) iwjs vkos’k dks [kks nsxk

(4) ftruk vkosf’kr Hkkx gksxk mls [kks nsxk

125. When a body is charged by induction,

then the body

(1) becomes neutral

(2) does not lose any charge

(3) loses whole of the charge on it

(4) loses part of the charge on it

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 25:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 27 ) P. T. O.

126. nks vkos’k ds chp yxus okyk cy F gSA ;fn nksuksa vkos’k dks nksxquk rFkk nwjh Hkh nksxquh dj nh tk;s rks yxus okyk cy gksxk (1) F (2) 2 F

(3) 4 F (4) 4F

126. Force between two charges separated by a certain distance in air is F. If each charge were doubled and distance between them also doubled, force would be (1) F (2) 2 F

(3) 4 F (4) 4F

127. nks leku vkos’k Q ds feykus okyh js[kk ij Bhd chp esa rhljk vkos’k q j[k fn;k tkrk gS rks fudk; dks lkE;koLFkk esa gksus ds fy, q dk eku gksxk

(1) 2Q−

(2) 4Q−

(3) − 4 q

(4) 2Q+

127. If charge q is placed at the centre of the line joining two equal charge Q. The system of three charges will be in equilibrium if q is

(1) 2Q−

(2) 4Q−

(3) − 4 q

(4) 2Q+

128. nks leku 1 µc ds vkos’k dks 1 m dh nwjh ij gok esa j[kus ij mldh oS|qr fLFkfrt ÅtkZ gksxh

(1) J3109 −× (2) 'kwU;

(3) ev3109 −× (4) 1 J

128. Potential energy of equal positive charge

1 µc held 1 m apart in air is

(1) J3109 −× (2) zero

(3) ev3109 −× (4) 1 J

129. nks xksyh; oLrq dks vkosf’kr djds mls ,d /kkfRod rkj kjk tksM+ fn;k tkrk gS rks oS|qr ks= dh rhozrk dk vuqikr xksyh; oLrq ds fy, fdruk gksxk \ tgk¡ 1R rFkk 2R nksuksa xksyh; oLrq dh f=T;k gS

(1)

2

1

2⎟⎟⎠

⎞⎜⎜⎝

⎛RR

(2) 2

2

1⎟⎟⎠

⎞⎜⎜⎝

⎛RR

(3) ⎟⎟⎠

⎞⎜⎜⎝

1

2

RR

129. Two spheres of Radii 1R and 2R

respectively are charged and joined by a wire. The ratio of electric field of sphere is

(1)

2

1

2⎟⎟⎠

⎞⎜⎜⎝

⎛RR

(2) 2

2

1⎟⎟⎠

⎞⎜⎜⎝

⎛RR

(3) ⎟⎟⎠

⎞⎜⎜⎝

1

2

RR

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 26:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 28 )

(4) ⎟⎟⎠

⎞⎜⎜⎝

2

1RR

(4) ⎟⎟⎠

⎞⎜⎜⎝

2

1RR

130. fdlh oS|qr foHko dks lehdj.k 4105 2 −+= xxV oksYV kjk çnf’kZr

fd;k tkrk gSA rks x = 1 m ij oS|qr ks= dh rhozrk gksxh

(1) mV

23− (2) mV

11

(3) mV

6 (4) mV

20−

130. The electric potential V is given as a function of distance x (meter) by

4105 2 −+= xxV volt. Value of electric field at x = 1 m is

(1) mV

23− (2) mV

11

(3) mV

6 (4) mV

20−

131. fdlh vkos’k Q dks ,d ?ku ds dsUæ ij j[k fn;k x;k gks rks ?ku ds çR;sd ry kjk oS|qr ¶yDl fdruk gksxk

(1) 0∈

Q (2)

02∈Q

(3) 06∈

Q (4)

012∈Q

131. A charge is placed at the centre of a

cube, the flux emitted through its one face is

(1) 0∈

Q (2)

02∈Q

(3) 06∈

Q (4)

012∈Q

132. fn, x, fp= esa fcUnq A rFkk B ds chp ifj.kkeh /kkfjrk fdruh gksxh

(1) 15 µf (2) 30 µf

(3) 60 µf (4) 45 µf

132. The resultant capacitance between the

points A and B in fig.

(1) 15 µf (2) 30 µf

(3) 60 µf (4) 45 µf

133. fdlh 10Ω ds çfrjks/k okys rkj esa 5A dh /kkjk 4 feuV rd çokfgr dh tkrh gSA rks çfr lsd.M rFkk çfr vuqçLFk ks=Qy ls fdruk vkos’k çokfgr gksxk

(1) 12 C (2) 120 C

(3) 1200 C (4) 12000 C

133. A current of 5A exists in a 10Ω resistance

for 4 minutes. How many coulombs pass through any cross section of the resistor in this time

(1) 12 C (2) 120 C

(3) 1200 C (4) 12000 C

134. fdlh rkj dk çkjafHkd çfrjks/k R gks rks rkj dh fu;r vk;ru ij mldh yEckbZ nksxquh dj nsus ij mldk çfrjks/k fdruk gksxk

134. The resistance of a wire is RΩ. The wire is stretched to double its length keeping volume constant. Now the resistance of the

BED

A

5 µf 10 µf

15 µf 30 µf

F

G BE

DA

5 µf 10 µf

15 µf 30 µf

F

G

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 27:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 29 ) P. T. O.

(1) 4 RΩ (2) 2 RΩ

(3) 2R

Ω (4) 4R

Ω

wire will become

(1) 4 RΩ (2) 2 RΩ

(3) 2R

Ω (4) 4R

Ω

135. fdlh IysfVue rkj dk çfrjks/k Øe’k% 0°C rFkk 273°C ij 10Ω rFkk 20Ω gS rks çfrjks/k rki xq.kkad fdruk gksxk

(1) 1

2731 −⎟

⎠⎞

⎜⎝⎛

K (2) 273 k

(3) 1K293

1 −°

⎟⎠

⎞⎜⎝

⎛ (4) 273°C

135. The resistance of platinum wire has 10Ω

at 0°C and 20Ω at 273°C. The value of temperature coefficient of platinum is

(1) 1

2731 −⎟

⎠⎞

⎜⎝⎛

K (2) 273 k

(3) 1K293

1 −°

⎟⎠

⎞⎜⎝

⎛ (4) 273°C

136. fp= esa fn[kk;s x;s /kkjk I dk eku gksxk

(1) 1.7 A (2) 3.7 A

(3) 1.3 A (4) 1.0 A

136. The figure shows current in a part of an

electric circuit, then current I is

(1) 1.7 A (2) 3.7 A

(3) 1.3 A (4) 1.0 A

137. fdlh rkj dk dqy çfrjks/k 12Ω gS ;fn mls o`Ùkkdkj dj fn;k tk, rks mlds O;kl ds nksuksa fcUnqvksa ds chp dk ifj.kkeh çfrjks/k gksxk

(1) 6 Ω (2) 3 Ω

(3) 12 Ω (4) 24 Ω

137. A wire has a resistance 12Ω. It is bent in

the form of a circle. The effective resistance between two points on any diameter is

(1) 6 Ω (2) 3 Ω

(3) 12 Ω (4) 24 Ω

138. nks fo|qr ds cYc ds çfrjks/kksa ds vuqikr 1 : 3 gSa ;fn mUgsa lekUrj Øe esa fdlh fu;r oksYVst okys òksr ls tksM+ fn;k tk; rks mudh 'kfDr dk vuqikr fdruk gksxk

(1) 1 : 3 (2) 1 : 1

(3) 3 : 1 (4) 1 : 9

138. Two electric bulbs whose resistances are

in the ratio 1 : 3 are connected in parallel to a constant voltage source. The powers dissipated in them have the ratio

(1) 1 : 3 (2) 1 : 1

(3) 3 : 1 (4) 1 : 9

139. fdlh ukfHkd ds pkjksa vksj m121050 −× ds f=T;k ds o`Ùkh; iFk ij bysDVªkWu

sm /102.2 6× ds osx ls xfr djrk gSA rks bysDVªkWu dk pqEcdh; vk?kw.kZ gksxk

139. The orbital speed of electron orbiting

around a nucleus in a circular orbit of radius m121050 −× in sm /102.2 6× . Then the magnetic dipole moment of an

I

1.3A2A

2A 1A

I

1.3A2A

2A 1A

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 28:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 30 )

(1) 219106.1 Am−×

(2) 221103.5 Am−×

(3) 224108.8 Am−×

(4) 226108.8 Am−×

electron is

(1) 219106.1 Am−×

(2) 221103.5 Am−×

(3) 224108.8 Am−×

(4) 226108.8 Am−×

140. lkbDyksVªkWu mRiUu gksrk gS

(1) xSl ds fuEu nkc ij

(2) oS|qr ks= ds fuEu vko`fÙk ij

(3) oS|qr ks= ds mPpre vko`fÙk ij

(4) xSl ds mPp nkc ij

140. Cyclotron employs

(1) gas at low pressure

(2) low frequency electric field

(3) high frequency electric field

(4) gas at high pressure

141. fdlh fo|qr pqEcdh; cy js[kk B ds yEcor ,d pqEcdh; f/kzqo dks j[k fn;k x;k gSA ;fn bls 180° ls ?kqek fn;k tk;s rks fdruk dk;Z djuk iM+sxk

(1) MB (2) 2 MB

(3) − 2MB (4) 'kwU;

141. A magnetic dipole is placed at right angles to the direction of lines of force of magnetic induction B. If it is rotated through an angle of 180° then the work done is

(1) MB (2) 2 MB

(3) − 2MB (4) zero

142. ;fn fdlh pqEcd ds mÙkjh rFkk nfk.kh /kzqo ds ikl ykSgpqEcdh; inkFkZ dks yk;k tkrk gS rks

(1) /kzqo kjk vkdf"kZr gksrk gS

(2) /kzqo kjk çfrdf"kZr gksrk gS

(3) mÙkjh /kzqo kjk çfrdf"kZr rFkk nfk.kh /kzqo kjk vkdf"kZr gksrk gS

(4) mÙkjh /kzqo kjk vkdf"kZr rFkk nfk.kh /kzqo kjk çfrdf"kZr gksrk gS

142. If a diamagnetic substance is brought near north or south pole of a bar magnet it is

(1) attracted by poles

(2) repelled by poles

(3) repelled by north pole and attracted by south pole

(4) attracted by north pole and repelled by south pole

143.

fdlh dq.Myh esa 5V dk fo0 ok0 cy dks 3A ls 2A /kkjk esa ifjorZu djds ,d fefy lsd.M esa iSnk fd;k tkrk gS rks Lo%çsj.k xq.kkad gksxk

(1) H2105× (2) 5 H

143. An e.m.f. of 5V is produced in a coil when

current changes at a steady rate from 3A to 2A in one millisecond. The value of self-inductance is

(1) H2105× (2) 5 H

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 29:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 31 ) P. T. O.

(3) H3105 −× (4) 0.005 mH (3) H3105 −× (4) 0.005 mH

144. fdlh çR;korhZ ifjiFk esa /kkjk

⎟⎠⎞

⎜⎝⎛ −=

2100sin5

πti ,fEi;j rFkk foHko

( )tv 100sin200= oksYV gks] rks 'kfDr dk eku gksxk

(1) 20 okWV (2) 40 okWV

(3) 1000 okWV (4) 'kwU; okWV

144. In an A.C. circuit, the current in

⎟⎠⎞

⎜⎝⎛ −=

2100sin5

πti amp and the A.C.

potential ( )tv 100sin200= volt, then the power consumption is

(1) 20 Watt (2) 40 Watt

(3) 1000 Watt (4) Zero Watt

145. rhu rjaxnS/;Z Øe’k% m710 ] m1010− rFkk m710− ds gSa rks muds uke D;k gks ldrs gSa

(1) jsfM;ks rjax] x-rjax] çR;k rjax

(2) x-rjax] çR;k rjax] jsfM;ks rjax

(3) x-rjax] γ-rjax] çR;k rjax

(4) çR;k rjax] γ-rjax] x-rjax

145. There are three wavelengths m710 ]

m1010− and m710− . Find their respective names

(1) radio waves, x- rays, visible rays

(2) x- rays, visible rays, radio waves,

(3) x- rays, γ- rays, visible rays

(4) visible rays, γ- rays, x- rays

146. ;fn fdlh çdk’k rjax dks ijkorZu kjk /kzqfor fd;k tkrk gS rks ijkofrZr rFkk viofrZr fdj.k ds chp dks.k gksxk

(1) 180° (2) 90°

(3) 45° (4) 36°

146. If the light is polarised by reflection, then

the angle between reflected & refracted light is

(1) 180° (2) 90°

(3) 45° (4) 36°

147. fdlh fçTe ftldk viorZukad 1.5 gS rks mlds U;wure fopyu dks.k dk eku mlds fçTe dks.k ds cjkcj gSA rks fçTe dks.k fdruk gksxk (fn;k gS % cos 41° = 0.75)

(1) 62° (2) 41°

(3) 82° (4) 31°

147. Angle of minimum deviation for a prism of refractive index 1.5 is equal to the angle of the prism. Then the angle of the prism is (given cos 41° = 0.75)

(1) 62° (2) 41°

(3) 82° (4) 31°

148. fdlh /kkrq dh dk;Z Qyu 3 ev gks rks mldh nsgyh rjaxnS/;Z gksxk

(1) 4133 A° (2) 4000 A°

(3) 4500 A° (4) 5000 A°

148. If work function of metal is 3 ev then

threshold wavelength will be

(1) 4133 A° (2) 4000 A°

(3) 4500 A° (4) 5000 A°

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/

Page 30:  · a particle is in a motion for some time (1) distance (2) speed (3) displacement (4) none of them 8. foLFkkiu rFkk nwjh ds fy, vkafdd vuqikr gS (1) ges’kk ,d ls de (2) ges’kk

Part-II/D/55 ( 32 )

149. H-ijek.kq ds fuEu ÅtkZ Lrj dh ÅtkZ 13.6 ev gSA rks frh; mÙksftr voLFkk esa bysDVªkWu dks vk;fur gksus ds fy, vko’;d ÅtkZ dh ek=k gksxh

(1) 1.51 ev (2) 3.4 ev

(3) 13.6 ev (4) 12.1 ev

149. The ground state energy of H-atom is

13.6 ev. The energy needed to ionize H-atom from its second excited state

(1) 1.51 ev (2) 3.4 ev

(3) 13.6 ev (4) 12.1 ev

150. fuEufyf[kr fp=kuqlkj blds foU;kl dk ifj.kkeh xsV dkSu-lk gksxk

(1) NAND

(2) XOR

(3) OR

(4) dksbZ Hkh ugha

150. The following configuration of gate is

equivalent to

(1) NAND

(2) XOR

(3) OR

(4) none of these

OR OR

www.sat

ishle

ctur

er.c

om

http

://www.e

xam

com

petiti

on.co

m/